A Ratiometric Fluorescent Probe for Hypochlorite and Lipid Droplets to Monitor Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. General Instrumentation
2.3. Synthesis of AB
2.4. Cell Culture Experiments
3. Design Principle
4. Photophysical Properties
5. Biological Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satori, C.P.; Henderson, M.M.; Krautkramer, E.A.; Kostal, V.; Distefano, M.M.; Arriaga, E.A. Bioanalysis of Eukaryotic Organelles. Chem. Rev. 2013, 113, 2733–2811. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.R.; Nunnari, J. Mitochondrial Form and Function. Nature 2014, 505, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Osellame, L.D.; Blacker, T.S.; Duchen, M.R. Cellular and Molecular Mechanisms of Mitochondrial Function. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 711–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.A.; Alsahli, M.A.; Rahmani, A.H. Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Med. Sci. 2018, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrés, C.M.C.; de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int. J. Mol. Sci. 2022, 23, 10735. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Li, L.; Shi, W.; Gao, X.; Li, X.; Ma, H. HOCl Can Appear in the Mitochondria of Macrophages during Bacterial Infection as Revealed by a Sensitive Mitochondrial-Targeting Fluorescent Probe. Chem. Sci. 2015, 6, 4884–4888. [Google Scholar] [CrossRef] [Green Version]
- Baruah, M.; Jana, A.; Ali, M.; Mapa, K.; Samanta, A. An Efficient PeT Based Fluorescent Probe for Mapping Mitochondrial Oxidative Stress Produced via the Nox2 Pathway. J. Mater. Chem. B 2022, 10, 2230–2237. [Google Scholar] [CrossRef]
- Park, S.; Jung, W.-H.; Pittman, M.; Chen, J.; Chen, Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J. Biomech. Eng. 2020, 142, 4048110. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Tan, Y.; Chen, L.; Liu, Y.; Ren, Z. Reactive Oxygen Species Induces Lipid Droplet Accumulation in HepG2 Cells by Increasing Perilipin 2 Expression. Int. J. Mol. Sci. 2018, 19, 3445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirichen, H.; Yaigoub, H.; Xu, W.; Wu, C.; Li, R.; Li, Y. Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Front. Physiol. 2021, 12, 627837. [Google Scholar] [CrossRef] [PubMed]
- Demir, S.; Nawroth, P.P.; Herzig, S.; Ekim Üstünel, B. Emerging Targets in Type 2 Diabetes and Diabetic Complications. Adv. Sci. 2021, 8, 2100275. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.G.; Kim, S.S. Physiological Functions of Mitochondrial Reactive Oxygen Species. In Free Radical Medicine and Biology; Das, K., Das, S., Biradar, M.S., Bobbarala, V., Tata, S.S., Eds.; IntechOpen: Rijeka, Croatia, 2019; p. Ch. 2; ISBN 978-1-78985-144-1. [Google Scholar]
- Tian, X.; Murfin, L.C.; Wu, L.; Lewis, S.E.; James, T.D. Fluorescent Small Organic Probes for Biosensing. Chem. Sci. 2021, 12, 3406–3426. [Google Scholar] [CrossRef]
- Arranz, A.; Ripoll, J. Advances in Optical Imaging for Pharmacological Studies. Front. Pharmacol. 2015, 6, 189. [Google Scholar] [CrossRef] [Green Version]
- Peters, T.M.; Linte, C.A. Image-Guided Interventions and Computer-Integrated Therapy: Quo Vadis? Med. Image Anal. 2016, 33, 56–63. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and Their Applications—A Review. J. Oral Biol. Craniofac. Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Ornatowski, W.; Lu, Q.; Yegambaram, M.; Garcia, A.E.; Zemskov, E.A.; Maltepe, E.; Fineman, J.R.; Wang, T.; Black, S.M. Complex Interplay between Autophagy and Oxidative Stress in the Development of Pulmonary Disease. Redox Biol. 2020, 36, 101679. [Google Scholar] [CrossRef]
- Bigdeli, A.; Ghasemi, F.; Abbasi-Moayed, S.; Shahrajabian, M.; Fahimi-Kashani, N.; Jafarinejad, S.; Farahmand Nejad, M.A.; Hormozi-Nezhad, M.R. Ratiometric Fluorescent Nanoprobes for Visual Detection: Design Principles and Recent Advances—A Review. Anal. Chim. Acta 2019, 1079, 30–58. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Kim, J.S.; Sessler, J.L. Small Molecule-Based Ratiometric Fluorescence Probes for Cations, Anions, and Biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zhu, Z.; Zheng, Y.; Cheng, J.; Zhang, N.; Long, Y.T.; Zheng, J.; Qian, X.; Yang, Y. A Three-Channel Fluorescent Probe That Distinguishes Peroxynitrite from Hypochlorite. J. Am. Chem. Soc. 2012, 134, 18479–18482. [Google Scholar] [CrossRef]
- Ren, M.; Li, Z.; Nie, J.; Wang, L.; Lin, W. A Photocaged Fluorescent Probe for Imaging Hypochlorous Acid in Lysosomes. Chem. Commun. 2018, 54, 9238–9241. [Google Scholar] [CrossRef]
- Pak, Y.L.; Park, S.J.; Xu, Q.; Kim, H.M.; Yoon, J. Ratiometric Two-Photon Fluorescent Probe for Detecting and Imaging Hypochlorite. Anal. Chem. 2018, 90, 9510–9514. [Google Scholar] [CrossRef] [PubMed]
- Hitomi, Y.; Takeyasu, T.; Funabiki, T.; Kodera, M. Detection of Enzymatically Generated Hydrogen Peroxide by Metal-Based Fluorescent Probe. Anal. Chem. 2011, 83, 9213–9216. [Google Scholar] [CrossRef]
- Liu, J.; Ren, J.; Bao, X.; Gao, W.; Wu, C.; Zhao, Y. PH-Switchable Fluorescent Probe for Spatially-Confined Visualization of Intracellular Hydrogen Peroxide. Anal. Chem. 2016, 88, 5865–5870. [Google Scholar] [CrossRef]
- Liu, J.; Liang, J.; Wu, C.; Zhao, Y. A Doubly-Quenched Fluorescent Probe for Low-Background Detection of Mitochondrial H2O2. Anal. Chem. 2019, 91, 6902–6909. [Google Scholar] [CrossRef]
- Peng, T.; Yang, D. HKGreen-3: A Rhodol-Based Fluorescent Probe for Peroxynitrite. Org. Lett. 2010, 12, 4932–4935. [Google Scholar] [CrossRef] [PubMed]
- Baruah, M.; Kwon, H.-Y.; Cho, H.; Chang, Y.-T.; Samanta, A. A Photoinduced Electron Transfer-Based Hypochlorite-Specific Fluorescent Probe for Selective Imaging of Proinflammatory M1 in a Rheumatoid Arthritis Model. Anal. Chem. 2023, 95, 4147–4154. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Munan, S.; Ali, M.; Mapa, K.; Samanta, A. A Systematic Design and Synthesis of PET-Based Fluorescent Probe for Monitoring PH during Mitophagy. Chem. Asian J. 2023, 2023, e202300308. [Google Scholar] [CrossRef]
- Yadav, R.; Munan, S.; Kardam, V.; Dutta Dubey, K.; Samanta, A. Esterase Specific Fluorescent Probe: Mechanistic Understanding Using QM/MM Calculation and Cell States Discrimination. Chem. A Eur. J. 2023, 2023, e202300244. [Google Scholar] [CrossRef]
- Munan, S.; Ali, M.; Yadav, R.; Mapa, K.; Samanta, A. PET- and ICT-Based Ratiometric Probe: An Unusual Phenomenon of Morpholine-Conjugated Fluorophore for Mitochondrial PH Mapping during Mitophagy. Anal. Chem. 2022, 94, 11633–11642. [Google Scholar] [CrossRef]
- Munan, S.; Kottarathil, S.; Joseph, M.M.; Jana, A.; Ali, M.; Mapa, K.; Maiti, K.K.; Samanta, A. IndiFluors: A New Full-Visible Color-Tunable Donor-Acceptor-Donor (D1-A-D2) Fluorophore Family for Ratiometric PH Imaging during Mitophagy. ACS Sens. 2021. [Google Scholar] [CrossRef]
- De Moliner, F.; Kielland, N.; Lavilla, R.; Vendrell, M. Modern Synthetic Avenues for the Preparation of Functional Fluorophores. Angew. Chem. Int. Ed. 2017, 56, 3758–3769. [Google Scholar] [CrossRef] [Green Version]
- Gatin-Fraudet, B.; Ottenwelter, R.; Le Saux, T.; Ephanie Norsikian, S.; Pucher, M.; Lomb, E.A.; Aur Elie Baron, T.; Durand, P.; Doisneau, G.; Bourdreux, Y.; et al. Evaluation of Borinic Acids as New, Fast Hydrogen Peroxide-Responsive Triggers. Proc. Natl. Acad. Sci. USA 2021, 118, e2107503118. [Google Scholar] [CrossRef] [PubMed]
- SK, M.; Banesh, S.; Trivedi, V.; Biswas, S. Selective and Sensitive Sensing of Hydrogen Peroxide by a Boronic Acid Functionalized Metal–Organic Framework and Its Application in Live-Cell Imaging. Inorg. Chem. 2018, 57, 14574–14581. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, H.; Nakamura, Y.; Inoue, C.; Nojiri, S.; Koita, M.; Kojima, M.; Koyama, H.; Miki, R.; Seki, T.; Egawa, Y. Hydrogen Peroxide-Triggered Conversion of Boronic Acid-Appended Insulin into Insulin and Its Application as a Glucose-Responsive Insulin Formulation. Mol. Pharm. 2021, 18, 4224–4230. [Google Scholar] [CrossRef] [PubMed]
- Sieracki, N.A.; Gantner, B.N.; Mao, M.; Horner, J.H.; Ye, R.D.; Malik, A.B.; Newcomb, M.E.; Bonini, M.G. Bioluminescent Detection of Peroxynitrite with a Boronic Acid-Caged Luciferin. Free. Radic. Biol. Med. 2013, 61, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Sikora, A.; Zielonka, J.; Lopez, M.; Joseph, J.; Kalyanaraman, B. Direct Oxidation of Boronates by Peroxynitrite: Mechanism and Implications in Fluorescence Imaging of Peroxynitrite. Free. Radic. Biol. Med. 2009, 47, 1401–1407. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Lee, K.-A.; Lee, S.; Lee, K.M.; Lee, W.-J.; Yoon, J. A Highly Specific Fluorescent Probe for Hypochlorous Acid and Its Application in Imaging Microbe-Induced HOCl Production. J. Am. Chem. Soc. 2013, 135, 9944–9949. [Google Scholar] [CrossRef]
- Simões, E.F.C.; da Silva, L.P.; da Silva, J.C.G.E.; Leitão, J.M.M. Hypochlorite Fluorescence Sensing by Phenylboronic Acid-Alizarin Adduct Based Carbon Dots. Talanta 2020, 208, 120447. [Google Scholar] [CrossRef]
- Miller, E.W.; Albers, A.E.; Pralle, A.; Isacoff, E.Y.; Chang, C.J. Boronate-Based Fluorescent Probes for Imaging Cellular Hydrogen Peroxide. J. Am. Chem. Soc. 2005, 127, 16652–16659. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Xu, S.-Y.; Flower, S.E.; Fossey, J.S.; Qian, X.; James, T.D. “Integrated” and “Insulated” Boronate-Based Fluorescent Probes for the Detection of Hydrogen Peroxide. Chem. Commun. 2013, 49, 8311–8313. [Google Scholar] [CrossRef] [Green Version]
- Shu, W.; Wu, Y.; Duan, Q.; Zang, S.; Su, S.; Jing, J.; Zhang, X. A Highly Selective Fluorescent Probe for Monitoring Exogenous and Endogenous ONOO− Fluctuations in HeLa Cells. Dye Pigment. 2020, 175, 108069. [Google Scholar] [CrossRef]
- Gatin-Fraudet, B.; Pucher, M.; Le Saux, T.; Doisneau, G.; Bourdreux, Y.; Jullien, L.; Vauzeilles, B.; Guianvarc’h, D.; Urban, D. Hydrogen Peroxide-Responsive Triggers Based on Borinic Acids: Molecular Insights into the Control of Oxidative Rearrangement. Chem. A Eur. J. 2022, 28, e202201543. [Google Scholar] [CrossRef]
- Gonzalez-Molina, J.; Zhang, X.; Borghesan, M.; Mendonça da Silva, J.; Awan, M.; Fuller, B.; Gavara, N.; Selden, C. Extracellular Fluid Viscosity Enhances Liver Cancer Cell Mechanosensing and Migration. Biomaterials 2018, 177, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Soltoff, S.P.; Mandel, L.J. Potassium Transport in the Rabbit Renal Proximal Tubule: Effects of Barium, Ouabain, Valinomycin, and Other Ionophores. J. Membr. Biol. 1986, 94, 153–161. [Google Scholar] [CrossRef]
- Ma, C.; Sun, W.; Xu, L.; Qian, Y.; Dai, J.; Zhong, G.; Hou, Y.; Liu, J.; Shen, B. A Minireview of Viscosity-Sensitive Fluorescent Probes: Design and Biological Applications. J. Mater. Chem. B 2020, 8, 9642–9651. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, C.; Zhang, J.; Kan, J.; Jiang, T.; Zhou, J.; Ma, H. Sensing and Imaging of Mitochondrial Viscosity in Living Cells Using a Red Fluorescent Probe with a Long Lifetime. Chem. Commun. 2019, 55, 7410–7413. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Yin, J.; Lin, W. Tracking Mitochondrial Viscosity in Living Systems Based on a Two-Photon and near Red Probe. New J. Chem. 2019, 43, 16945–16949. [Google Scholar] [CrossRef]
- Yang, Z.; He, Y.; Lee, J.-H.; Park, N.; Suh, M.; Chae, W.-S.; Cao, J.; Peng, X.; Jung, H.; Kang, C.; et al. A Self-Calibrating Bipartite Viscosity Sensor for Mitochondria. J. Am. Chem. Soc. 2013, 135, 9181–9185. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baruah, M.; Jana, A.; Pareek, N.; Singh, S.; Samanta, A. A Ratiometric Fluorescent Probe for Hypochlorite and Lipid Droplets to Monitor Oxidative Stress. Biosensors 2023, 13, 662. https://doi.org/10.3390/bios13060662
Baruah M, Jana A, Pareek N, Singh S, Samanta A. A Ratiometric Fluorescent Probe for Hypochlorite and Lipid Droplets to Monitor Oxidative Stress. Biosensors. 2023; 13(6):662. https://doi.org/10.3390/bios13060662
Chicago/Turabian StyleBaruah, Mousumi, Anal Jana, Niharika Pareek, Shikha Singh, and Animesh Samanta. 2023. "A Ratiometric Fluorescent Probe for Hypochlorite and Lipid Droplets to Monitor Oxidative Stress" Biosensors 13, no. 6: 662. https://doi.org/10.3390/bios13060662
APA StyleBaruah, M., Jana, A., Pareek, N., Singh, S., & Samanta, A. (2023). A Ratiometric Fluorescent Probe for Hypochlorite and Lipid Droplets to Monitor Oxidative Stress. Biosensors, 13(6), 662. https://doi.org/10.3390/bios13060662