New and Improved Nanomaterials and Approaches for Optical Bio- and Immunosensors
Funding
Acknowledgments
Conflicts of Interest
References
- Podkolodnaya, Y.A.; Kokorina, A.A.; Ponomaryova, T.S.; Goryacheva, O.A.; Drozd, D.D.; Khitrov, M.S.; Huang, L.; Yu, Z.; Tang, D.; Goryacheva, I.Y. Luminescent composite carbon/SiO2 structures: Synthesis and applications. Biosensors 2022, 12, 392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, L.; Xu, X.; Wu, X.; Kuang, H.; Xu, C. Profiles of sterigmatocystin and its metabolites during traditional chinese rice wine processing. Biosensors 2022, 12, 212. [Google Scholar] [CrossRef] [PubMed]
- Presnova, G.V.; Presnov, D.E.; Filippova, A.A.; Tsiniaikin, I.I.; Ulyashova, M.M.; Rubtsova, M.Y. Multiplex digital quantification of β-lactamase genes in antibiotic-resistant bacteria by counting gold nanoparticle labels on silicon microchips. Biosensors 2022, 12, 226. [Google Scholar] [CrossRef] [PubMed]
- Sotnikov, D.V.; Byzova, N.A.; Zherdev, A.V.; Xu, Y.; Dzantiev, B.B. Silent antibodies start talking: Enhanced lateral flow serodiagnosis with two-stage incorporation of labels into immune complexes. Biosensors 2022, 12, 434. [Google Scholar] [CrossRef] [PubMed]
- Bodulev, O.L.; Galkin, I.I.; Zhao, S.; Pletyushkina, O.Y.; Sakharov, I.Y. Quantitation of microRNA-155 in human cells by heterogeneous enzyme-linked oligonucleotide assay coupled with mismatched catalytic hairpin assembly reaction. Biosensors 2022, 12, 570. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xie, H.; Fu, T.; Li, Y.; Shen, X.; Li, X.; Lei, Y.; Yao, X.; Koidis, A.; Liu, Y.; et al. Complementary strategy enhancing broad-specificity for multiplexed immunoassay of adulterant sulfonylureas in functional food. Biosensors 2022, 12, 591. [Google Scholar] [CrossRef] [PubMed]
- Sigolaeva, L.V.; Nechaeva, N.L.; Ignatov, A.I.; Filatova, L.Y.; Sharifullin, T.Z.; Eichhorn, J.; Schacher, F.H.; Pergushov, D.V.; Merzlikin, A.M.; Kurochkin, I.N. In situ SERS sensing by a laser-induced aggregation of silver nanoparticles templated on a thermoresponsive polymer. Biosensors 2022, 12, 628. [Google Scholar] [CrossRef] [PubMed]
- Cavalera, S.; Pezzon, G.; Grazioli, S.; Brocchi, E.; Baselli, S.; Lelli, D.; Colitti, B.; Serra, T.; Di Nardo, F.; Chiarello, M.; et al. Investigation of the “Antigen hook effect” in lateral flow sandwich immunoassay: The case of lumpy skin disease virus detection. Biosensors 2022, 12, 739. [Google Scholar] [CrossRef]
- Samodelova, M.V.; Kapitanova, O.O.; Meshcheryakova, N.F.; Novikov, S.M.; Yarenkov, N.R.; Streletskii, O.A.; Yakubovsky, D.I.; Grabovenko, F.I.; Zhdanov, G.A.; Arsenin, A.V.; et al. Model of the SARS-CoV-2 virus for development of a DNA-modified, surface-enhanced Raman spectroscopy sensor with a novel hybrid plasmonic platform in sandwich mode. Biosensors 2022, 12, 768. [Google Scholar] [CrossRef]
- Tabarov, A.; Vitkin, V.; Andreeva, O.; Shemanaeva, A.; Popov, E.; Dobroslavin, A.; Kurikova, V.; Kuznetsova, O.; Grigorenko, K.; Tzibizov, I.; et al. Detection of A and B influenza viruses by surface-enhanced Raman scattering spectroscopy and machine learning. Biosensors 2022, 12, 1065. [Google Scholar] [CrossRef] [PubMed]
- Eremina, O.E.; Kapitanova, O.O.; Medved’ko, A.V.; Zelenetskaya, A.S.; Egorova, B.V.; Shekhovtsova, T.N.; Vatsadze, S.Z.; Veselova, I.A. Plier ligands for trapping neurotransmitters into complexes for sensitive analysis by SERS spectroscopy. Biosensors 2023, 13, 124. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzantiev, B.B. New and Improved Nanomaterials and Approaches for Optical Bio- and Immunosensors. Biosensors 2023, 13, 443. https://doi.org/10.3390/bios13040443
Dzantiev BB. New and Improved Nanomaterials and Approaches for Optical Bio- and Immunosensors. Biosensors. 2023; 13(4):443. https://doi.org/10.3390/bios13040443
Chicago/Turabian StyleDzantiev, Boris B. 2023. "New and Improved Nanomaterials and Approaches for Optical Bio- and Immunosensors" Biosensors 13, no. 4: 443. https://doi.org/10.3390/bios13040443
APA StyleDzantiev, B. B. (2023). New and Improved Nanomaterials and Approaches for Optical Bio- and Immunosensors. Biosensors, 13(4), 443. https://doi.org/10.3390/bios13040443