Development of a High-Accuracy, Low-Cost, and Portable Fluorometer with Smartphone Application for the Detection of Urinary Albumin towards the Early Screening of Chronic Kidney and Renal Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aptamer and Reagents’ Preparation, Aptasensors
2.2. Urine Sample Collection
2.3. Comparison of Urinary Albumin Analysis: Commercial Portable Fluorometer, Developed Fluorometer, and Standard Hospital Method
2.4. High-Accuracy, Low-Cost, and Portable Fluorometer Development
2.4.1. Mechanical and Optical Design
2.4.2. Circuit Design and Analysis
2.4.3. Fluorometer and Smartphone Software
2.4.4. Noise and Variation Analysis
3. Results
3.1. Calibration of Low-Cost, Portable Fluorometer
3.2. Performance Comparison of Developed vs. Commercial Fluorometer Using Aptasensor for HSA Detection
3.2.1. Comparison of Calibration Curves for HSA Concentration Measurement: Developed Fluorometer vs. Commercial Fluorometer
3.2.2. Comparison of HSA Detection in Urine Samples Using the Developed Fluorometer, Commercial Fluorometer, and Standard Hospital Method
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peters, T. Clinical aspects: Albumin in medicine. In All About Albumin; Peters, T., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 251–284. [Google Scholar]
- Carfray, A.; Patel, K.; Whitaker, P.; Garrick, P.; Griffiths, G.J.; Warwick, G.L. Albumin as an outcome measure in haemodialysis in patients: The effect of variation in assay method. Nephrol. Dial. Transplant. 2000, 15, 1819–1822. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, V.; García-Martinez, R.; Salvatella, X. Human serum albumin, systemic inflammation, and cirrhosis. J. Hepatol. 2014, 61, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171–183. [Google Scholar] [CrossRef]
- Arques, S.; Ambrosi, P. Human serum albumin in the clinical syndrome of heart failure. J. Card. Fail. 2011, 17, 451–458. [Google Scholar] [CrossRef]
- Hoogenberg, K.; Sluiter, W.J.; Dullaart, R.P. Effect of growth hormone and insulin-like growth factor I on urinary albumin excretion: Studies in acromegaly and growth hormone deficiency. Acta Endocrinol. 1993, 129, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Amin, R.; Widmer, B.; Prevost, A.T.; Schwarze, P.; Cooper, J.; Edge, J.; Marcovecchio, L.; Neil, A.; Dalton, R.N.; Dunger, D.B. Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: Prospective observational study. BMJ 2008, 336, 697–701. [Google Scholar] [CrossRef] [PubMed]
- KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am. J. Kidney Dis. 2007, 49, S12–S154. [CrossRef] [PubMed]
- de Zeeuw, D.; Remuzzi, G.; Parving, H.H.; Keane, W.F.; Zhang, Z.; Shahinfar, S.; Snapinn, S.; Cooper, M.E.; Mitch, W.E.; Brenner, B.M. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: Lessons from RENAAL. Kidney Int. 2004, 65, 2309–2320. [Google Scholar] [CrossRef]
- Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar]
- Hemmelgarn, B.R.; Manns, B.J.; Lloyd, A.; James, M.T.; Klarenbach, S.; Quinn, R.R.; Wiebe, N.; Tonelli, M. Relation between kidney function, proteinuria, and adverse outcomes. JAMA 2010, 303, 423–429. [Google Scholar] [CrossRef]
- de Zeeuw, D.; Parving, H.H.; Henning, R.H. Microalbuminuria as an early marker for cardiovascular disease. J. Am. Soc. Nephrol. 2006, 17, 2100–2105. [Google Scholar] [CrossRef]
- Viswanathan, G.; Upadhyay, A. Assessment of proteinuria. Adv. Chronic Kidney Dis. 2011, 18, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Polkinghorne, K.R. Detection and measurement of urinary protein. Curr. Opin. Nephrol. Hypertens. 2006, 15, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-F.; Yang, Y.-S.; Jiang, A.-Q.; Zhu, H.-L. Detection methods and research progress of Human serum albumin. Crit. Rev. Analyt. Chem. 2022, 52, 72–92. [Google Scholar] [CrossRef]
- Ndamase, S.; Freercks, R. The utility of urine sulphosalicylic acid testing in the detection of non-albumin proteinuria. S. Afr. Med. J. 2014, 105, 153. [Google Scholar] [CrossRef]
- Mejia, J.; Fernández-Chinguel, J.; Dolores Maldonado, G.; Becerra-Chauca, N.; Goicochea Lugo, S.; Herrera Añazco, P.; Zafra-Tanaka, J.; Taype-Rondán, A. Diagnostic accuracy of urine dipstick testing for albumin-to-creatinine ratio and albuminuria: A systematic review and meta-analysis. Heliyon 2021, 7, e08253. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Shin, E.; Jung, W.; Kim, M.K.; Chong, Y. A near-infrared turn-on fluorescent sensor for sensitive and specific detection of albumin from urine samples. Sensors 2020, 20, 1232. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Bhattacharyya, R.; Banerjee, D. Pseudosterase activity-based specific detection of human serum albumin on gel. Talanta 2021, 224, 121906. [Google Scholar] [CrossRef]
- Rajasekhar, K.; Achar, C.J.; Govindaraju, T. A red-NIR emissive probe for the selective detection of albumin in urine samples and live cells. Org. Biomol. Chem. 2017, 15, 1584–1588. [Google Scholar] [CrossRef]
- Stefancu, A.; Moisoiu, V.; Bocsa, C.; Bálint, Z.; Cosma, D.-T.; Veresiu, I.A.; Chiş, V.; Leopold, N.; Elec, F. SERS-based quantification of albuminuria in the normal-to-mildly increased range. Analyst 2018, 143, 5372–5379. [Google Scholar] [CrossRef]
- Tabatabaei, M.K.; Fard, H.G.; Koohsorkhi, J.; Mohammadnejad Arough, J. High-performance immunosensor for urine albumin using hybrid architectures of ZnO nanowire/carbon nanotube. IET Nanobiotechnol. 2020, 14, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-G.; Yan, X.-J.; Liu, H.-B.; Zhang, D.-L.; Liu, W.; Xie, C.-Z.; Li, Q.-Z.; Xu, J.-Y. A novel hydrazide Schiff base self-assembled nanoprobe for selective detection of human serum albumin and its applications in renal disease surveillance. J. Mater. Chem. B 2020, 8, 8346–8355. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, G.; Bolton-Warberg, M.; Awaja, F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomater. 2021, 131, 62–79. [Google Scholar] [CrossRef]
- Park, K.S. Nucleic acid aptamer-based methods for diagnosis of infections. Biosens. Bioelectron. 2018, 102, 179–188. [Google Scholar] [CrossRef]
- Marrazza, G. Aptamer Sensors. Biosensors 2017, 7, 5. [Google Scholar] [CrossRef]
- Apiwat, C.; Luksirikul, P.; Kankla, P.; Pongprayoon, P.; Treerattrakoon, K.; Paiboonsukwong, K.; Fucharoen, S.; Dharakul, T.; Japrung, D. Graphene based aptasensor for glycated albumin in diabetes mellitus diagnosis and monitoring. Biosens. Bioelectron. 2016, 82, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Chawjiraphan, W.; Apiwat, C.; Segkhoonthod, K.; Treerattrakoon, K.; Pinpradup, P.; Sathirapongsasuti, N.; Pongprayoon, P.; Luksirikul, P.; Isarankura-Na-Ayudhya, P.; Japrung, D. Sensitive detection of albuminuria by graphene oxide-mediated fluorescence quenching aptasensor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 231, 118128. [Google Scholar] [CrossRef]
- Chawjiraphan, W.; Apiwat, C.; Segkhoonthod, K.; Treerattrakoon, K.; Pinpradup, P.; Sathirapongsasuti, N.; Pongprayoon, P.; Luksirikul, P.; Isarankura-Na-Ayudhya, P.; Japrung, D. Albuminuria detection using graphene oxide-mediated fluorescence quenching aptasensor. MethodsX 2020, 7, 101114. [Google Scholar] [CrossRef]
- FluoroMax—HORIBA. Available online: https://www.horiba.com/en_en/products/detail/action/show/Product/fluoromax-1576/ (accessed on 30 December 2021).
- AquaPen AP 110 Portable PAM Fluorometer. Available online: https://www.alphaomega-electronics.com/en/psi-photon-systems/5653-aquapen-ap-110-handheld-pam-fluorometer.html (accessed on 6 January 2022).
- Invitrogen Qubit 4 Fluorometer, with WiFi|Medex Supply. Available online: https://www.medexsupply.com/laboratory-supplies-lab-equipment-pcr-supplies-invitrogen-qubit-4-fluorometer-with-wifi-x_pid-106687.html?pid=106687 (accessed on 6 January 2022).
- Kim, S.H.; He, Y.; Lee, E.H.; Kim, J.H.; Park, S.M. Portable fluorometer for Cyanobacteria detection. IEEE Sens. J. 2017, 17, 2377–2384. [Google Scholar] [CrossRef]
- Wu, X.; Lai, T.; Jiang, J.; Ma, Y.; Tao, G.; Liu, F.; Li, N. An on-site bacterial detection strategy based on broad-spectrum antibacterial ε-polylysine functionalized magnetic nanoparticles combined with a portable fluorometer. Microchim. Acta 2019, 186, 526. [Google Scholar] [CrossRef]
- Kunnath, R.; Venukumar, A.; Gorthi, S.S. Handheld fluorometer for in-situ melamine detection via interference synthesis of dsDNA-templated copper nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 235, 118304. [Google Scholar] [CrossRef] [PubMed]
- Azad, L.M.; Ehtesabi, H.; Rezaei, A. Smartphone-based fluorometer for pH detection using green synthesized carbon dots. Nano-Struct. Nano-Objects 2021, 26, 100722. [Google Scholar] [CrossRef]
- Alam, M.W.; Wahid, K.A.; Goel, R.K.; Lukong, K.E. Development of a low-cost and portable smart fluorometer for detecting breast cancer cells. Biomed. Opt. Express 2019, 10, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–673. [Google Scholar]
- Chang, M.-H.; Das, D.; Varde, P.V.; Pecht, M. Light emitting diodes reliability review. Microelectron. Reliab. 2012, 52, 762–782. [Google Scholar] [CrossRef]
- Jimenez, J. Laser diode reliability: Crystal defects and degradation modes. Comptes Rendus Phys. 2003, 4, 663–673. [Google Scholar] [CrossRef]
- Orozco, L. Optimizing Precision Photodiode Sensor Circuit Design. Available online: www.analog.com (accessed on 13 January 2022).
Time Scale | Noise and Variation | Mitigation Techniques |
---|---|---|
Device-to-device variation | Manufacturing variation | Factory calibration |
Run-to-run variation | Long-term optical, mechanical, and electronic component degradation | Periodic calibration |
Sample-to-sample variation | Measuring tube position variation | Measuring tube holder design |
Measuring tube sample quantity variation | Fluorescence chamber design | |
In-run variation | Johnson–Nyquist noise | Increase averaging time |
Flicker noise | Subtract output measured when LED is on and off | |
Temperature fluctuation | Measure both excitation and emission intensity to calculate fluorescence intensity | |
External light interference | Opaque case and lid design | |
Excitation light leakage | Opaque matte black fluorescence chamber | |
Photodiode dark current | Use transimpedance amplifier to read photodiode | |
Transimpedance amplifier offset fluctuation | Use operational amplifiers with low input voltage and current offset | |
Powerline interference | Decrease bandwidth and increase averaging time |
Quantity | Central Wavelength (nm) | FWHM (nm) |
---|---|---|
Aptamer–Cy5 absorption | 649.5 | 42.7 |
Aptamer–Cy5 emission | 665.0 | 37.4 |
LED irradiance | 632.3 | 19.7 |
Excitation filter transmission | 615.0 | 30.1 |
Emission filter transmission | 667.0 | 15.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinrod, V.; Chawjiraphan, W.; Segkhoonthod, K.; Hanchaisri, K.; Tantiwathanapong, P.; Pinpradup, P.; Putnin, T.; Pimalai, D.; Treerattrakoon, K.; Cha’on, U.; et al. Development of a High-Accuracy, Low-Cost, and Portable Fluorometer with Smartphone Application for the Detection of Urinary Albumin towards the Early Screening of Chronic Kidney and Renal Diseases. Biosensors 2023, 13, 876. https://doi.org/10.3390/bios13090876
Pinrod V, Chawjiraphan W, Segkhoonthod K, Hanchaisri K, Tantiwathanapong P, Pinpradup P, Putnin T, Pimalai D, Treerattrakoon K, Cha’on U, et al. Development of a High-Accuracy, Low-Cost, and Portable Fluorometer with Smartphone Application for the Detection of Urinary Albumin towards the Early Screening of Chronic Kidney and Renal Diseases. Biosensors. 2023; 13(9):876. https://doi.org/10.3390/bios13090876
Chicago/Turabian StylePinrod, Visarute, Wireeya Chawjiraphan, Khoonsake Segkhoonthod, Kriangkai Hanchaisri, Phornpol Tantiwathanapong, Preedee Pinpradup, Thitirat Putnin, Dechnarong Pimalai, Kiatnida Treerattrakoon, Ubon Cha’on, and et al. 2023. "Development of a High-Accuracy, Low-Cost, and Portable Fluorometer with Smartphone Application for the Detection of Urinary Albumin towards the Early Screening of Chronic Kidney and Renal Diseases" Biosensors 13, no. 9: 876. https://doi.org/10.3390/bios13090876
APA StylePinrod, V., Chawjiraphan, W., Segkhoonthod, K., Hanchaisri, K., Tantiwathanapong, P., Pinpradup, P., Putnin, T., Pimalai, D., Treerattrakoon, K., Cha’on, U., Anutrakulchai, S., & Japrung, D. (2023). Development of a High-Accuracy, Low-Cost, and Portable Fluorometer with Smartphone Application for the Detection of Urinary Albumin towards the Early Screening of Chronic Kidney and Renal Diseases. Biosensors, 13(9), 876. https://doi.org/10.3390/bios13090876