Dual Signal-Enhanced Electrochemiluminescence Strategy Based on Functionalized Biochar for Detecting Aflatoxin B1
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of MIL-88B(Fe)-NH2@Ru(bpy)32+ and NH2-Biochar-Au
2.2. Mechanism of the ECL Immunosensor
2.3. Characterization of Layer Modification Process of ECL Immunosensor
2.4. Selection of Measurement Condition
2.5. Performance of the ECL Immunosensor
2.6. Other Parameters of the ECL Immunosensor
3. Materials and Methods
3.1. Preparation of NH2-Biochar
3.2. Preparation of MIL-88B(Fe)-NH2@Ru(bpy)32+
3.3. Preparation of NH2-Biochar-Au, NH2-Biochar-Au-Ab1, and the Label of MIL-88B(Fe)-NH2@Ru(bpy)32+-Ab2-BSA
3.4. Preparation Process of ECL Immunosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, L.; Chang, J.; Zhuang, X.; Li, H.; Hou, T.; Li, F. Two-Dimensional Cobalt-Doped Ti3c2 Mxene Nanozyme-Mediated Homogeneous Electrochemical Strategy for Pesticides Assay Based on in Situ Generation of Electroactive Substances. Anal. Chem. 2022, 94, 3669–3676. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Du, J.; Luo, J.; Chen, S.; Yuan, R. Coreactant-Free Electrochemiluminescence Biosensor for the Determination of Organophosphorus Pesticides. Biosens. Bioelectron. 2020, 150, 111898. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Sun, Y.; Duan, J.; Wang, M.; Ai, S.; Hou, J. A Novel Immunocolorimetric Probe for Aflatoxin B1 Based on Multifunctional Metal−Organic Frameworks. Sens. Actuators B Chem. 2022, 369, 132362. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Xiong, C.; Deng, Q.; Zhang, X.; Wang, S.; Chen, M.-M. An Ultrasensitive Ch3nh3pbbr3 Quantum Dots@Sio2-Based Electrochemiluminescence Sensing Platform Using an Organic Electrolyte for Aflatoxin B1 Detection in Corn Oil. Food Chem. 2022, 390, 133200. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Yang, L.; Yao, L.; Xu, J.; Yao, B.; Liu, G.; Cheng, L.; Chen, W. Ingenious Electrochemiluminescence Bioaptasensor Based on Synergistic Effects and Enzyme-Driven Programmable 3d DNA Nanoflowers for Ultrasensitive Detection of Aflatoxin B1. Anal. Chem. 2020, 92, 14122–14129. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Zhao, Q. A Signal-on Electrochemical Aptasensor for Rapid Detection of Aflatoxin B1 Based on Competition with Complementary DNA. Biosens. Bioelectron. 2019, 144, 111641. [Google Scholar] [CrossRef]
- Yue, Q.; Li, X.; Fang, J.; Li, M.; Zhang, J.; Zhao, G.; Cao, W.; Wei, Q. Oxygen Free Radical Scavenger Ptpd@Pda as a Dual-Mode Quencher of Electrochemiluminescence Immunosensor for the Detection of Afb1. Anal. Chem. 2022, 94, 11476–11482. [Google Scholar] [CrossRef]
- Pirsa, S.; Alizadeh, N. Nanoporous Conducting Polypyrrole Gas Sensor Coupled to a Gas Chromatograph for Determination of Aromatic Hydrocarbons Using Dispersive Liquid–Liquid Microextraction Method. IEEE Sens. J. 2011, 11, 3400–3405. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Wang, R.; Miao, Q.; Cui, X.; Shang, L.; Ma, R.; Jia, L.; Li, C.; Li, F.; et al. Perylene Derivative and Persulfate as Highly Efficient Electrochemical System for Constructing Sensitive Amperometric Aptasensor. Talanta 2023, 259, 124489. [Google Scholar] [CrossRef]
- Zhuo, Y.; Wang, H.-J.; Lei, Y.-M.; Zhang, P.; Liu, J.-L.; Chai, Y.-Q.; Yuan, R. Electrochemiluminescence Biosensing Based on Different Modes of Switching Signals. Analyst 2018, 143, 3230–3248. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, M.; Yan, H.; Lu, C.; Xu, J. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chem. A Eur. J. 2019, 25, 12671–12683. [Google Scholar] [CrossRef]
- Lu, H.-J.; Xu, J.-J.; Zhou, H.; Chen, H.-Y. Recent Advances in Electrochemiluminescence Resonance Energy Transfer for Bioanalysis: Fundamentals and Applications. Trac-Trends Anal. Chem. 2020, 122, 115746. [Google Scholar] [CrossRef]
- Xia, M.; Yang, X.; Jiao, T.; Oyama, M.; Chen, Q.; Chen, X. Self-Enhanced Electrochemiluminescence of Luminol Induced by Palladium-Graphene Oxide for Ultrasensitive Detection of Aflatoxin B-1 in Food Samples. Food Chem. 2022, 381, 132276. [Google Scholar] [CrossRef]
- Lv, X.; Tan, F.; Miao, T.; Zhang, J.; Zhang, Z.; Cui, B.; Fang, Y. Potential-Resolved Differential Electrochemiluminescence Immunosensor Based on Novel Designed Ibphf for Self-Correctable Detection of Afb(1). Microchem. J. 2022, 181, 107845. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Meng, S.; Zhang, J.; Li, L.; You, T. Regulation of Ru(Bpy)32+ Electrochemiluminescence Based on Distance-Dependent Electron Transfer of Ferrocene for Dual-Signal Readout Detection of Aflatoxin B1 with High Sensitivity. Anal. Chem. 2022, 94, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Song, Y.; Wang, Y.; Gong, Y.; Shang, L.; Ma, R.; Jia, L.; Xue, Q.; Du, Y.; He, S.; et al. Perylene Dianhydride and Perylene Diimide Luminophores Integrated with Gold Nanoparticles for Dual-Potential Electrochemiluminescence Ratiometric Immunosensors. ACS Appl. Nano Mater. 2021, 4, 683–690. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, J.; Zhang, R.; He, S.; Ding, Z.; Ding, L. Electrochemiluminescence of Water-Dispersed Nitrogen and Sulfur Doped Carbon Dots Synthesized from Amino Acids. Analyst 2021, 146, 5287–5293. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, X.; Xiang, G.; Lac, K.; Wang, C.; Wang, S.; Ding, Z. Enhanced Electrochemiluminescence of a Macrocyclic Tetradentate Chelate Pt(Ii) Molecule through Its Collisional Interactions with the Electrode. Chem. Asian J. 2022, 17, e202200727. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, G.; Li, Y.; Zeng, Q.; Ma, H.; Wu, D.; Ren, X.; Wei, Q.; Ju, H. Dual-Mechanism Quenching of Electrochemiluminescence Immunosensor Based on a Novel Ecl Emitter Polyoxomolybdate-Zirconia for 17β-Estradiol Detection. Anal. Chem. 2022, 94, 12742–12749. [Google Scholar] [CrossRef]
- Cheng, R.; Ding, Y.; Wang, Y.; Wang, H.; Zhang, Y.; Wei, Q. A Novel Molecularly Imprinted Electrochemiluminescence Sensor Based on Cobalt Nitride Nanoarray Electrode for the Sensitive Detection of Bisphenol S. RSC Adv. 2021, 11, 11011–11019. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, W.; He, S.; Shang, L.; Ma, R.; Jia, L.; Wang, H. Perylene Diimide and Luminol as Potential-Resolved Electrochemiluminescence Nanoprobes for Dual Targets Immunoassay at Low Potential. ACS Appl. Mater. Interfaces 2019, 11, 33676–33683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Song, Y.; Wang, Y.; He, S.; Shang, L.; Ma, R.; Jia, L.; Wang, H. A Perylenetetracarboxylic Dianhydride and Aniline-Assembled Supramolecular Nanomaterial with Multi-Color Electrochemiluminescence for a Highly Sensitive Label-Free Immunoassay. J. Mater. Chem. B 2020, 8, 3676–3682. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Huang, J.; Liu, H.; Chen, M.-M.; Wen, W.; Zhang, X.; Wang, S. Ruthenium(Ii) Complex Encapsulated Multifunctional Metal Organic Frameworks Based Electrochemiluminescence Sensor for Sensitive Detection of Hydrogen Sulfide. Talanta 2022, 249, 123602. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Y.; Zhang, Y.; Zhao, G.; Wang, Y.; Wang, H.; Wang, H.; Xu, R.; Wei, Q. Signal-Enhanced Electrochemiluminescence Strategy Using Iron-Based Metal-Organic Frameworks Modified with Carboxylated Ru(Ii) Complexes for Neuron-Specific Enolase Detection. Biosens. Bioelectron. 2022, 215, 114605. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.Q.; Peng, L.Z.; Lei, Y.M.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. Strong Electrochemiluminescence from Mof Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace Ctni. Anal. Chem. 2018, 90, 3995–4002. [Google Scholar] [CrossRef]
- Li, Y.; Xu, R.; Wang, H.; Xu, W.; Tian, L.; Huang, J.; Liang, C.; Zhang, Y. Recent Advances of Biochar-Based Electrochemical Sensors and Biosensors. Biosensors 2022, 12, 508. [Google Scholar] [CrossRef]
- Zou, J.; Yu, Q.; Gao, Y.; Chen, S.; Huang, X.; Hu, D.; Liu, S.; Lu, L.-M. Bismuth Nanoclusters/Porous Carbon Composite: A Facile Ratiometric Electrochemical Sensing Platform for Pb2+ Detection with High Sensitivity and Selectivity. Acs Omega 2021, 7, 1132–1138. [Google Scholar] [CrossRef]
- Zou, J.; Qian, W.; Li, Y.; Yu, Q.; Yu, Y.; Chen, S.; Qu, F.; Gao, Y.; Lu, L. Multilayer Activated Biochar/Uio-66-Nh2 Film as Intelligent Sensing Platform for Ultra-Sensitive Electrochemical Detection of Pb2+ and Hg2+. Appl. Surf. Sci. 2021, 569, 151006. [Google Scholar] [CrossRef]
- Chu, K.; Adsetts, J.R.; He, S.; Zhan, Z.; Yang, L.; Wong, J.M.; Love, D.A.; Ding, Z. Cover Feature: Electrogenerated Chemiluminescence and Electroluminescence of N-Doped Graphene Quantum Dots Fabricated from an Electrochemical Exfoliation Process in Nitrogen-Containing Electrolytes (Chem. Eur. J. 68/2020). Chem. A Eur. J. 2020, 26, 15756. [Google Scholar] [CrossRef]
- Lv, X.; Tan, F.; Miao, T.; Cui, B.; Zhang, J.; Fang, Y.; Shen, Y. In Situ Generated Ptnps to Enhance Electrochemiluminescence of Multifunctional Nanoreactor Cop T4vtp6 for Afb1 Detection. Food Chem. 2023, 399, 134002. [Google Scholar] [CrossRef]
- Fu, X.; Yang, Y.; Wang, N.; Chen, S. The Electrochemiluminescence Resonance Energy Transfer between Fe-Mil-88 Metal-Organic Framework and 3,4,9,10-Perylenetetracar-Boxylic Acid for Dopamine Sensing. Sens. Actuators B-Chem. 2017, 250, 584–590. [Google Scholar] [CrossRef]
- Duan, S.; Huang, Y. Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. J. Electroanal. Chem. 2017, 807, 253–260. [Google Scholar] [CrossRef]
- Kim, S.; Park, C.G.; Huh, B.K.; Lee, S.H.; Min, C.H.; Lee, Y.Y.; Kim, Y.K.; Park, K.H.; Choy, Y.B. Metal-organic frameworks, NH2-MIL-88(Fe), as carriers for ophthalmic delivery of brimonidine. Acta Biomater. 2018, 79, 344–353. [Google Scholar] [CrossRef]
- Zango, Z.U.; Jumbri, K.; Sambudi, N.S.; Hanif Abu Bakar, N.H.; Fathihah Abdullah, N.A.; Basheer, C.; Saad, B. Removal of anthracene in water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) metal-organic frameworks. RSC Adv. 2019, 9, 41490–41501. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Ma, Y.; Gu, Y.; Zhou, H.; Zhang, H.; Wang, G.; Zhang, Y.; Zhao, H. Bifunctional NH2-MIL-88(Fe) metal–organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media. J. Mater. Chem. A 2017, 5, 23794–23804. [Google Scholar] [CrossRef]
- Han, S.; Gao, Y.; Li, L.; Lu, B.; Zou, Y.; Zhang, L.; Zhang, J. Synergistic Enhancement Effects of Carbon Quantum Dots and Au Nanoclusters for Cathodic ECL and Non-enzyme Detections of Glucose. Electroanalysis 2020, 32, 1155–1159. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Q.; Hong, Z.; Lin, Y.; Dai, H. A bifunctional catalyst based ECL immunosensor for a cardiac biomarker regulated by oxygen evolution reaction. Electrochim. Acta 2016, 215, 326–333. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, H.; Chai, Y.; Shi, W.; Yuan, R. High-Efficiency CNNS@NH2-MIL(Fe) Electrochemiluminescence Emitters Coupled with Ti3C2 Nanosheets as a Matrix for a Highly Sensitive Cardiac Troponin I Assay. Anal. Chem. 2020, 92, 8992–9000. [Google Scholar] [CrossRef]
- Zhang, W.; Song, Y.; He, S.; Shang, L.; Ma, R.; Jia, L.; Wang, H. Perylene Diimide as a Cathodic Electrochemiluminescence Luminophore for Immunoassays at Low Potentials. Nanoscale 2019, 11, 20910–20916. [Google Scholar] [CrossRef]
- Lee, J.T.E.; Lim, E.Y.; Zhang, L.; Tsui, T.H.; Tian, H.; Yan, M.; Lim, S.; Abdul Majid, M.B.; Jong, M.C.; Zhang, J.; et al. Methanosarcina Thermophila Bioaugmentation and Its Synergy with Biochar Growth Support Particles Versus Polypropylene Microplastics in Thermophilic Food Waste Anaerobic Digestion. Bioresour. Technol. 2022, 360, 127531. [Google Scholar] [CrossRef]
- Yang, G.X.; Jiang, H. Amino Modification of Biochar for Enhanced Adsorption of Copper Ions from Synthetic Wastewater. Water Res. 2014, 48, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yue, X.; Xu, W.; Zhang, H.; Li, F. Amino Modification of Rice Straw-Derived Biochar for Enhancing Its Cadmium (Ii) Ions Adsorption from Water. J. Hazard. Mater. 2019, 379, 120783. [Google Scholar] [CrossRef]
- Qi, G.; Pan, Z.; Zhang, X.; Miao, X.; Xiang, W.; Gao, B. Effect of Ball Milling with Hydrogen Peroxide or Ammonia Hydroxide on Sorption Performance of Volatile Organic Compounds by Biochar from Different Pyrolysis Temperatures. Chem. Eng. J. 2022, 450, 138027. [Google Scholar] [CrossRef]
- Ou, G.; Zhao, A.; Liao, H.; Zhang, Z.; Xiao, F. Au nanopartics decorated urchin-like Bi2S3 on graphene wrapped carbon fiber microelectrode: Towards electrochemical immunosensor for sensitive determination of aflatoxin B1. J. Electroanal. Chem. 2023, 929, 117124. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, M.; Liu, Q.; Guo, Y.; Wang, H.; Wang, K. Fabricating photoelectrochemical aptasensor for sensitive detection of aflatoxin B1 with visible-light-driven BiOBr/nitrogen-doped graphene nanoribbons. J. Electroanal. Chem. 2019, 840, 67–73. [Google Scholar] [CrossRef]
- Wu, J.; Xie, Z.; Li, M.; Lin, Y.; Tan, X.; Huang, K. Molecularly imprinted photoelectrochemical sensing supported by Bi2S3/Bi2O2CO3 direct Z-scheme heterojunction for aflatoxin B1 detection. Sens. Actuators B Chem. 2023, 378, 133143. [Google Scholar] [CrossRef]
- Tian, D.; Wang, J.; Zhuang, Q.; Wu, S.; Yu, Y.; Ding, K. An electrochemiluminescence biosensor based on Graphitic carbon nitride luminescence quenching for detection of AFB1. Food Chem. 2023, 404, 134183. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, Y.-K.; Chen, M.; Wu, D.-Z.; Cai, S.-X.; Liu, M.-M.; He, W.-H.; Chen, J.-H. A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn(II)-ion signal-enhancement for simultaneous detection of OTA and AFB1. Sens. Actuators B Chem. 2016, 235, 79–85. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, G.; Wang, X.; Zhang, Y.; Li, Z.; Liu, P.; Yu, B.; Zhang, J. A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta 2020, 219, 121342. [Google Scholar] [CrossRef]
- Lerdsri, J.; Chananchana, W.; Upan, J.; Sridara, T.; Jakmunee, J. Label-free colorimetric aptasensor for rapid detection of aflatoxin B1 by utilizing cationic perylene probe and localized surface plasmon resonance of gold nanoparticles. Sens. Actuators B Chem. 2020, 320, 128356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Shi, Y.; Song, Y.; Guan, H.; Li, Y.; Xu, R. Dual Signal-Enhanced Electrochemiluminescence Strategy Based on Functionalized Biochar for Detecting Aflatoxin B1. Biosensors 2023, 13, 846. https://doi.org/10.3390/bios13090846
Tian L, Shi Y, Song Y, Guan H, Li Y, Xu R. Dual Signal-Enhanced Electrochemiluminescence Strategy Based on Functionalized Biochar for Detecting Aflatoxin B1. Biosensors. 2023; 13(9):846. https://doi.org/10.3390/bios13090846
Chicago/Turabian StyleTian, Lin, Yuying Shi, Yanan Song, Huilin Guan, Yunxiao Li, and Rui Xu. 2023. "Dual Signal-Enhanced Electrochemiluminescence Strategy Based on Functionalized Biochar for Detecting Aflatoxin B1" Biosensors 13, no. 9: 846. https://doi.org/10.3390/bios13090846
APA StyleTian, L., Shi, Y., Song, Y., Guan, H., Li, Y., & Xu, R. (2023). Dual Signal-Enhanced Electrochemiluminescence Strategy Based on Functionalized Biochar for Detecting Aflatoxin B1. Biosensors, 13(9), 846. https://doi.org/10.3390/bios13090846