Time-Resolved Fluorescence Spectroscopy of Molecularly Imprinted Nanoprobes as an Ultralow Detection Nanosensing Tool for Protein Contaminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Fluo-nanoMIPs
2.3. Calibration Curve for FluorMAA
2.4. Dynamic Light Scattering (DLS)
2.5. Scanning Electron Microscopy (SEM)
2.6. Fluorescence Intensity of Fluo-nanoMIP
2.7. Fluorescence Lifetime of Fluo-nanoMIP
2.8. Sensor Parameters
2.9. Selectivity of 1×Fluo-nanoMIPs
2.10. Fluorescence Lifetime of 1×Fluo-nanoMIPs in Wine
2.11. Isothermal Titration Calorimetry (ITC)
2.12. Atomic Force Microscopy (AFM)
3. Results and Discussion
3.1. Effects on the Lifetime Due to Interaction between the Fluorophore and Albumin
3.2. Synthesis and Characterization of Fluorescent NanoMIPs
3.3. Functional Characterization of the Fluo-nanoMIPs
Study of the Fluorescence Intensity of the Library of Fluo-nanoMIPs upon Binding
3.4. Fluorescence Lifetime of the Fluo-nanoMIPs
3.5. Selectivity of the 1×Fluo-nanoMIP Nanosensor
3.6. Fluo-nanoMIP Nanosensors for the Determination of Albumin Allergen in Wine Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krämer, J.; Kang, R.; Grimm, L.M.; De Cola, L.; Picchetti, P.; Biedermann, F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem. Rev. 2022, 122, 3459–3636. [Google Scholar] [CrossRef]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent Chemosensors: The Past, Present and Future. Chem. Soc. Rev. 2017, 46, 7097–7472. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured Molecularly Imprinted Polymers for Protein Chemosensing. Biosens. Bioelectron. 2018, 102, 17–26. [Google Scholar] [CrossRef]
- Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review. Chemosensors 2021, 9, 123. [Google Scholar] [CrossRef]
- Bräuer, B.; Unger, C.; Werner, M.; Lieberzeit, P.A. Biomimetic Sensors to Detect Bioanalytes in Real-Life Samples Using Molecularly Imprinted Polymers: A Review. Sensors 2021, 21, 5550. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-Analogue Built Polymers and Their Use for the Resolution of Racemates. Tetrahedron. Lett. 1973, 14, 4329–4332. [Google Scholar] [CrossRef]
- Arshady, R.; Mosbach, K. Synthesis of Substrate-Selective Polymers by Host-Guest Polymerization. Makromol. Chem. 1981, 182, 687–692. [Google Scholar] [CrossRef]
- Vlatakis, G.; Andersson, L.I.; Müller, R.; Mosbach, K. Drug Assay Using Antibody Mimics Made by Molecular Imprinting. Nature 1993, 361, 645–647. [Google Scholar] [CrossRef]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Cenci, L.; Tatti, R.; Tognato, R.; Ambrosi, E.; Piotto, C.; Bossi, A.M. Synthesis and Characterization of Peptide-Imprinted Nanogels of Controllable Size and Affinity. Eur. Polym. J. 2018, 109, 453–459. [Google Scholar] [CrossRef]
- Poma, A.; Turner, A.P.F.; Piletsky, S.A. Advances in the Manufacture of MIP Nanoparticles. Trends Biotechnol. 2010, 28, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Ҫimen, D.; Bereli, N.; Günaydın, S.; Denizli, A. Molecular Imprinted Nanoparticle Assisted Surface Plasmon Resonance Biosensors for Detection of Thrombin. Talanta 2022, 246, 123484. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2015–2019). Anal. Chem. 2020, 92, 397–430. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Arcadio, F.; Seggio, M.; Maniglio, D.; Zeni, L.; Bossi, A.M. Spoon-Shaped Polymer Waveguides to Excite Multiple Plasmonic Phenomena: A Multisensor Based on Antibody and Molecularly Imprinted Nanoparticles to Detect Albumin Concentrations over Eight Orders of Magnitude. Biosens. Bioelectron. 2022, 217, 114707. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, A.; Pasquardini, L.; Bossi, A.M. Molecular Imprinted Polymers Coupled to Photonic Structures in Biosensors: The State of Art. Sensors 2020, 20, 5069. [Google Scholar] [CrossRef]
- Ma, J.; Yan, M.; Feng, G.; Ying, Y.; Chen, G.; Shao, Y.; She, Y.; Wang, M.; Sun, J.; Zheng, L.; et al. An Overview on Molecular Imprinted Polymers Combined with Surface-Enhanced Raman Spectroscopy Chemical Sensors toward Analytical Applications. Talanta 2021, 225, 122031. [Google Scholar] [CrossRef] [PubMed]
- Lowdon, J.W.; Diliën, H.; Singla, P.; Peeters, M.; Cleij, T.J.; van Grinsven, B.; Eersels, K. MIPs for Commercial Application in Low-Cost Sensors and Assays—An Overview of the Current Status Quo. Sens. Actuators B Chem. 2020, 325, 128973. [Google Scholar] [CrossRef]
- Yang, Q.; Li, J.; Wang, X.; Peng, H.; Xiong, H.; Chen, L. Strategies of Molecular Imprinting-Based Fluorescence Sensors for Chemical and Biological Analysis. Biosens. Bioelectron. 2018, 112, 54–71. [Google Scholar] [CrossRef]
- Kolanowski, J.L.; Liu, F.; New, E.J. Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem. Soc. Rev. 2018, 47, 195–2083. [Google Scholar] [CrossRef]
- Kriz, D.; Ramström, O.; Mosbach, K. Peer Reviewed: Molecular Imprinting: New Possibilities for Sensor Technology. Anal. Chem. 1997, 69, 345A–349A. [Google Scholar] [CrossRef]
- Turkewitsch, P.; Wandelt, B.; Darling, G.D.; Powell, W.S. Fluorescent Functional Recognition Sites through Molecular Imprinting. A Polymer-Based Fluorescent Chemosensor for Aqueous CAMP. Anal. Chem. 1998, 70, 2025–2030. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Y.; Li, H.; Wang, L. Composite QDs@MIP Nanospheres for Specific Recognition and Direct Fluorescent Quantification of Pesticides in Aqueous Media. Anal. Chem. 2012, 84, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, S.; Jiang, R.; Sun, L.; Pang, S.; Luo, A. Fluorescent Molecularly Imprinted Membranes as Biosensor for the Detection of Target Protein. Sens. Actuators B Chem. 2018, 254, 1078–1086. [Google Scholar] [CrossRef]
- Liu, H.; Fang, G.; Wang, S. Molecularly Imprinted Optosensing Material Based on Hydrophobic CdSe Quantum Dots via a Reverse Microemulsion for Specific Recognition of Ractopamine. Biosens. Bioelectron. 2014, 55, 127–132. [Google Scholar] [CrossRef]
- Meyer-Almes, F.-J. Fluorescence Lifetime Based Bioassays. Methods Appl. Fluoresc. 2017, 5, 042002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berezin, M.Y.; Achilefu, S. Fluorescence Lifetime Measurements and Biological Imaging. Chem. Rev. 2010, 110, 2641. [Google Scholar] [CrossRef] [Green Version]
- Wandelt, B.; Turkewitsch, P.; Wysocki, S.; Darling, G.D. Fluorescent Molecularly Imprinted Polymer Studied by Time-Resolved Fluorescence Spectroscopy. Polymer 2002, 43, 2777–2785. [Google Scholar] [CrossRef]
- Wandelt, B.; Mielniczak, A.; Cywinski, P. Monitoring of CAMP-Imprinted Polymer by Fluorescence Spectroscopy. Biosens. Bioelectron. 2004, 20, 1031–1039. [Google Scholar] [CrossRef]
- Lin, Z.; Li, W.-J.; Chen, Q.-C.; Peng, A.; Huang, Z. Rapid Detection of Malachite Green in Fish with a Fluorescence Probe of Molecularly Imprinted Polymer. Int. J. Polym. Anal. Charact. 2019, 24, 121–131. [Google Scholar] [CrossRef]
- Quílez-Alburquerque, J.; Descalzo, A.B.; Moreno-Bondi, M.C.; Orellana, G. Luminescent Molecularly Imprinted Polymer Nanocomposites for Emission Intensity and Lifetime Rapid Sensing of Tenuazonic Acid Mycotoxin. Polymer 2021, 230, 124041. [Google Scholar] [CrossRef]
- Birch, D.J.S.; Imhof, R.E. Time-Domain Fluorescence Spectroscopy Using Time-Correlated Single-Photon Counting. Top. Fluoresc. Spectrosc. 2002, 1, 1–95. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Chakraborti, S.; Joshi, P.; Chakravarty, D.; Shanker, V.; Ansari, Z.A.; Singh, S.P.; Chakrabarti, P. Interaction of Polyethyleneimine-Functionalized ZnO Nanoparticles with Bovine Serum Albumin. Langmuir 2012, 28, 11142–11152. [Google Scholar] [CrossRef]
- Cennamo, N.; Bossi, A.M.; Arcadio, F.; Maniglio, D.; Zeni, L. On the Effect of Soft Molecularly Imprinted Nanoparticles Receptors Combined to Nanoplasmonic Probes for Biomedical Applications. Front. Bioeng. Biotechnol. 2021, 9, 801489. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Sunayama, H.; Takano, E.; Kitayama, Y. Post-Imprinting and In-Cavity Functionalization. Adv. Biochem. Eng. Biotechnol. 2015, 150, 95–106. [Google Scholar] [CrossRef]
- Matsumoto, H.; Sunayama, H.; Kitayama, Y.; Takano, E.; Takeuchi, T. Site-Specific Post-Imprinting Modification of Molecularly Imprinted Polymer Nanocavities with a Modifiable Functional Monomer for Prostate Cancer Biomarker Recognition. Sci. Technol. Adv. Mater. 2019, 20, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Prozeller, D.; Morsbach, S.; Landfester, K. Isothermal Titration Calorimetry as a Complementary Method for Investigating Nanoparticle-Protein Interactions. Nanoscale 2019, 11, 19265–19273. [Google Scholar] [CrossRef] [Green Version]
- Pierce, M.M.; Raman, C.S.; Nall, B.T. Isothermal Titration Calorimetry of Protein–Protein Interactions. Methods 1999, 19, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, S.; Belloni, B.; Kugler, C.; Ring, J.; Brockow, K. Allergenicity of Wine Containing Processing Aids: A Double-Blind, Placebo-Controlled Food Challenge. J. Investig. Allergol. Clin. Immunol. 2009, 19, 210–217. [Google Scholar]
- Jain, A.; Blum, C.; Subramaniam, V. Fluorescence Lifetime Spectroscopy and Imaging of Visible Fluorescent Proteins. In Advances in Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2009; pp. 147–176. [Google Scholar]
- Scientific Opinion on Risk Based Control of Biogenic Amine Formation in Fermented Foods. EFSA J. 2011, 9, 2393. [CrossRef] [Green Version]
- Khumsap, T.; Bamrungsap, S.; Thu, V.T.; Nguyen, L.T. Development of Epitope-Imprinted Polydopamine Magnetic Nanoparticles for Selective Recognition of Allergenic Egg Ovalbumin. Chem. Pap. 2022, 76, 6129–6139. [Google Scholar] [CrossRef]
- Ambrosini, S.; Beyazit, S.; Haupt, K.; Tse Sum Bui, B. Solid-phase Synthesis of Molecularly Imprinted Nanoparticles for Protein Recognition. Chem. Commun. 2013, 49, 6746–6748. [Google Scholar] [CrossRef] [PubMed]
Sample Name | FluorMAA Added to Polymerization (pmol/mg) | FluorMAA Incorporated (pmol/mg) | Zaverage (nm) | PDI |
---|---|---|---|---|
0.1×Fluo-nanoMIP | 65 | 20 ± 5 | 115.6 ± 0.8 | 0.20 |
1×Fluo-nanoMIP | 650 | 155 ± 20 | 123.9 ± 0.1 | 0.22 |
10×Fluo-nanoMIP | 6500 | 3380 ± 300 | 176.6 ± 0.4 | 0.34 |
Parameters | 0.1×Fluo-nanoMIP | 1×Fluo-nanoMIP | 10×Fluo-nanoMIP |
---|---|---|---|
I0 (rfu) | 33,578 ± 535 | 34,399 ± 476 | 25,805 ± 1175 |
Imin (rfu) | 23,452 ± 547 | 23,103 ± 282 | 28,890 ± 573 |
EC50 (pM) | 65 ± 20 | 30 ± 9.5 | n.a. * |
0.9690 | 0.9883 | n.a. |
Parameters | 0.1×Fluo-nanoMIP | 1×Fluo-nanoMIP | 10×Fluo-nanoMIP |
---|---|---|---|
τ2_0 (ns) | 4.154 ± 0.015 | 4.183 ± 0.009 | 4.008 ± 0.018 |
τ2_max (ns) | 3.944 ± 0.009 | 3.983 ± 0.006 | 4.000 ± 0.018 |
EC50 (pM) | 28 ± 13 | 18 ± 4.2 | n.a. * |
n | 0.86 | 1.89 | n.a. |
0.9678 | 0.9803 | n.a. |
τ2_0 (ns) | 4.183 ± 0.009 | |
τ2_max (ns) | 3.983 ± 0.006 | |
Kapp (pM) | 18 ± 4.2 | |
Kaff (M−1) | 1.4 × 1010 | Kaff = 1/K (M−1) |
LOD (pM) | 1.26 | 3 × std.devblank/Sensitivitylow conc |
Sensitivity at low concentration | 7.14 × 109 | |
0.941 | ||
Linear dynamic range (pM) | 3.0–83.5 | 10–90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossi, A.M.; Marinangeli, A.; Quaranta, A.; Pancheri, L.; Maniglio, D. Time-Resolved Fluorescence Spectroscopy of Molecularly Imprinted Nanoprobes as an Ultralow Detection Nanosensing Tool for Protein Contaminants. Biosensors 2023, 13, 745. https://doi.org/10.3390/bios13070745
Bossi AM, Marinangeli A, Quaranta A, Pancheri L, Maniglio D. Time-Resolved Fluorescence Spectroscopy of Molecularly Imprinted Nanoprobes as an Ultralow Detection Nanosensing Tool for Protein Contaminants. Biosensors. 2023; 13(7):745. https://doi.org/10.3390/bios13070745
Chicago/Turabian StyleBossi, Alessandra Maria, Alice Marinangeli, Alberto Quaranta, Lucio Pancheri, and Devid Maniglio. 2023. "Time-Resolved Fluorescence Spectroscopy of Molecularly Imprinted Nanoprobes as an Ultralow Detection Nanosensing Tool for Protein Contaminants" Biosensors 13, no. 7: 745. https://doi.org/10.3390/bios13070745
APA StyleBossi, A. M., Marinangeli, A., Quaranta, A., Pancheri, L., & Maniglio, D. (2023). Time-Resolved Fluorescence Spectroscopy of Molecularly Imprinted Nanoprobes as an Ultralow Detection Nanosensing Tool for Protein Contaminants. Biosensors, 13(7), 745. https://doi.org/10.3390/bios13070745