Microscale Flow Control and Droplet Generation Using Arduino-Based Pneumatically-Controlled Microfluidic Device
Abstract
:1. Introduction
2. Experimental
2.1. Flow Control in Microfluidic Systems
2.2. Arduino-Based Flow Controller Manufacturing Method and Appearance
2.3. Microfluidic Control Method Employing Pneumatic System
2.4. Solenoid Valve Control System
2.5. Fabrication of Master Mold
2.6. Experimental Setup and Data Analysis
3. Result and Discussion
3.1. Analysis of Flow Rate Dependence on Pressure Microfluidic Channel Length
3.2. Pneumatic Discharge Method for Flow Control
3.3. Multiple Flow Rate Control Utilizing the Pneumatic Discharge Method
3.4. Pressure Regulation Utilizing a Pressure Regulator
3.5. Micro-Droplet Fabrication Utilizing a Pressure Regulator
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mair, D.A.; Geiger, E.; Pisano, A.P.; Frechet, J.M.; Svec, F. Injection molded microfluidic chips featuring integrated interconnects. Lab A Chip 2006, 6, 1346–1354. [Google Scholar] [CrossRef] [PubMed]
- McClain, M.A.; Culbertson, C.T.; Jacobson, S.C.; Allbritton, N.L.; Sims, C.E.; Ramsey, J.M. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 2003, 75, 5646–5655. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.Y.; Goh, B.T.; Khor, S.M. Microfluidic paper-based analytical devices for potential use in quantitative and direct detection of disease biomarkers in clinical analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1060, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Kuntaegowdanahalli, S.S.; Bhagat, A.A.; Kumar, G.; Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab A Chip 2009, 9, 2973–2980. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; He, W.; Song, Y.; Zhang, X.; Sun, J.; Zhou, Z. Advances of 3D Cell Co-Culture Technology Based on Microfluidic Chips. Biosensors 2024, 14, 336. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.P.; Barbati, A.C.; Santana, S.M.; Gleghorn, J.P.; Kirby, B.J. Microfluidic transport in microdevices for rare cell capture. Electrophoresis 2012, 33, 3133–3142. [Google Scholar] [CrossRef] [PubMed]
- Baroud, C.N.; Gallaire, F.; Dangla, R. Dynamics of microfluidic droplets. Lab A Chip 2010, 10, 2032–2045. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Chang, C.L.; Wang, Y.N.; Fu, L.M. Microfluidic mixing: A review. Int. J. Mol. Sci. 2011, 12, 3263–3287. [Google Scholar] [CrossRef] [PubMed]
- Mavrogiannis, N.; Ibo, M.; Fu, X.; Crivellari, F.; Gagnon, Z. Microfluidics made easy: A robust low-cost constant pressure flow controller for engineers and cell biologists. Biomicrofluidics 2016, 10, 034107. [Google Scholar] [CrossRef] [PubMed]
- Shui, L.; Eijkel, J.C.; van den Berg, A. Multiphase flow in microfluidic systems—Control and applications of droplets and interfaces. Adv. Colloid Interface Sci. 2007, 133, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, S.; Kassir, N.; Keshavarz Moraveji, M. Droplet microfluidics: Fundamentals and its advanced applications. RSC Adv. 2020, 10, 27560–27574. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Fan, L.; Zhu, R.; Sun, D. Microfluidic Single-Cell Manipulation and Analysis: Methods and Applications. Micromachines 2019, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhang, W.; Abbaspourrad, A.; Ahn, J.; Bader, A.; Bose, S.; Vegas, A.; Lin, J.; Tao, J.; Hang, T.; et al. Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing. Nano Lett. 2017, 17, 2015–2020. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Rhee, M.; Singh, A.; Tripathi, A. Microfluidic Sample Preparation for Medical Diagnostics. Annu. Rev. Biomed. Eng. 2015, 17, 267–286. [Google Scholar] [CrossRef] [PubMed]
- Chien, R.L.; Parce, J.W. Multiport flow-control system for lab-on-a-chip microfluidic devices. Fresenius’ J. Anal. Chem. 2001, 371, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Ozkayar, G.; Lotters, J.; Tichem, M.; Ghatkesar, M.K. Portable and integrated microfluidic flow control system using off-the-shelf components towards organs-on-chip applications. Biomed. Microdevices 2023, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Wijnen, B.; Hunt, E.J.; Anzalone, G.C.; Pearce, J.M. Open-source syringe pump library. PLoS ONE 2014, 9, e107216. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mak, S.Y.; Sauret, A.; Shum, H.C. Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab A Chip 2014, 14, 744–749. [Google Scholar] [CrossRef]
- Islam, M.M. Needle Syringe Program-Based Primary HealthCare Centers: Advantages and Disadvantages. J. Prim. Care Community Health 2010, 1, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Choi, J.S.; Kim, D.H.; Kim, J.W. A Microfabricated Pistonless Syringe Pump Driven by Electro-Conjugate Fluid with Leakless On/Off Microvalves. Small 2022, 18, e2106221. [Google Scholar] [CrossRef]
- Davis, J.J.; Padalino, M.; Kaplitz, A.S.; Murray, G.; Foster, S.W.; Maturano, J.; Grinias, J.P. Utility of low-cost, miniaturized peristaltic and Venturi pumps in droplet microfluidics. Anal. Chim. Acta 2021, 1151, 338230. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.M.; Santos, R.O.D.; Munoz, R.A.A.; Garcia, C.D.; Blanes, L. A Multi-Pump Magnetohydrodynamics Lab-On-A-Chip Device for Automated Flow Control and Analyte Delivery. Sensors 2020, 20, 4909. [Google Scholar] [CrossRef] [PubMed]
- Brower, K.; Puccinelli, R.; Markin, C.J.; Shimko, T.C.; Longwell, S.A.; Cruz, B.; Gomez-Sjoberg, R.; Fordyce, P.M. An Open-Source, Programmable Pneumatic Setup for Operation and Automated Control of Single- and Multi-Layer Microfluidic Devices. HardwareX 2018, 3, 117–134. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Davis, T.P.; Zhang, L.; Qiao, R. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices. Biosensors 2024, 14, 301. [Google Scholar] [CrossRef]
- Li, J.; Jamieson, W.D.; Dimitriou, P.; Xu, W.; Rohde, P.; Martinac, B.; Barrow, D.A. Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation. Nat. Commun. 2022, 13, 4125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.T.; Ebrahimi Warkiani, M.; Li, W. Fundamentals and applications of inertial microfluidics: A review. Lab A Chip 2016, 16, 10–34. [Google Scholar] [CrossRef]
- Kim, Y.; Fay, F.; Cormode, D.P.; Sanchez-Gaytan, B.L.; Tang, J.; Hennessy, E.J.; Ma, M.; Moore, K.; Farokhzad, O.C.; Fisher, E.A.; et al. Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics. ACS Nano 2013, 7, 9975–9983. [Google Scholar] [CrossRef]
- Tang, Z.; Fang, K.; Bukhari, M.N.; Song, Y.; Zhang, K. Effects of Viscosity and Surface Tension of a Reactive Dye Ink on Droplet Formation. Langmuir 2020, 36, 9481–9488. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tanaka, N.; Yamazoe, H.; Furutani, S.; Nagai, H.; Kawai, T.; Tanaka, Y. Flow analysis on microcasting with degassed polydimethylsiloxane micro-channels for cell patterning with cross-linked albumin. PLoS ONE 2020, 15, 0232518. [Google Scholar] [CrossRef] [PubMed]
- You, I.; Yun, N.; Lee, H. Surface-tension-confined microfluidics and their applications. ChemPhysChem 2013, 14, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Link, D.R.; Grasland-Mongrain, E.; Duri, A.; Sarrazin, F.; Cheng, Z.; Cristobal, G.; Marquez, M.; Weitz, D.A. Electric control of droplets in microfluidic devices. Angew. Chem. Int. Ed. Engl. 2006, 45, 2556–2560. [Google Scholar] [CrossRef] [PubMed]
- Shanko, E.S.; van de Burgt, Y.; Anderson, P.D.; den Toonder, J.M.J. Microfluidic Magnetic Mixing at Low Reynolds Numbers and in Stagnant Fluids. Micromachines 2019, 10, 731. [Google Scholar] [CrossRef] [PubMed]
- Kan, K.; Levine, W.C. Infusion Pumps. In Anesthesia Equipment; WB Saunders: Philadelphia, PA, USA, 2021; pp. 351–367. [Google Scholar]
- Zhang, B.B.; Fu, J.X.; Du, M.H.; Jin, K.; Huang, Q.; Li, J.H.; Wang, D.P.; Hu, S.Y.; Li, J.H.; Ma, H.B. Polar coordinate active-matrix digital microfluidics for high-resolution concentration gradient generation. Lab A Chip 2024, 24, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Battat, S.; Weitz, D.A.; Whitesides, G.M. An outlook on microfluidics: The promise and the challenge. Lab A Chip 2022, 22, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Baxani, D.K.; Jamieson, W.D.; Xu, W.; Rocha, V.G.; Barrow, D.A.; Castell, O.K. Formation of polarized, functional artificial cells from compartmentalized droplet networks and nanomaterials, using one-step, dual-material 3D-printed microfluidics. Adv. Sci. 2020, 7, 1901719. [Google Scholar] [CrossRef] [PubMed]
Part | Voltage | DC Current Per I/O Pin | Dimension | Cost |
---|---|---|---|---|
Arduino Uno | 7~12 V | 40 mA | 68 × 53 mm2 | ~10 USD |
Relay module | 5 V | 5 mA | 43 × 17 × 18 mm3 | ~5 USD |
Power supply | 24 V | 5 A | 198 × 100 × 43 mm3 | ~60 USD |
Solenoid valve | 24 V | 9 mA | 10 × 40 × 18 mm3 | ~25 USD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, W.; Choe, S.-w.; Kim, M. Microscale Flow Control and Droplet Generation Using Arduino-Based Pneumatically-Controlled Microfluidic Device. Biosensors 2024, 14, 469. https://doi.org/10.3390/bios14100469
Park W, Choe S-w, Kim M. Microscale Flow Control and Droplet Generation Using Arduino-Based Pneumatically-Controlled Microfluidic Device. Biosensors. 2024; 14(10):469. https://doi.org/10.3390/bios14100469
Chicago/Turabian StylePark, Woohyun, Se-woon Choe, and Minseok Kim. 2024. "Microscale Flow Control and Droplet Generation Using Arduino-Based Pneumatically-Controlled Microfluidic Device" Biosensors 14, no. 10: 469. https://doi.org/10.3390/bios14100469
APA StylePark, W., Choe, S. -w., & Kim, M. (2024). Microscale Flow Control and Droplet Generation Using Arduino-Based Pneumatically-Controlled Microfluidic Device. Biosensors, 14(10), 469. https://doi.org/10.3390/bios14100469