Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies
Abstract
:1. Introduction
1.1. Outline
1.2. Comparison of VSD vs. GEVIs
2. Invertebrate Studies with VSDs
2.1. Molluscan Examples of Successful VSD Employment
2.1.1. Optical Recording of Multiunit Activity Evoked via Sensory Stimulation of Molluscan Ganglia
2.1.2. Odor-Evoked Modulation of Spontaneous Oscillations in the Procerebrum, an Olfactory Brain of Terrestrial Snails and Slugs
2.1.3. Visualization of Initiation and Propagation of AP in Subcellular Compartments of Giant Molluscan Neurons
2.2. Insect Examples of Successful VSD Employment
2.3. Other Invertebrates
3. Vertebrate Studies with VSDs
3.1. Experimental Studies with VSDs (Mammals)
3.1.1. Imaging of Subcellular Compartments in Single Neurons
3.1.2. Imaging of Action Potential Shape and Propagation in the Axons of Pyramidal Neurons
3.1.3. Imaging of Field Potentials in Acute Slices
3.1.4. Imaging in Studies of Neurological Disorders
3.1.5. Other Applications of Multiunit Optical Recording
3.2. Lower Vertebrate Studies with VSD
4. Experimental Studies with GEVIs in Vertebrates
4.1. Lower Vertebrate Studies with GEVIs
4.2. Experimental Studies with GEVIs in Mammals
4.2.1. Experimental Works with GEVIs in Acute Brain Slices
4.2.2. Experimental Works with GEVIs In Vivo
4.2.3. GEVIs in Studies of Neurological Disorders
4.2.4. Further Perspectives on the Use of GEVIs in Mammalian Systems
5. Invertebrate Works with GEVIs
6. Conclusions Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Salzberg, B.M.; Zecevic, D. Pioneers in Neurophotonics: Special Section Honoring Professor Lawrence B. Cohen. Neurophotonics 2015, 2, 021001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davila, H.V.; Salzberg, B.M.; Cohen, L.B.; Waggoner, A.S. A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat. New Biol. 1973, 241, 159–160. [Google Scholar] [CrossRef]
- Peterka, D.S.; Takahashi, H.; Yuste, R. Imaging voltage in neurons. Neuron 2011, 69, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fluhler, E.; Burnham, V.G.; Loew, L.M. Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochemistry 1985, 24, 5749–5755. [Google Scholar] [CrossRef]
- Kuhn, B.; Fromherz, P. Anellated Hemicyanine Dyes in a Neuron Membrane: Molecular Stark Effect and Optical Voltage Recording. J. Phys. Chem. B 2003, 107, 7903–7913. [Google Scholar] [CrossRef]
- Treger, J.S.; Priest, M.F.; Iezzi, R.; Bezanilla, F. Real-time imaging of electrical signals with an infrared FDA-approved dye. Biophys. J. 2014, 107, L09–L12. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.W.; Lin, J.Y.; Frady, E.P.; Steinbach, P.A.; Kristan, W.B., Jr.; Tsien, R.Y. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc. Natl. Acad. Sci. USA 2012, 109, 2114–2119. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.L.; Walker, A.S.; Miller, E.W. A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing. J. Am. Chem. Soc. 2015, 137, 10767–10776. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, B.; Roome, C.J. Primer to Voltage Imaging With ANNINE Dyes and Two-Photon Microscopy. Front. Cell Neurosci. 2019, 13, 321. [Google Scholar] [CrossRef] [Green Version]
- Sayresmith, N.A.; Saminathan, A.; Sailer, J.K.; Patberg, S.M.; Sandor, K.; Krishnan, Y.; Walter, M.G. Photostable Voltage-Sensitive Dyes Based on Simple, Solvatofluorochromic, Asymmetric Thiazolothiazoles. J. Am. Chem. Soc. 2019, 141, 18780–18790. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Acker, C.D.; Loew, L.M. Tethered Bichromophoric Fluorophore Quencher Voltage Sensitive Dyes. ACS Sens. 2018, 3, 2621–2628. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.A.; Walker, A.S.; Cao, K.J.; Lazzari-Dean, J.R.; Settineri, N.S.; Kong, E.J.; Kramer, R.H.; Miller, E.W. Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter. J. Am. Chem. Soc. 2021, 143, 2304–2314. [Google Scholar] [CrossRef]
- Fiala, T.; Wang, J.; Dunn, M.; Sebej, P.; Choi, S.J.; Nwadibia, E.C.; Fialova, E.; Martinez, D.M.; Cheetham, C.E.; Fogle, K.J.; et al. Chemical Targeting of Voltage Sensitive Dyes to Specific Cells and Molecules in the Brain. J. Am. Chem. Soc. 2020, 142, 9285–9301. [Google Scholar] [CrossRef]
- Aseyev, N.; Roshchin, M.; Ierusalimsky, V.N.; Balaban, P.M.; Nikitin, E.S. Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices. J. Neurosci. Methods 2013, 212, 17–27. [Google Scholar] [CrossRef]
- Zhang, H.K.; Yan, P.; Kang, J.; Abou, D.S.; Le, H.N.; Jha, A.K.; Thorek, D.L.; Kang, J.U.; Rahmim, A.; Wong, D.F.; et al. Listening to membrane potential: Photoacoustic voltage-sensitive dye recording. J. Biomed. Opt. 2017, 22, 45006. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Kadam, S.D.; Elmore, J.S.; Sullivan, B.J.; Valentine, H.; Malla, A.P.; Harraz, M.M.; Rahmim, A.; Kang, J.U.; Loew, L.M.; et al. Transcranial photoacoustic imaging of NMDA-evoked focal circuit dynamics in the rat hippocampus. J. Neural Eng. 2020, 17, 025001. [Google Scholar] [CrossRef]
- Siegel, M.S.; Isacoff, E.Y. A genetically encoded optical probe of membrane voltage. Neuron 1997, 19, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perron, A.; Mutoh, H.; Launey, T.; Knopfel, T. Red-shifted voltage-sensitive fluorescent proteins. Chem. Biol. 2009, 16, 1268–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrov, D.; He, Y.; Mutoh, H.; Baker, B.J.; Cohen, L.; Akemann, W.; Knopfel, T. Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS ONE 2007, 2, e440. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Han, Z.; Platisa, J.; Wooltorton, J.R.; Cohen, L.B.; Pieribone, V.A. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 2012, 75, 779–785. [Google Scholar] [CrossRef] [Green Version]
- St-Pierre, F.; Marshall, J.D.; Yang, Y.; Gong, Y.; Schnitzer, M.J.; Lin, M.Z. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 2014, 17, 884–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepehri Rad, M.; Cohen, L.B.; Baker, B.J. Conserved Amino Acids Residing Outside the Voltage Field Can Shift the Voltage Sensitivity and Increase the Signal Speed and Size of Ciona Based GEVIs. Front. Cell Dev. Biol. 2022, 10, 868143. [Google Scholar] [CrossRef]
- Ghitani, N.; Bayguinov, P.O.; Ma, Y.; Jackson, M.B. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor. J. Neurophysiol. 2015, 113, 1249–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, U.; Sepehri-Rad, M.; Piao, H.H.; Jin, L.; Hughes, T.; Cohen, L.B.; Baker, B.J. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions. PLoS ONE 2015, 10, e0141585. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Lin, C.; Xu, Y.; Luo, H.; Peng, L.; Zeng, X.; Zheng, H.; Chen, P.R.; Zou, P. A far-red hybrid voltage indicator enabled by bioorthogonal engineering of rhodopsin on live neurons. Nat. Chem. 2021, 13, 472–479. [Google Scholar] [CrossRef]
- Deo, C.; Abdelfattah, A.S.; Bhargava, H.K.; Berro, A.J.; Falco, N.; Farrants, H.; Moeyaert, B.; Chupanova, M.; Lavis, L.D.; Schreiter, E.R. The HaloTag as a general scaffold for far-red tunable chemigenetic indicators. Nat. Chem. Biol. 2021, 17, 718–723. [Google Scholar] [CrossRef]
- Alich, T.C.; Pabst, M.; Pothmann, L.; Szalontai, B.; Faas, G.C.; Mody, I. A dark quencher genetically encodable voltage indicator (dqGEVI) exhibits high fidelity and speed. Proc. Natl. Acad. Sci. USA 2021, 118, e2020235118. [Google Scholar] [CrossRef]
- Kralj, J.M.; Douglass, A.D.; Hochbaum, D.R.; Maclaurin, D.; Cohen, A.E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 2011, 9, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Kojima, K.; Kurihara, R.; Sakamoto, M.; Takanashi, T.; Kuramochi, H.; Zhang, X.M.; Bito, H.; Tahara, T.; Sudo, Y. Comparative Studies of the Fluorescence Properties of Microbial Rhodopsins: Spontaneous Emission Versus Photointermediate Fluorescence. J. Phys. Chem. B 2020, 124, 7361–7367. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, X.; Villette, V.; Gou, Y.; Colbert, K.L.; Lai, S.; Guan, S.; Land, M.A.; Lee, J.; Assefa, T.; et al. Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy. Cell 2022, 185, 3408–3425.e29. [Google Scholar] [CrossRef]
- Chien, M.P.; Brinks, D.; Testa-Silva, G.; Tian, H.; Phil Brooks, F., 3rd; Adam, Y.; Bloxham, B.; Gmeiner, B.; Kheifets, S.; Cohen, A.E. Photoactivated voltage imaging in tissue with an archaerhodopsin-derived reporter. Sci. Adv. 2021, 7, eabe3216. [Google Scholar] [CrossRef]
- Monakhov, M.V.; Matlashov, M.E.; Colavita, M.; Song, C.; Shcherbakova, D.M.; Antic, S.D.; Verkhusha, V.V.; Knopfel, T. Screening and Cellular Characterization of Genetically Encoded Voltage Indicators Based on Near-Infrared Fluorescent Proteins. ACS Chem. Neurosci. 2020, 11, 3523–3531. [Google Scholar] [CrossRef]
- Piatkevich, K.D.; Jung, E.E.; Straub, C.; Linghu, C.; Park, D.; Suk, H.J.; Hochbaum, D.R.; Goodwin, D.; Pnevmatikakis, E.; Pak, N.; et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 2018, 14, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Barneschi, L.; Marsili, E.; Pedraza-Gonzalez, L.; Padula, D.; De Vico, L.; Kaliakin, D.; Blanco-Gonzalez, A.; Ferre, N.; Huix-Rotllant, M.; Filatov, M.; et al. On the fluorescence enhancement of arch neuronal optogenetic reporters. Nat. Commun. 2022, 13, 6432. [Google Scholar] [CrossRef]
- Roome, C.J.; Kuhn, B. Simultaneous dendritic voltage and calcium imaging and somatic recording from Purkinje neurons in awake mice. Nat. Commun. 2018, 9, 3388. [Google Scholar] [CrossRef] [Green Version]
- Roome, C.J.; Kuhn, B. Voltage imaging with ANNINE dyes and two-photon microscopy of Purkinje dendrites in awake mice. Neurosci. Res. 2020, 152, 15–24. [Google Scholar] [CrossRef]
- Platisa, J.; Zeng, H.; Madisen, L.; Cohen, L.B.; Pieribone, V.A.; Storace, D.A. Voltage imaging in the olfactory bulb using transgenic mouse lines expressing the genetically encoded voltage indicator ArcLight. Sci. Rep. 2022, 12, 1875. [Google Scholar] [CrossRef] [PubMed]
- Quicke, P.; Song, C.; McKimm, E.J.; Milosevic, M.M.; Howe, C.L.; Neil, M.; Schultz, S.R.; Antic, S.D.; Foust, A.J.; Knopfel, T. Single-Neuron Level One-Photon Voltage Imaging With Sparsely Targeted Genetically Encoded Voltage Indicators. Front. Cell Neurosci. 2019, 13, 39. [Google Scholar] [CrossRef]
- Jimenez-Martin, J.; Potapov, D.; Potapov, K.; Knopfel, T.; Empson, R.M. Cholinergic modulation of sensory processing in awake mouse cortex. Sci. Rep. 2021, 11, 17525. [Google Scholar] [CrossRef]
- Sepehri Rad, M.; Cohen, L.B.; Braubach, O.; Baker, B.J. Monitoring voltage fluctuations of intracellular membranes. Sci. Rep. 2018, 8, 6911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milosevic, M.M.; Jang, J.; McKimm, E.J.; Zhu, M.H.; Antic, S.D. In Vitro Testing of Voltage Indicators: Archon1, ArcLightD, ASAP1, ASAP2s, ASAP3b, Bongwoori-Pos6, BeRST1, FlicR1, and Chi-VSFP-Butterfly. eNeuro 2020, 7, ENEURO-0060. [Google Scholar] [CrossRef] [PubMed]
- Bando, Y.; Sakamoto, M.; Kim, S.; Ayzenshtat, I.; Yuste, R. Comparative Evaluation of Genetically Encoded Voltage Indicators. Cell Rep. 2019, 26, 802–813.e4. [Google Scholar] [CrossRef] [Green Version]
- Palmer, L.M.; Stuart, G.J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 2006, 26, 1854–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, W.; White, J.A.; Price, R.O.; Blackmore, P.F.; Joshi, R.P.; Nuccitelli, R.; Beebe, S.J.; Schoenbach, K.H.; Kolb, J.F. Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys. J. 2006, 90, 3608–3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villette, V.; Chavarha, M.; Dimov, I.K.; Bradley, J.; Pradhan, L.; Mathieu, B.; Evans, S.W.; Chamberland, S.; Shi, D.; Yang, R.; et al. Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell 2019, 179, 1590–1608.e23. [Google Scholar] [CrossRef]
- Hochbaum, D.R.; Zhao, Y.; Farhi, S.L.; Klapoetke, N.; Werley, C.A.; Kapoor, V.; Zou, P.; Kralj, J.M.; Maclaurin, D.; Smedemark-Margulies, N.; et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 2014, 11, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Adam, Y.; Kim, J.J.; Lou, S.; Zhao, Y.; Xie, M.E.; Brinks, D.; Wu, H.; Mostajo-Radji, M.A.; Kheifets, S.; Parot, V.; et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 2019, 569, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Kannan, M.; Vasan, G.; Huang, C.; Haziza, S.; Li, J.Z.; Inan, H.; Schnitzer, M.J.; Pieribone, V.A. Fast, in vivo voltage imaging using a red fluorescent indicator. Nat. Methods 2018, 15, 1108–1116. [Google Scholar] [CrossRef]
- Piatkevich, K.D.; Bensussen, S.; Tseng, H.A.; Shroff, S.N.; Lopez-Huerta, V.G.; Park, D.; Jung, E.E.; Shemesh, O.A.; Straub, C.; Gritton, H.J.; et al. Population imaging of neural activity in awake behaving mice. Nature 2019, 574, 413–417. [Google Scholar] [CrossRef]
- Nikitin, E.S.; Bal, N.V.; Malyshev, A.; Ierusalimsky, V.N.; Spivak, Y.; Balaban, P.M.; Volgushev, M. Encoding of High Frequencies Improves with Maturation of Action Potential Generation in Cultured Neocortical Neurons. Front. Cell Neurosci. 2017, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.Z.; Kheifets, S.; Bohm, U.L.; Wu, H.; Piatkevich, K.D.; Xie, M.E.; Parot, V.; Ha, Y.; Evans, K.E.; Boyden, E.S.; et al. All-Optical Electrophysiology Reveals the Role of Lateral Inhibition in Sensory Processing in Cortical Layer 1. Cell 2020, 180, 521–535.e18. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Davis, H.C.; Wong-Campos, J.D.; Park, P.; Fan, L.Z.; Gmeiner, B.; Begum, S.; Werley, C.A.; Borja, G.B.; Upadhyay, H.; et al. Video-based pooled screening yields improved far-red genetically encoded voltage indicators. Nat. Methods 2023. ahead of print. [Google Scholar] [CrossRef]
- Kannan, M.; Vasan, G.; Haziza, S.; Huang, C.; Chrapkiewicz, R.; Luo, J.; Cardin, J.A.; Schnitzer, M.J.; Pieribone, V.A. Dual-polarity voltage imaging of the concurrent dynamics of multiple neuron types. Science 2022, 378, eabm8797. [Google Scholar] [CrossRef]
- Cornejo, V.H.; Ofer, N.; Yuste, R. Voltage compartmentalization in dendritic spines in vivo. Science 2022, 375, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Falk, C.; Wu, J.; Cohen, L.; Tang, A. Nonuniform expression of habituation in the activity of distinct classes of neurons in the Aplysia abdominal ganglion. J. Neurosci. 1993, 13, 4072–4081. [Google Scholar] [CrossRef] [Green Version]
- Zecević, D.; Wu, J.Y.; Cohen, L.B.; London, J.A.; Höpp, H.P.; Falk, C.X. Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex. J. Neurosci. 1989, 9, 3681–3689. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Tsau, Y.; Hopp, H.P.; Cohen, L.B.; Tang, A.C.; Falk, C.X. Consistency in nervous systems: Trial-to-trial and animal-to-animal variations in the responses to repeated applications of a sensory stimulus in Aplysia. J. Neurosci. 1994, 14, 1366–1384. [Google Scholar] [CrossRef] [Green Version]
- Höpp, H.P.; Falk, C.X.; Cohen, L.B.; Wu, J.Y.; Cohen, A.I. Effect of feedback from peripheral movements on neuron activity in the aplysia abdominal ganglion. Eur. J. Neurosci. 1996, 8, 1865–1872. [Google Scholar] [CrossRef]
- Hickie, C.; Cohen, L.B.; Balaban, P.M. The synapse between LE sensory neurons and gill motoneurons makes only a small contribution to the Aplysia gill-withdrawal reflex. Eur. J. Neurosci. 1997, 9, 627–636. [Google Scholar] [CrossRef]
- Zochowski, M.; Cohen, L.B.; Fuhrmann, G.; Kleinfeld, D. Distributed and partially separate pools of neurons are correlated with two different components of the gill-withdrawal reflex in Aplysia. J. Neurosci. 2000, 20, 8485–8492. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.M.; Baxter, D.A.; Byrne, J.H. Neuronal population activity dynamics reveal a low-dimensional signature of operant learning in Aplysia. Commun. Biol. 2022, 5, 90. [Google Scholar] [CrossRef] [PubMed]
- Balaban, P.M.; Bravarenko, N.I.; Maksimova, O.A.; Nikitin, E.; Ierusalimsky, V.N.; Zakharov, I.S. A single serotonergic modulatory cell can mediate reinforcement in the withdrawal network of the terrestrial snail. Neurobiol. Learn. Mem. 2001, 75, 30–50. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, E.S.; Balaban, P.M. Functional organization and structure of the serotonergic neuronal network of terrestrial snail. Zhurnal Vyss. Nervn. Deiatelnosti Im. I P Pavlov. 2011, 61, 750–762. [Google Scholar]
- Hill, E.S.; Brown, J.W.; Frost, W.N. Photodiode-Based Optical Imaging for Recording Network Dynamics with Single-Neuron Resolution in Non-Transgenic Invertebrates. J. Vis. Exp. 2020, 161, e61623. [Google Scholar] [CrossRef]
- Hill, E.S.; Vasireddi, S.K.; Wang, J.; Bruno, A.M.; Frost, W.N. Memory Formation in Tritonia via Recruitment of Variably Committed Neurons. Curr. Biol. 2015, 25, 2879–2888. [Google Scholar] [CrossRef]
- Hill, E.S.; Vasireddi, S.K.; Wang, J.; Bruno, A.M.; Frost, W.N. Watching a memory form—VSD imaging reveals a novel memory mechanism. Commun. Integr. Biol. 2016, 9, e1212142. [Google Scholar] [CrossRef] [PubMed]
- Kleinfeld, D.; Delaney, K.R.; Fee, M.S.; Flores, J.A.; Tank, D.W.; Gelperin, A. Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: An electrical and optical study. J. Neurophysiol. 1994, 72, 1402–1419. [Google Scholar] [CrossRef]
- Kimura, T.; Toda, S.; Sekiguchi, T.; Kawahara, S.; Kirino, Y. Optical recording analysis of olfactory response of the procerebral lobe in the slug brain. Learn. Mem. 1998, 4, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, E.S.; Balaban, P.M. Optical recording of odor-evoked responses in the olfactory brain of the naïve and aversively trained terrestrial snails. Learn. Mem. 2000, 7, 422–432. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, E.S.; Zakharov, I.S.; Samarova, E.I.; Kemenes, G.; Balaban, P.M. Fine tuning of olfactory orientation behaviour by the interaction of oscillatory and single neuronal activity. Eur. J. Neurosci. 2005, 22, 2833–2844. [Google Scholar] [CrossRef]
- Nikitin, E.S.; Balaban, P.M. Optical recording of responses to odor in olfactory structures of the nervous system in the terrestrial mollusk Helix. Neurosci. Behav. Physiol. 2001, 31, 21–30. [Google Scholar] [CrossRef]
- Antic, S.; Zecevic, D. Optical signals from neurons with internally applied voltage-sensitive dyes. J. Neurosci. 1995, 15, 1392–1405. [Google Scholar] [CrossRef]
- Zecević, D. Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature 1996, 381, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Antic, S.; Wuskell, J.P.; Loew, L.; Zecevic, D. Functional profile of the giant metacerebral neuron of Helix aspersa: Temporal and spatial dynamics of electrical activity in situ. J. Physiol. 2000, 527 Pt 1, 55–69. [Google Scholar] [CrossRef]
- Kemenes, I.; Straub, V.A.; Nikitin, E.S.; Staras, K.; O’Shea, M.; Kemenes, G.; Benjamin, P.R. Role of delayed nonsynaptic neuronal plasticity in long-term associative memory. Curr. Biol. CB 2006, 16, 1269–1279. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, E.S.; Balaban, P.M.; Kemenes, G. Nonsynaptic plasticity underlies a compartmentalized increase in synaptic efficacy after classical conditioning. Curr. Biol. CB 2013, 23, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Na, J.; Kim, W.; Yoon, B.J. Development of a novel screening system for allatostatin receptor agonists in search of new candidate insect growth regulators. Biotechnol. Lett. 2014, 36, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Galizia, C.G.; Kuttner, A.; Joerges, J.; Menzel, R. Odour representation in honeybee olfactory glomeruli shows slow temporal dynamics: An optical recording study using a voltage-sensitive dye. J. Insect Physiol. 2000, 46, 877–886. [Google Scholar] [CrossRef] [Green Version]
- Lieke, E.E. Optical recording of neuronal activity in the insect central nervous system: Odorant coding by the antennal lobes of honeybees. Eur. J. Neurosci. 1993, 5, 49–55. [Google Scholar] [CrossRef]
- Okada, K.; Kanzaki, R. Localization of odor-induced oscillations in the bumblebee antennal lobe. Neurosci. Lett. 2001, 316, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Kanzaki, R.; Kawachi, K. High-speed voltage-sensitive dye imaging of an in vivo insect brain. Neurosci. Lett. 1996, 209, 197–200. [Google Scholar] [CrossRef]
- Ai, H.; Inouchi, J. Spatial and temporal analysis of evoked neural activity in optical recordings from American cockroach antennal lobes. Neurosci. Lett. 1996, 216, 77–80. [Google Scholar] [CrossRef]
- Watanabe, H.; Ai, H.; Yokohari, F. Spatio-temporal activity patterns of odor-induced synchronized potentials revealed by voltage-sensitive dye imaging and intracellular recording in the antennal lobe of the cockroach. Front. Syst. Neurosci. 2012, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Ai, H.; Kanzaki, R. Modular organization of the silkmoth antennal lobe macroglomerular complex revealed by voltage-sensitive dye imaging. J. Exp. Biol. 2004, 207, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.S.; Okada, K.; Kanzaki, R. Visualization of modulatory effects of serotonin in the silkmoth antennal lobe. J. Exp. Biol. 2003, 206, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmith, C.J.; Stadele, C.; Stein, W. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems. PLoS ONE 2014, 9, e103459. [Google Scholar] [CrossRef] [Green Version]
- Preuss, S.; Stein, W. Comparison of two voltage-sensitive dyes and their suitability for long-term imaging of neuronal activity. PLoS ONE 2013, 8, e75678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Follmann, R.; Goldsmith, C.J.; Stein, W. Multimodal sensory information is represented by a combinatorial code in a sensorimotor system. PLoS Biol. 2018, 16, e2004527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadele, C.; Stein, W. The Site of Spontaneous Ectopic Spike Initiation Facilitates Signal Integration in a Sensory Neuron. J. Neurosci. 2016, 36, 6718–6731. [Google Scholar] [CrossRef] [Green Version]
- Briggman, K.L.; Abarbanel, H.D.; Kristan, W.B., Jr. Optical imaging of neuronal populations during decision-making. Science 2005, 307, 896–901. [Google Scholar] [CrossRef] [Green Version]
- Baca, S.M.; Marin-Burgin, A.; Wagenaar, D.A.; Kristan, W.B., Jr. Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit. Neuron 2008, 57, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Moshtagh-Khorasani, M.; Miller, E.W.; Torre, V. The spontaneous electrical activity of neurons in leech ganglia. Physiol. Rep. 2013, 1, e00089. [Google Scholar] [CrossRef] [Green Version]
- Tomina, Y.; Wagenaar, D.A. Dual-sided Voltage-sensitive Dye Imaging of Leech Ganglia. Bio-Protocol 2018, 8, e2751. [Google Scholar] [CrossRef] [PubMed]
- Tomina, Y.; Wagenaar, D.A. A double-sided microscope to realize whole-ganglion imaging of membrane potential in the medicinal leech. Elife 2017, 6, e29839. [Google Scholar] [CrossRef] [PubMed]
- Fathiazar, E.; Hilgen, G.; Kretzberg, J. Higher Network Activity Induced by Tactile Compared to Electrical Stimulation of Leech Mechanoreceptors. Front. Physiol. 2018, 9, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kretzberg, J.; Pirschel, F.; Fathiazar, E.; Hilgen, G. Encoding of Tactile Stimuli by Mechanoreceptors and Interneurons of the Medicinal Leech. Front. Physiol. 2016, 7, 506. [Google Scholar] [CrossRef] [Green Version]
- Ashaber, M.; Tomina, Y.; Kassraian, P.; Bushong, E.A.; Kristan, W.B.; Ellisman, M.H.; Wagenaar, D.A. Anatomy and activity patterns in a multifunctional motor neuron and its surrounding circuits. Elife 2021, 10, e61881. [Google Scholar] [CrossRef]
- Heggland, I.; Kvello, P.; Witter, M.P. Electrophysiological Characterization of Networks and Single Cells in the Hippocampal Region of a Transgenic Rat Model of Alzheimer’s Disease. eNeuro 2019, 6, ENEURO-0448. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Nomoto, T.; Shiki, T.; Sakata, Y.; Shimada, Y.; Hayashida, Y.; Yagi, T. Focal activation of neuronal circuits induced by microstimulation in the visual cortex. J. Neural Eng. 2019, 16, 036007. [Google Scholar] [CrossRef]
- Momose-Sato, Y.; Sato, K. Voltage-sensitive dye recording of glossopharyngeal nerve-related synaptic networks in the embryonic mouse brainstem. IBRO Rep. 2019, 6, 176–184. [Google Scholar] [CrossRef]
- Kajiwara, R.; Tominaga, T. Perirhinal cortex area 35 controls the functional link between the perirhinal and entorhinal-hippocampal circuitry: D-type potassium channel-mediated gating of neural propagation from the perirhinal cortex to the entorhinal-hippocampal circuitry. Bioessays 2021, 43, e2000084. [Google Scholar] [CrossRef]
- Chen, F.; Takemoto, M.; Nishimura, M.; Tomioka, R.; Song, W.J. Postnatal development of subfields in the core region of the mouse auditory cortex. Hear. Res. 2021, 400, 108138. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, N.; Muramoto, K.; Kobayashi, M. Olfactory signals from the main olfactory bulb converge with taste information from the chorda tympani nerve in the agranular insular cortex of rats. Pflug. Arch. 2020, 472, 721–732. [Google Scholar] [CrossRef]
- Kirihara, Y.; Zama, M.; Fujita, S.; Ogisawa, S.; Nishikubo, S.; Tonogi, M.; Kobayashi, M. Asymmetrical organization of oral structures in the primary and secondary somatosensory cortices in rats: An optical imaging study. Synapse 2022, 76, e22222. [Google Scholar] [CrossRef]
- Di Volo, M.; Férézou, I. Nonlinear collision between propagating waves in mouse somatosensory cortex. Sci. Rep. 2021, 11, 19630. [Google Scholar] [CrossRef]
- Nishimura, M.; Song, W.J. Region-dependent Millisecond Time-scale Sensitivity in Spectrotemporal Integrations in Guinea Pig Primary Auditory Cortex. Neuroscience 2022, 480, 229–245. [Google Scholar] [CrossRef]
- Oz, R.; Edelman-Klapper, H.; Nivinsky-Margalit, S.; Slovin, H. Microstimulation in the primary visual cortex: Activity patterns and their relation to visual responses and evoked saccades. Cereb. Cortex 2022, 33, 5192–5209. [Google Scholar] [CrossRef]
- O’Hashi, K.; Fekete, T.; Deneux, T.; Hildesheim, R.; van Leeuwen, C.; Grinvald, A. Interhemispheric Synchrony of Spontaneous Cortical States at the Cortical Column Level. Cereb. Cortex 2018, 28, 1794–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollmann, P.; Elfers, K.; Maurer, S.; Klingenspor, M.; Schemann, M.; Mazzuoli-Weber, G. Submucosal enteric neurons of the cavine distal colon are sensitive to hypoosmolar stimuli. J. Physiol. 2020, 598, 5317–5332. [Google Scholar] [CrossRef] [PubMed]
- Annahazi, A.; Berger, T.E.; Demir, I.E.; Zeller, F.; Muller, M.; Anneser, M.; Skerra, A.; Michel, K.; Schemann, M. Metabotropic 5-HT receptor-mediated effects in the human submucous plexus. Neurogastroenterol. Motil. 2022, 34, e14380. [Google Scholar] [CrossRef]
- Kugler, E.M.; Michel, K.; Kirchenbuchler, D.; Dreissen, G.; Csiszar, A.; Merkel, R.; Schemann, M.; Mazzuoli-Weber, G. Sensitivity to Strain and Shear Stress of Isolated Mechanosensitive Enteric Neurons. Neuroscience 2018, 372, 213–224. [Google Scholar] [CrossRef]
- Gao, P.P.; Graham, J.W.; Zhou, W.L.; Jang, J.; Angulo, S.; Dura-Bernal, S.; Hines, M.; Lytton, W.W.; Antic, S.D. Local glutamate-mediated dendritic plateau potentials change the state of the cortical pyramidal neuron. J. Neurophysiol. 2021, 125, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Antic, S.D.; Hines, M.; Lytton, W.W. Embedded ensemble encoding hypothesis: The role of the “Prepared” cell. J. Neurosci. Res. 2018, 96, 1543–1559. [Google Scholar] [CrossRef] [Green Version]
- Milojkovic, B.A.; Radojicic, M.S.; Goldman-Rakic, P.S.; Antic, S.D. Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree. J. Physiol. 2004, 558, 193–211. [Google Scholar] [CrossRef]
- Antic, S.D. Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J. Physiol. 2003, 550, 35–50. [Google Scholar] [CrossRef]
- Acker, C.D.; Antic, S.D. Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. J. Neurophysiol. 2009, 101, 1524–1541. [Google Scholar] [CrossRef] [Green Version]
- Palmer, L.M.; Stuart, G.J. Membrane potential changes in dendritic spines during action potentials and synaptic input. J. Neurosci. 2009, 29, 6897–6903. [Google Scholar] [CrossRef] [Green Version]
- Popovic, M.; Vogt, K.; Holthoff, K.; Konnerth, A.; Salzberg, B.M.; Grinvald, A.; Antic, S.D.; Canepari, M.; Zecevic, D. Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines. Adv. Exp. Med. Biol. 2015, 859, 57–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovic, M.A.; Carnevale, N.; Rozsa, B.; Zecevic, D. Electrical behaviour of dendritic spines as revealed by voltage imaging. Nat. Commun. 2015, 6, 8436. [Google Scholar] [CrossRef] [Green Version]
- Popovic, M.A.; Gao, X.; Carnevale, N.T.; Zecevic, D. Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites. Cereb. Cortex 2014, 24, 385–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, P.; Acker, C.D.; Zhou, W.L.; Lee, P.; Bollensdorff, C.; Negrean, A.; Lotti, J.; Sacconi, L.; Antic, S.D.; Kohl, P.; et al. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc. Natl. Acad. Sci. USA 2012, 109, 20443–20448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovic, M.A.; Foust, A.J.; McCormick, D.A.; Zecevic, D. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: A voltage imaging study. J. Physiol. 2011, 589, 4167–4187. [Google Scholar] [CrossRef]
- Nikitin, E.S.; Aseev, N.A.; Balaban, P.M. Improvements in the Optical Recording of Neuron Activity Using Voltage-Dependent Dyes. Neurosci. Behav. Physiol. 2015, 45, 131–138. [Google Scholar] [CrossRef]
- Foust, A.J.; Yu, Y.; Popovic, M.; Zecevic, D.; McCormick, D.A. Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J. Neurosci. 2011, 31, 15490–15498. [Google Scholar] [CrossRef] [Green Version]
- Foust, A.; Popovic, M.; Zecevic, D.; McCormick, D.A. Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J. Neurosci. 2010, 30, 6891–6902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, L.M.; Clark, B.A.; Grundemann, J.; Roth, A.; Stuart, G.J.; Hausser, M. Initiation of simple and complex spikes in cerebellar Purkinje cells. J. Physiol. 2010, 588, 1709–1717. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Guan, L.; Tsau, Y. Propagating activation during oscillations and evoked responses in neocortical slices. J. Neurosci. 1999, 19, 5005–5015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezrokhi, V.L.; Kas’yanov, A.M.; Markevich, V.A.; Balaban, P.M. Reverberation of excitation in living “hippocampal formation-entorhinal cortex” slices from rats. Optical recording. Neurosci. Behav. Physiol. 2001, 31, 31–37. [Google Scholar] [CrossRef]
- Aseev, N.A.; Nikitin, E.S.; Roshchin, M.V.; Ierusalimskiĭ, V.N.; Balaban, P.M. Fast and aimed delivery of voltage-sensitive dyes to mammalian brain slices by biolistic techniques. Zhurnal Vyss. Nervn. Deiatelnosti Im. I P Pavlov. 2012, 62, 100–107. [Google Scholar]
- Aseyev, N.A.; Nikitin, E.S.; Roshchin, M.V.; Ierusalimskii, V.N.; Balaban, P.M. Biolistic Loading of Voltage-Sensitive Dyes into Cells in Rat Brain Slices for Optical Recording of Neuron Activity. Neurosci. Behav. Physiol. 2013, 43, 323–328. [Google Scholar] [CrossRef]
- Cappaert, N.L.; Lopes da Silva, F.H.; Wadman, W.J. Spatio-temporal dynamics of theta oscillations in hippocampal-entorhinal slices. Hippocampus 2009, 19, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, C.; Sun, W.; Li, C. Tailoring Materials for Epilepsy Imaging: From Biomarkers to Imaging Probes. Adv. Mater. 2022, 34, 2203667. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Zhang, H.K.; Kadam, S.D.; Fedorko, J.; Valentine, H.; Malla, A.P.; Yan, P.; Harraz, M.M.; Kang, J.U.; Rahmim, A.; et al. Transcranial Recording of Electrophysiological Neural Activity in the Rodent Brain in vivo Using Functional Photoacoustic Imaging of Near-Infrared Voltage-Sensitive Dye. Front. Neurosci. 2019, 13, 579. [Google Scholar] [CrossRef] [Green Version]
- Dasheiff, R.M.; Sacks, D.S. Seizure circuit analysis with voltage sensitive dye. Seizure 1992, 1, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Hazra, A.; Aulakh, A.; Žiburkus, J. Purinergic control of hippocampal circuit hyperexcitability in Dravet syndrome. Epilepsia 2014, 55, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, Y.; Honda, T.; Ishihara, N.; Namba, K.; Taketoshi, M.; Tominaga, Y.; Tsuji, M.; Vogel, C.F.A.; Yamazaki, T.; Itoh, K.; et al. A CCR5 antagonist, maraviroc, alleviates neural circuit dysfunction and behavioral disorders induced by prenatal valproate exposure. J. Neuroinflamm. 2022, 19, 195. [Google Scholar] [CrossRef] [PubMed]
- Obaid, A.L.; Koyano, T.; Lindstrom, J.; Sakai, T.; Salzberg, B.M. Spatiotemporal patterns of activity in an intact mammalian network with single-cell resolution: Optical studies of nicotinic activity in an enteric plexus. J. Neurosci. 1999, 19, 3073–3093. [Google Scholar] [CrossRef] [Green Version]
- Obaid, A.L.; Nelson, M.E.; Lindstrom, J.; Salzberg, B.M. Optical studies of nicotinic acetylcholine receptor subtypes in the guinea-pig enteric nervous system. J. Exp. Biol. 2005, 208, 2981–3001. [Google Scholar] [CrossRef] [Green Version]
- Hiyoshi, K.; Shiraishi, A.; Fukuda, N.; Tsuda, S. In vivo wide-field voltage imaging in zebrafish with voltage-sensitive dye and genetically encoded voltage indicator. Dev. Growth Differ. 2021, 63, 417–428. [Google Scholar] [CrossRef]
- Okumura, K.; Kakinuma, H.; Amo, R.; Okamoto, H.; Yamasu, K.; Tsuda, S. Optical measurement of neuronal activity in the developing cerebellum of zebrafish using voltage-sensitive dye imaging. Neuroreport 2018, 29, 1349–1354. [Google Scholar] [CrossRef]
- Friedrich, R.W.; Korsching, S.I. Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer. J. Neurosci. 1998, 18, 9977–9988. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, H.; Wolf, A.M.; Knopfel, T.; Oka, Y. Imaging postsynaptic activities of teleost thalamic neurons at single cell resolution using a voltage-sensitive dye. Neurosci. Lett. 2001, 312, 17–20. [Google Scholar] [CrossRef]
- Country, M.W.; Campbell, B.F.N.; Jonz, M.G. Spontaneous action potentials in retinal horizontal cells of goldfish (Carassius auratus) are dependent upon L-type Ca(2+) channels and ryanodine receptors. J. Neurophysiol. 2019, 122, 2284–2293. [Google Scholar] [CrossRef] [PubMed]
- Manis, P.B.; Freeman, J.A. Fluorescence recordings of electrical activity in goldfish optic tectum in vitro. J. Neurosci. 1988, 8, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Novales Flamarique, I.; Wachowiak, M. Functional segregation of retinal ganglion cell projections to the optic tectum of rainbow trout. J. Neurophysiol. 2015, 114, 2703–2717. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, M.; Ueda, R.; Kojima, S.; Sato, K.; Watanabe, M.; Urano, A.; Ito, E. Multiple-site optical recording for characterization of functional synaptic organization of the optic tectum of rainbow trout. Eur. J. Neurosci. 2002, 16, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, J.; van den Burg, E.; Bacelo, J.; de Ruijters, M.; Kuwana, S.; Sugawara, Y.; Grant, K. Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe. J. Physiol. 2008, 102, 233–245. [Google Scholar] [CrossRef]
- Sakai, T.; Momose-Sato, Y.; Sato, K.; Hirota, A.; Kamino, K. Optical monitoring of synaptic transmission in bullfrog sympathetic ganglia using a voltage-sensitive dye. Neurosci. Lett. 1998, 242, 1–4. [Google Scholar] [CrossRef]
- Shah, M.; Persaud, K.C.; Polak, E.H.; Stussi, E. Selective and reversible blockage of a fatty acid odour response in the olfactory bulb of the frog (Rana temporaria). Cell. Mol. Biol. 1999, 45, 339–345. [Google Scholar]
- Oku, Y.; Kimura, N.; Masumiya, H.; Okada, Y. Spatiotemporal organization of frog respiratory neurons visualized on the ventral medullary surface. Respir. Physiol. Neurobiol. 2008, 161, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.A.; Kowalik, L.; Hudspeth, A.J. Imaging electrical resonance in hair cells. Proc. Natl. Acad. Sci. USA 2011, 108, 1651–1656. [Google Scholar] [CrossRef] [Green Version]
- Ginebaugh, S.P.; Cyphers, E.D.; Lanka, V.; Ortiz, G.; Miller, E.W.; Laghaei, R.; Meriney, S.D. The Frog Motor Nerve Terminal Has Very Brief Action Potentials and Three Electrical Regions Predicted to Differentially Control Transmitter Release. J. Neurosci. 2020, 40, 3504–3516. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, A.R.; Hamilton, K.A.; Kauer, J.S. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. J. Neurophysiol. 1995, 73, 2053–2071. [Google Scholar] [CrossRef] [PubMed]
- Senseman, D.M. Correspondence between visually evoked voltage-sensitive dye signals and synaptic activity recorded in cortical pyramidal cells with intracellular microelectrodes. Vis. Neurosci. 1996, 13, 963–977. [Google Scholar] [CrossRef] [PubMed]
- Prechtl, J.C.; Cohen, L.B.; Pesaran, B.; Mitra, P.P.; Kleinfeld, D. Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. USA 1997, 94, 7621–7626. [Google Scholar] [CrossRef] [Green Version]
- Senseman, D.M. Spatiotemporal structure of depolarization spread in cortical pyramidal cell populations evoked by diffuse retinal light flashes. Vis. Neurosci. 1999, 16, 65–79. [Google Scholar] [CrossRef]
- Senseman, D.M.; Robbins, K.A. High-speed VSD imaging of visually evoked cortical waves: Decomposition into intra- and intercortical wave motions. J. Neurophysiol. 2002, 87, 1499–1514. [Google Scholar] [CrossRef] [Green Version]
- Senseman, D.M.; Robbins, K.A. Modal behavior of cortical neural networks during visual processing. J. Neurosci. 1999, 19, RC3. [Google Scholar] [CrossRef] [Green Version]
- Lam, Y.W.; Cohen, L.B.; Wachowiak, M.; Zochowski, M.R. Odors elicit three different oscillations in the turtle olfactory bulb. J. Neurosci. 2000, 20, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Lam, Y.W.; Cohen, L.B.; Zochowski, M.R. Odorant specificity of three oscillations and the DC signal in the turtle olfactory bulb. Eur. J. Neurosci. 2003, 17, 436–446. [Google Scholar] [CrossRef] [Green Version]
- Zochowski, M.R.; Cohen, L.B. Oscillations in the olfactory bulb carry information about odorant history. J. Neurophysiol. 2005, 94, 2667–2675. [Google Scholar] [CrossRef] [Green Version]
- Singer, B.H.; Kim, S.; Zochowski, M. Binaral interaction and centrifugal input enhances spatial contrast in olfactory bulb activation. Eur. J. Neurosci. 2007, 25, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.E.; Ariel, M. Topography and response timing of intact cerebellum stained with absorbance voltage-sensitive dye. J. Neurophysiol. 2009, 101, 474–490. [Google Scholar] [CrossRef] [Green Version]
- Ariel, M.; Brown, M.E. Origin and timing of voltage-sensitive dye signals within layers of the turtle cerebellar cortex. Brain Res. 2010, 1357, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.E.; Martin, J.R.; Rosenbluth, J.; Ariel, M. A novel path for rapid transverse communication of vestibular signals in turtle cerebellum. J. Neurophysiol. 2011, 105, 1071–1088. [Google Scholar] [CrossRef] [Green Version]
- Momose-Sato, Y.; Miyakawa, N.; Mochida, H.; Sasaki, S.; Sato, K. Optical analysis of depolarization waves in the embryonic brain: A dual network of gap junctions and chemical synapses. J. Neurophysiol. 2003, 89, 600–614. [Google Scholar] [CrossRef]
- Ng, B.S.; Grabska-Barwinska, A.; Gunturkun, O.; Jancke, D. Dominant vertical orientation processing without clustered maps: Early visual brain dynamics imaged with voltage-sensitive dye in the pigeon visual Wulst. J. Neurosci. 2010, 30, 6713–6725. [Google Scholar] [CrossRef] [Green Version]
- Weigel, S.; Luksch, H. Spatiotemporal analysis of electrically evoked activity in the chicken optic tectum: A VSDI study. J. Neurophysiol. 2012, 107, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Weigel, S.; Luksch, H. Local cholinergic interneurons modulate GABAergic inhibition in the chicken optic tectum. Eur. J. Neurosci. 2014, 39, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Sakai, R.; Repunte-Canonigo, V.; Raj, C.D.; Knopfel, T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur. J. Neurosci. 2001, 13, 2314–2318. [Google Scholar] [CrossRef] [PubMed]
- Knopfel, T.; Tomita, K.; Shimazaki, R.; Sakai, R. Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins. Methods 2003, 30, 42–48. [Google Scholar] [CrossRef]
- Baker, B.J.; Lee, H.; Pieribone, V.A.; Cohen, L.B.; Isacoff, E.Y.; Knopfel, T.; Kosmidis, E.K. Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J. Neurosci. Methods 2007, 161, 32–38. [Google Scholar] [CrossRef]
- Lundby, A.; Mutoh, H.; Dimitrov, D.; Akemann, W.; Knopfel, T. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS ONE 2008, 3, e2514. [Google Scholar] [CrossRef] [Green Version]
- Mutoh, H.; Perron, A.; Dimitrov, D.; Iwamoto, Y.; Akemann, W.; Chudakov, D.M.; Knopfel, T. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS ONE 2009, 4, e4555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akemann, W.; Mutoh, H.; Perron, A.; Rossier, J.; Knopfel, T. Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat. Methods 2010, 7, 643–649. [Google Scholar] [CrossRef]
- Mutoh, H.; Mishina, Y.; Gallero-Salas, Y.; Knopfel, T. Comparative performance of a genetically-encoded voltage indicator and a blue voltage sensitive dye for large scale cortical voltage imaging. Front. Cell Neurosci. 2015, 9, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Empson, R.M.; Goulton, C.; Scholtz, D.; Gallero-Salas, Y.; Zeng, H.; Knopfel, T. Validation of optical voltage reporting by the genetically encoded voltage indicator VSFP-Butterfly from cortical layer 2/3 pyramidal neurons in mouse brain slices. Physiol. Rep. 2015, 3, e12468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.; Huang, C.; Li, J.Z.; Grewe, B.F.; Zhang, Y.; Eismann, S.; Schnitzer, M.J. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 2015, 350, 1361–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibat, C.; Krishnan, S.; Ramaswamy, M.; Baker, B.J.; Jesuthasan, S. Imaging voltage in zebrafish as a route to characterizing a vertebrate functional connectome: Promises and pitfalls of genetically encoded indicators. J. Neurogenet. 2016, 30, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, A.S.; Kawashima, T.; Singh, A.; Novak, O.; Liu, H.; Shuai, Y.; Huang, Y.C.; Campagnola, L.; Seeman, S.C.; Yu, J.; et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 2019, 365, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chavarha, M.; Kobayashi, Y.; Yoshinaga, S.; Nakajima, K.; Lin, M.Z.; Inoue, T. Two-Photon Voltage Imaging of Spontaneous Activity from Multiple Neurons Reveals Network Activity in Brain Tissue. iScience 2020, 23, 101363. [Google Scholar] [CrossRef]
- Chiang, C.C.; Wei, X.; Ananthakrishnan, A.K.; Shivacharan, R.S.; Gonzalez-Reyes, L.E.; Zhang, M.; Durand, D.M. Slow moving neural source in the epileptic hippocampus can mimic progression of human seizures. Sci. Rep. 2018, 8, 1564. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, R.; Laskaris, N.; Rhee, J.K.; Baker, B.J.; Kosmidis, E.K. GEVI cell-type specific labelling and a manifold learning approach provide evidence for lateral inhibition at the population level in the mouse hippocampal CA1 area. Eur. J. Neurosci. 2021, 53, 3019–3038. [Google Scholar] [CrossRef]
- Carandini, M.; Shimaoka, D.; Rossi, L.F.; Sato, T.K.; Benucci, A.; Knopfel, T. Imaging the awake visual cortex with a genetically encoded voltage indicator. J. Neurosci. 2015, 35, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagerholm, E.D.; Scott, G.; Shew, W.L.; Song, C.; Leech, R.; Knopfel, T.; Sharp, D.J. Cortical Entropy, Mutual Information and Scale-Free Dynamics in Waking Mice. Cereb. Cortex 2016, 26, 3945–3952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, G.; Fagerholm, E.D.; Mutoh, H.; Leech, R.; Sharp, D.J.; Shew, W.L.; Knopfel, T. Voltage imaging of waking mouse cortex reveals emergence of critical neuronal dynamics. J. Neurosci. 2014, 34, 16611–16620. [Google Scholar] [CrossRef] [Green Version]
- Shimaoka, D.; Song, C.; Knopfel, T. State-Dependent Modulation of Slow Wave Motifs towards Awakening. Front. Cell Neurosci. 2017, 11, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quicke, P.; Howe, C.L.; Song, P.; Jadan, H.V.; Song, C.; Knopfel, T.; Neil, M.; Dragotti, P.L.; Schultz, S.R.; Foust, A.J. Subcellular resolution three-dimensional light-field imaging with genetically encoded voltage indicators. Neurophotonics 2020, 7, 035006. [Google Scholar] [CrossRef]
- Song, C.; Piscopo, D.M.; Niell, C.M.; Knopfel, T. Cortical signatures of wakeful somatosensory processing. Sci. Rep. 2018, 8, 11977. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liang, Y.; Chen, S.; Hsu, C.L.; Chavarha, M.; Evans, S.W.; Shi, D.; Lin, M.Z.; Tsia, K.K.; Ji, N. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods 2020, 17, 287–290. [Google Scholar] [CrossRef]
- Storace, D.A.; Braubach, O.R.; Jin, L.; Cohen, L.B.; Sung, U. Monitoring brain activity with protein voltage and calcium sensors. Sci. Rep. 2015, 5, 10212. [Google Scholar] [CrossRef] [Green Version]
- Borden, P.Y.; Ortiz, A.D.; Waiblinger, C.; Sederberg, A.J.; Morrissette, A.E.; Forest, C.R.; Jaeger, D.; Stanley, G.B. Genetically expressed voltage sensor ArcLight for imaging large scale cortical activity in the anesthetized and awake mouse. Neurophotonics 2017, 4, 031212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storace, D.A.; Cohen, L.B. Measuring the olfactory bulb input-output transformation reveals a contribution to the perception of odorant concentration invariance. Nat. Commun. 2017, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Borden, P.Y.; Wright, N.C.; Morrissette, A.E.; Jaeger, D.; Haider, B.; Stanley, G.B. Thalamic bursting and the role of timing and synchrony in thalamocortical signaling in the awake mouse. Neuron 2022, 110, 2836–2853.e2838. [Google Scholar] [CrossRef]
- Storace, D.A.; Cohen, L.B.; Choi, Y. Using Genetically Encoded Voltage Indicators (GEVIs) to Study the Input-Output Transformation of the Mammalian Olfactory Bulb. Front. Cell Neurosci. 2019, 13, 342. [Google Scholar] [CrossRef] [Green Version]
- Bando, Y.; Wenzel, M.; Yuste, R. Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo. Nat. Commun. 2021, 12, 7229. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J.K.; Iwamoto, Y.; Baker, B.J. Visualizing Oscillations in Brain Slices With Genetically Encoded Voltage Indicators. Front. Neuroanat. 2021, 15, 741711. [Google Scholar] [CrossRef]
- Zhu, M.H.; Jogdand, A.H.; Jang, J.; Nagella, S.C.; Das, B.; Milosevic, M.M.; Yan, R.; Antic, S.D. Evoked Cortical Depolarizations Before and After the Amyloid Plaque Accumulation: Voltage Imaging Study. J. Alzheimers Dis. 2022, 88, 1443–1458. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Peng, L.; Zhao, M.; Li, Y.; Takahiko, M.; Tao, L.; Zou, P.; Zhang, Y. Differences in action potential propagation speed and axon initial segment plasticity between neurons from Sprague-Dawley rats and C57BL/6 mice. Zool. Res. 2022, 43, 615–633. [Google Scholar] [CrossRef]
- Nakajima, R.; Baker, B.J. Mapping of excitatory and inhibitory postsynaptic potentials of neuronal populations in hippocampal slices using the GEVI, ArcLight. J. Phys. D Appl. Phys. 2018, 51, 504003. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Zhu, M.H.; Jogdand, A.H.; Antic, S.D. Studying Synaptically Evoked Cortical Responses ex vivo With Combination of a Single Neuron Recording (Whole-Cell) and Population Voltage Imaging (Genetically Encoded Voltage Indicator). Front. Neurosci. 2021, 15, 773883. [Google Scholar] [CrossRef]
- Cao, G.; Platisa, J.; Pieribone, V.A.; Raccuglia, D.; Kunst, M.; Nitabach, M.N. Genetically targeted optical electrophysiology in intact neural circuits. Cell 2013, 154, 904–913. [Google Scholar] [CrossRef] [Green Version]
- Aimon, S.; Katsuki, T.; Jia, T.; Grosenick, L.; Broxton, M.; Deisseroth, K.; Sejnowski, T.J.; Greenspan, R.J. Fast near-whole-brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biol. 2019, 17, e2006732. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.H.; St-Pierre, F.; Sun, X.; Ding, X.; Lin, M.Z.; Clandinin, T.R. Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo. Cell 2016, 166, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Chamberland, S.; Yang, H.H.; Pan, M.M.; Evans, S.W.; Guan, S.; Chavarha, M.; Yang, Y.; Salesse, C.; Wu, H.; Wu, J.C.; et al. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. Elife 2017, 6, e25690. [Google Scholar] [CrossRef]
- Wienecke, C.F.R.; Leong, J.C.S.; Clandinin, T.R. Linear Summation Underlies Direction Selectivity in Drosophila. Neuron 2018, 99, 680–688.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mano, O.; Creamer, M.S.; Matulis, C.A.; Salazar-Gatzimas, E.; Chen, J.; Zavatone-Veth, J.A.; Clark, D.A. Using slow frame rate imaging to extract fast receptive fields. Nat. Commun. 2019, 10, 4979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, K.J.; Davis, G.W. Archaerhodopsin voltage imaging: Synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction. J. Neurosci. 2014, 34, 14517–14525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagyozov, D.; Mihovilovic Skanata, M.; Lesar, A.; Gershow, M. Recording Neural Activity in Unrestrained Animals with Three-Dimensional Tracking Two-Photon Microscopy. Cell Rep. 2018, 25, 1371–1383.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flytzanis, N.C.; Bedbrook, C.N.; Chiu, H.; Engqvist, M.K.; Xiao, C.; Chan, K.Y.; Sternberg, P.W.; Arnold, F.H.; Gradinaru, V. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat. Commun. 2014, 5, 4894. [Google Scholar] [CrossRef] [Green Version]
- Azimi Hashemi, N.; Bergs, A.C.F.; Schuler, C.; Scheiwe, A.R.; Steuer Costa, W.; Bach, M.; Liewald, J.F.; Gottschalk, A. Rhodopsin-based voltage imaging tools for use in muscles and neurons of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2019, 116, 17051–17060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
| |||||||
---|---|---|---|---|---|---|---|
Year | Total | Methodical | Population Response | Single Neurons and Compartments | Review | Non-Neuroscience | Non-Relevant |
2022 | 23 | 0 | 9 | 2 | 1 | 5 | 6 |
2021 | 44 | 8 | 11 | 3 | 0 | 16 | 6 |
2020 | 61 | 7 | 22 | 5 | 2 | 17 | 8 |
2019 | 58 | 6 | 25 | 2 | 4 | 11 | 10 |
2018 | 54 | 6 | 24 | 4 | 0 | 10 | 10 |
| |||||||
year | total | methodical | population response | single neurons and compartments | review | non-neuroscience | non-relevant |
2022 | 21 | 6 | 4 | 2 | 0 | 4 | 5 |
2021 | 19 | 6 | 7 | 0 | 4 | 0 | 2 |
2020 | 20 | 6 | 0 | 2 | 2 | 5 | 5 |
2019 | 18 | 6 | 0 | 1 | 4 | 2 | 5 |
2018 | 16 | 5 | 2 | 2 | 1 | 2 | 4 |
Resolution | Model | Indicator | Recording | Frame Rate | Source | Year |
---|---|---|---|---|---|---|
Cell | culture, acute brain slices | Ace2N-mNeon | EMCCD | 5000 | [178] | 2015 |
In vivo | sCMOS | 500–1000 | ||||
Soma | culture, in vivo | ASAP2, ASAP3 | ORCA-Flash 4.0 | 100 | [45] | 2019 |
Cell | culture, acute brain slices, in vivo | QuasAr3, paQuasAr3) | ORCA-Flash 4.0 | 500–1000 | [47] | 2019 |
Dendrites, Spines | culture, in vivo | postASAP | NeuroCCD SM256 | 60 | [54] | 2022 |
Dendrites | culture | QuasAr2 | ORCA-Flash 4.0 | 484–1058 | [199] | 2022 |
Field | acute brain slices | ArcLight | NeuroCCD SMQ | 1000 | [200] | 2018 |
Field | acute brain slices | VSFP-Butterfly 1.2 | ORCA-Flash 4.0 | 200 | [182] | 2018 |
Soma | acute brain slices | SomArchon | EMCCD iXON, sCMOS Zyla 4.2 | 1000 | [49] | 2019 |
in vivo | ORCA-Flash 4.0 | 390–900 | ||||
Cell, Soma, Dendrites | acute brain slices | ASAP3 | Two-photon microscope | 2000–10,000 | [181] | 2020 |
Field, Cell, Denrites | acute brain slices, in vivo | ArcLight-ST, Kv-ArcLight-ST | ORCA-Flash 4.0 | 30–1000 | [196] | 2021 |
Field | acute brain slices | ArcLight | NeuroCCD SMQ | 1000 | [183] | 2021 |
Field | acute brain slices | ArcLight, Bongwoori-R3, Bongwoori-Pos6 | NeuroCCD SMQ | 1000 | [197] | 2021 |
Field | acute brain slices | ArcLightD, chi-VSFP, Archon1 | NeuroCCD SMQ | 1000 | [201] | 2021 |
Field | acute brain slices | chi-VSFP | NeuroCCD SMQ | 1000 | [198] | 2022 |
Field | in vivo | VSFP-Butterfly 1.2 | CCD Sensicam | 50 | [186] | 2014 |
Field | In vivo | ArcLight | NeuroCCD SM256 | 125 | [191] | 2015 |
Field | in vivo | VSFP-Butterfly 1.2 | CCD Sensicam | 50 | [185] | 2016 |
Field | in vivo | ArcLight | NeuroCCD SM256 | 25–125 | [193] | 2017 |
Field | in vivo | VSFP Butterfly 1.2 | CCD Sensicam | 50 | [187] | 2017 |
Field | in vivo | chiVSFP | CMOS Basler | 150 | [189] | 2018 |
Field | in vivo | ArcLight | NeuroCCD SM256 | 40–125 | [195] | 2019 |
Field, Cell | in vivo | SomArchon | ORCA-Flash 4.0 | 1000 | [51] | 2020 |
Cell | in vivo | ArcLight | NeuroCCD SM256 | 50–250 | [37] | 2022 |
Field | In vivo | ArcLight | CCD MiCam2 HR | 200 | [194] | 2022 |
Cell | in vivo | Ace-mNeon2, pAce, pAceR and VARNAM2 | ORCA-Flash 4.0 | 50 | [53] | 2022 |
Cell | in vivo | JEDI-2P | Two-photon microscope | 2525–3333 | [30] | 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aseyev, N.; Ivanova, V.; Balaban, P.; Nikitin, E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. Biosensors 2023, 13, 648. https://doi.org/10.3390/bios13060648
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. Biosensors. 2023; 13(6):648. https://doi.org/10.3390/bios13060648
Chicago/Turabian StyleAseyev, Nikolay, Violetta Ivanova, Pavel Balaban, and Evgeny Nikitin. 2023. "Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies" Biosensors 13, no. 6: 648. https://doi.org/10.3390/bios13060648