Glucose Oxidase/Egg White Protein Microparticles with a Redox Mediator for Glucose Biosensors on a Screen-Printed Electrode and a Decomposable Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instruments and Electrochemical Measurement
2.3. Preparation of GOx/PQ/Egg White Protein MPs
2.4. Preparation of CNT-Modified Carbon Ink
2.5. Preparation of Biosensors on Degradable Electrodes
3. Results and Discussion
3.1. Principle of Preparation GOx/PQ/Egg White Protein MPs
3.2. Characterization and Morphology
3.3. Electrochemical Characterizations
3.4. Amperometry
3.5. Glucose Biosensors on Degradable Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 2019, 31, 1806739. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeerapan, I.; Ciui, B.; Hartel, M.C.; Martin, A.; Wang, J. Edible electrochemistry: Food materials based electrochemical sensors. Adv. Healthc. Mater. 2017, 6, 1700770. [Google Scholar] [CrossRef]
- Miao, J.; Liu, H.; Li, Y.; Zhang, X. Biodegradable transparent substrate based on edible starch–chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics. ACS Appl. Mater. Interfaces 2018, 10, 23037–23047. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, P.; Lamanna, L.; Bertei, C.; Arena, F.; Rossi, P.; Liu, M.; Di Fonzo, F.; Papageorgiou, D.G.; Luzio, A.; Caironi, M. An electrically conductive oleogel paste for edible electronics. Adv. Funct. Mater. 2022, 32, 2113417. [Google Scholar] [CrossRef]
- Trau, D.; Renneberg, R. Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: Immobilization and biosensor applications. Biosens. Bioelectron. 2003, 18, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Bashir, N.; Sood, M.; Bandral, J.D. Enzyme immobilization and its applications in food processing: A review. Int. J. Chem. Stud. 2020, 8, 254–261. [Google Scholar] [CrossRef]
- Tomaino, E.; Capecchi, E.; Piccinino, D.; Saladino, R. Lignin Nanoparticles Support Lipase-Tyrosinase Enzymatic Cascade in the Synthesis of Lipophilic Hydroxytyrosol Ester Derivatives. ChemCatChem 2022, 14, e202200380. [Google Scholar] [CrossRef]
- Mardani, T.; Khiabani, M.S.; Mokarram, R.R.; Hamishehkar, H. Immobilization of α-amylase on chitosan-montmorillonite nanocomposite beads. Int. J. Biol. Macromol. 2018, 120, 354–360. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, T.; Fang, K.; Liu, P.; Li, M.; Gu, N. The effect of porosity and stiffness of glutaraldehyde cross-linked egg white scaffold simulating aged extracellular matrix on distribution and aggregation of ovarian cancer cells. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 43–52. [Google Scholar] [CrossRef]
- Joaquim, A.; Paul, O.; Ibezim, M.; Johnson, D.; Falconer, A.; Wu, Y.; Williams, F.; Mu, R. Electrospray Deposition of Polyvinylidene Fluoride (PVDF) Microparticles: Impact of Solvents and Flow Rate. Polymers 2022, 14, 2702. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Gunatillake, P.A.; Adhikari, R.; Gadegaard, N. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003, 5, 1–16. [Google Scholar] [CrossRef]
- Kumar, A.; Park, G.D.; Patel, S.K.S.; Kondaveeti, S.; Otari, S.; Anwar, M.Z.; Kalia, V.C.; Singh, Y.; Kim, S.C.; Cho, B.-K.; et al. SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem. Eng. J. 2019, 359, 1252–1264. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Li, B.; Liu, C.; Jiang, Y.; Yu, G.; Mu, X. Biocompatible magnetic cellulose–chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J. Mater. Chem. 2012, 22, 15085–15091. [Google Scholar] [CrossRef]
- Wang, X.; Wenk, E.; Hu, X.; Castro, G.R.; Meinel, L.; Wang, X.; Li, C.; Merkle, H.; Kaplan, D.L. Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 2007, 28, 4161–4169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadolnikova, P.Y.; Tikhonov, B.; Prutenskaya, E.; Sidorov, A.; Sulman, M. Immobilization of Glucose Oxidase on Sodium Alginate Microspheres. Appl. Biochem. Microbiol. 2023, 59, 57–64. [Google Scholar] [CrossRef]
- Lai, K.K.; Renneberg, R.; Mak, W.C. Bioinspired protein microparticles fabrication by peptide mediated disulfide interchange. RSC Adv. 2014, 4, 11802–11810. [Google Scholar] [CrossRef]
- Schijven, L.M.I.; Vogelaar, T.D.; Sridharan, S.; Saggiomo, V.; Velders, A.H.; Bitter, J.H.; Nikiforidis, C.V. Hollow protein microparticles formed through cross-linking by an Au3+ initiated redox reaction. J. Mater. Chem. B 2022, 10, 6287–6295. [Google Scholar] [CrossRef]
- Bratlie, K.M.; York, R.L.; Invernale, M.A.; Langer, R.; Anderson, D.G. Materials for diabetes therapeutics. Adv. Healthc. Mater. 2012, 1, 267–284. [Google Scholar] [CrossRef]
- Sarwar, M.S.; Huang, Q.; Ghaffar, A.; Abid, M.A.; Zafar, M.S.; Khurshid, Z.; Latif, M. A smart drug delivery system based on biodegradable chitosan/poly (allylamine hydrochloride) blend films. Pharmaceutics 2020, 12, 131. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Volodkin, D. Microparticulate biomolecules by mild CaCO3 templating. J. Mater. Chem. B 2013, 1, 1210–1218. [Google Scholar] [CrossRef]
- Genys, P.; Aksun, E.; Tereshchenko, A.; Valiūnienė, A.; Ramanaviciene, A.; Ramanavicius, A. Electrochemical deposition and investigation of poly-9, 10-phenanthrenequinone layer. Nanomaterials 2019, 9, 702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niaz, K.; Khan, F.; Shah, M.A. Chapter 25—Analysis of quinonoids. In Recent Advances in Natural Products Analysis; Silva, A.S., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 749–766. [Google Scholar]
- Wilkinson, D.; Cioncoloni, G.; Symes, M.D.; Bucher, G. Attempted characterisation of phenanthrene-4, 5-quinone and electrochemical synthesis of violanthrone-16, 17-quinone. How does the stability of bay quinones correlate with structural and electronic parameters? RSC Adv. 2020, 10, 38004–38012. [Google Scholar] [CrossRef]
- Hanif, M.; Lu, P.; Gu, C.; Wang, Z.; Yang, S.; Yang, B.; Wang, C.; Ma, Y. Molecular properties of 9, 10-phenanthrenequinone and benzil. Chem. Res. Chin. Univ. 2009, 25, 950–956. [Google Scholar]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef]
- Togashi, D.M.; Nicodem, D.E. Photophysical studies of 9,10-phenanthrenequinones. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 3205–3212. [Google Scholar] [CrossRef]
- Yang, M.; Ahmed, H.; Wu, W.; Jiang, B.; Jia, Z. Cytotoxicity of air pollutant 9, 10-phenanthrenequinone: Role of reactive oxygen species and redox signaling. BioMed Res. Int. 2018, 2018, 9523968. [Google Scholar]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, P.; Zhang, W.; Zhu, G. Sol–gel-derived carbon ceramic electrode containing 9, 10-phenanthrenequinone, and its electrocatalytic activity toward iodate. Fresenius’ J. Anal. Chem. 2001, 371, 337–341. [Google Scholar] [CrossRef]
- Goh, G.L.; Tay, M.F.; Lee, J.M.; Ho, J.S.; Sim, L.N.; Yeong, W.Y.; Chong, T.H. Potential of printed electrodes for electrochemical impedance spectroscopy (EIS): Toward membrane fouling detection. Adv. Electron. Mater. 2021, 7, 2100043. [Google Scholar] [CrossRef]
- Nkosi, D.; Pillay, J.; Ozoemena, K.I.; Nouneh, K.; Oyama, M. Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers. Phys. Chem. Chem. Phys. 2010, 12, 604–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Ding, Y.; Li, S.; Jiang, Y.; Liu, Z.; Ge, J. Highly active, stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate. Nanoscale 2016, 8, 17440–17445. [Google Scholar] [CrossRef]
- Gomathi, P.; Kim, M.K.; Park, J.J.; Ragupathy, D.; Rajendran, A.; Lee, S.C.; Kim, J.C.; Lee, S.H.; Ghim, H.D. Multiwalled carbon nanotubes grafted chitosan nanobiocomposite: A prosperous functional nanomaterials for glucose biosensor application. Sens. Actuators B Chem. 2011, 155, 897–902. [Google Scholar] [CrossRef]
- Zang, J.; Li, C.M.; Cui, X.; Wang, J.; Sun, X.; Dong, H.; Sun, C.Q. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2007, 19, 1008–1014. [Google Scholar] [CrossRef]
- Mani, V.; Beduk, T.; Khushaim, W.; Ceylan, A.E.; Timur, S.; Wolfbeis, O.S.; Salama, K.N. Electrochemical sensors targeting salivary biomarkers: A comprehensive review. TrAC Trends Anal. Chem. 2021, 135, 116164. [Google Scholar] [CrossRef]
- Ngamchuea, K.; Chaisiwamongkhol, K.; Batchelor-McAuley, C.; Compton, R.G. Chemical analysis in saliva and the search for salivary biomarkers–a tutorial review. Analyst 2018, 143, 81–99. [Google Scholar] [CrossRef]
- Meng, Q.H.; Irwin, W.C.; Fesser, J.; Massey, K.L. Interference of ascorbic acid with chemical analytes. Ann. Clin. Biochem. 2005, 42, 475–477. [Google Scholar] [CrossRef] [Green Version]
- Chadly, A.; Azar, E.; Maalouf, M.; Mayyas, A. Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings. Energy 2022, 247, 123466. [Google Scholar] [CrossRef]
- Yang, J.; Park, S.; Lee, S.; Kim, J.; Huang, D.; Gim, J.; Lee, E.; Kim, G.; Park, K.; Kang, Y.-M. High-Voltage Deprotonation of Layered-Type Materials as Newly Identified Cause of Electrode Degradation. J. Mater. Chem. A 2023, 11, 3018–3027. [Google Scholar] [CrossRef]
- Ghittorelli, M.; Lingstedt, L.; Romele, P.; Crăciun, N.I.; Kovács-Vajna, Z.M.; Blom, P.W.; Torricelli, F. High-sensitivity ion detection at low voltages with current-driven organic electrochemical transistors. Nat. Commun. 2018, 9, 1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-H.; Lin, T.-S.; Mou, C.-Y. Mesoporous materials for encapsulating enzymes. Nano Today 2009, 4, 165–179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasitanon, N.; Rattanapan, P.; Kaewpradub, K.; Buranachai, C.; Jeerapan, I. Glucose Oxidase/Egg White Protein Microparticles with a Redox Mediator for Glucose Biosensors on a Screen-Printed Electrode and a Decomposable Electrode. Biosensors 2023, 13, 772. https://doi.org/10.3390/bios13080772
Rasitanon N, Rattanapan P, Kaewpradub K, Buranachai C, Jeerapan I. Glucose Oxidase/Egg White Protein Microparticles with a Redox Mediator for Glucose Biosensors on a Screen-Printed Electrode and a Decomposable Electrode. Biosensors. 2023; 13(8):772. https://doi.org/10.3390/bios13080772
Chicago/Turabian StyleRasitanon, Natcha, Parinthorn Rattanapan, Kanyawee Kaewpradub, Chittanon Buranachai, and Itthipon Jeerapan. 2023. "Glucose Oxidase/Egg White Protein Microparticles with a Redox Mediator for Glucose Biosensors on a Screen-Printed Electrode and a Decomposable Electrode" Biosensors 13, no. 8: 772. https://doi.org/10.3390/bios13080772
APA StyleRasitanon, N., Rattanapan, P., Kaewpradub, K., Buranachai, C., & Jeerapan, I. (2023). Glucose Oxidase/Egg White Protein Microparticles with a Redox Mediator for Glucose Biosensors on a Screen-Printed Electrode and a Decomposable Electrode. Biosensors, 13(8), 772. https://doi.org/10.3390/bios13080772