Infrared Thermography Sensor in the Analysis of Acute Metabolic Stress Response during Race Walking Competition
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Sample Characteristics
2.3. Procedure
2.4. Tests Performed
2.4.1. Thermography Protocol
2.4.2. Characteristics of the Race and External Environmental Conditions
2.5. Tests Performed
3. Results
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Athletics Home Page|World Athletics. Available online: https://worldathletics.org/ (accessed on 25 April 2024).
- Gomez-Ezeiza, J.; Torres-Unda, J.; Tam, N.; Irazusta, J.; Granados, C.; Santos-Concejero, J. Race Walking Gait and Its Influence on Race Walking Economy in World-Class Race Walkers. J. Sports Sci. 2018, 36, 2235–2241. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.B.; Hanley, B. Gait Variability and Symmetry in World-Class Senior and Junior Race Walkers. J. Sports Sci. 2017, 35, 1739–1744. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, C.; Raschner, C.; Ammer, K. An Overview of Recent Application of Medical Infrared Thermography in Sports Medicine in Austria. Sensors 2010, 10, 4700–4715. [Google Scholar] [CrossRef]
- Aylwin, P.E.; Racinais, S.; Bermon, S.; Lloyd, A.; Hodder, S.; Havenith, G. The Use of Infrared Thermography for the Dynamic Measurement of Skin Temperature of Moving Athletes during Competition; Methodological Issues. Physiol. Meas. 2021, 42, 084004. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.L.; Fernandes, T.L.; Hernandez, A.J.; Keutenedjian Mady, C.E.; Albuquerque, C. Behavior of Skin Temperature during Incremental Cycling and Running Indoor Exercises. Heliyon 2022, 8, e10889. [Google Scholar] [CrossRef]
- Hillen, B.; Andrés López, D.; Pfirrmann, D.; Neuberger, E.W.; Mertinat, K.; Nägele, M.; Schömer, E.; Simon, P. An Exploratory, Intra- and Interindividual Comparison of the Deep Neural Network Automatically Measured Calf Surface Radiation Temperature during Cardiopulmonary Running and Cycling Exercise Testing: A Preliminary Study. J. Therm. Biol. 2023, 113, 103498. [Google Scholar] [CrossRef]
- Périard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and Mechanisms of Human Heat Acclimation: Applications for Competitive Athletes and Sports. Scand. J. Med. Sci. Sports 2015, 25, 20–38. [Google Scholar] [CrossRef]
- Priego Quesada, J.I.; Martinez, N.; Salvador-Palmer, R.; Psikuta, A.; Annaheim, S.; Rossi, R.; Corberan, J.; Cibrian, R.; Perez-Soriano, P. Effects of the Cycling Workload on Core and Local Skin Temperatures. Exp. Therm. Fluid Sci. 2016, 77, 91–99. [Google Scholar] [CrossRef]
- Majano, C.; García-Unanue, J.; Hernandez-Martin, A.; Sánchez-Sánchez, J.; Gallardo, L.; Felipe, J.L. Relationship between Repeated Sprint Ability, Countermovement Jump and Thermography in Elite Football Players. Sensors 2023, 23, 631. [Google Scholar] [CrossRef]
- Martínez-Noguera, F.J.; Cabizosu, A.; Marín-Pagán, C.; Alcaraz, P.E. Body Surface Profile in Ambient and Hot Temperatures during a Rectangular Test in Race Walker Champions of the World Cup in Oman 2022. J. Therm. Biol. 2023, 114, 103548. [Google Scholar] [CrossRef]
- Harding, C.; Pompei, F.; Bordonaro, S.F.; McGillicuddy, D.C.; Burmistrov, D.; Sanchez, L.D. The Daily, Weekly, and Seasonal Cycles of Body Temperature Analyzed at Large Scale. Chronobiol. Int. 2019, 36, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Hanley, B.; Bissas, A.; Drake, A. Kinematic Characteristics of Elite Men’s 50 Km Race Walking. Eur. J. Sport Sci. 2013, 13, 272–279. [Google Scholar] [CrossRef]
- Hanley, B.; Bissas, A. Ground Reaction Forces of Olympic and World Championship Race Walkers. Eur. J. Sport Sci. 2016, 16, 50–56. [Google Scholar] [CrossRef]
- Priego Quesada, J.I.; Carpes, F.P.; Bini, R.R.; Salvador Palmer, R.; Pérez-Soriano, P.; Cibrián Ortiz de Anda, R.M. Relationship between Skin Temperature and Muscle Activation during Incremental Cycle Exercise. J. Therm. Biol. 2015, 48, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Côrte, A.C.; Pedrinelli, A.; Marttos, A.; Souza, I.F.G.; Grava, J.; José Hernandez, A. Infrared Thermography Study as a Complementary Method of Screening and Prevention of Muscle Injuries: Pilot Study. BMJ Open Sport Exerc. Med. 2019, 5, e000431. [Google Scholar] [CrossRef]
- Heugas, A.-M.; Siegler, I.A. Combined Hip Angle Variability and RPE Could Determine Gait Transition in Elite Race Walkers. Motor Control 2019, 23, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Pavei, G.; Cazzola, D.; La Torre, A.; Minetti, A.E. The Biomechanics of Race Walking: Literature Overview and New Insights. Eur. J. Sport Sci. 2014, 14, 661–670. [Google Scholar] [CrossRef]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic Imaging in Sports and Exercise Medicine: A Delphi Study and Consensus Statement on the Measurement of Human Skin Temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Bernard, V.; Staffa, E.; Mornstein, V.; Bourek, A. Infrared Camera Assessment of Skin Surface Temperature–Effect of Emissivity. Phys. Med. 2013, 29, 583–591. [Google Scholar] [CrossRef]
- Polkowski, G.G.; Clohisy, J.C. Hip Biomechanics. Sports Med. Arthrosc. Rev. 2010, 18, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Cabizosu, A.; Marín-Pagán, C.; Martínez-Serrano, A.; Alcaraz, P.E.; Martínez-Noguera, F.J. Myotendinous Thermoregulation in National Level Sprinters after a Unilateral Fatigue Acute Bout-A Descriptive Study. Sensors 2023, 23, 9330. [Google Scholar] [CrossRef]
- Meteorología, A.E. de Agencia Estatal de Meteorología—AEMET. Gobierno de España. Available online: https://www.aemet.es/es/portada (accessed on 18 January 2024).
- Lino-Samaniego, Á.; de la Rubia, A.; Sillero-Quintana, M. Acute Effect of Auxotonic and Isometric Contraction Evaluated by Infrared Thermography in Handball Players. J. Therm. Biol. 2022, 109, 103318. [Google Scholar] [CrossRef]
- Menezes, P.; Rhea, M.R.; Herdy, C.; Simão, R. Effects of Strength Training Program and Infrared Thermography in Soccer Athletes Injuries. Sports 2018, 6, 148. [Google Scholar] [CrossRef] [PubMed]
- Merla, A.; Mattei, P.A.; Di Donato, L.; Romani, G.L. Thermal Imaging of Cutaneous Temperature Modifications in Runners during Graded Exercise. Ann. Biomed. Eng. 2010, 38, 158–163. [Google Scholar] [CrossRef]
- Rynkiewicz, M.; Korman, P.; Zurek, P.; Rynkiewicz, T. Application of Thermovisual Body Image Analysis in the Evaluation of Paddling Effects on a Kayak Ergometer. Med. Dello Sport 2015, 68, 31–42. Available online: https://www.minervamedica.it/en/journals/medicina-dello-sport/article.php?cod=R26Y2015N01A0031 (accessed on 18 May 2023).
- Oliveira, S.; Oliveira, F.; Marins, J.; Gomes, A.; Silva, A.; Brito, C.; Gomes Moreira, D.; Quintana, M. Original Article Measuring of Skin Temperature via Infrared Thermography after an Upper Body Progressive Aerobic Exercise. J. Phys. Educ. Sport 2018, 18, 184–192. [Google Scholar] [CrossRef]
- Cholewka, A.; Kasprzyk, T.; Stanek, A.; Sieroń-Stołtny, K.; Drzazga, Z. May Thermal Imaging Be Useful in Cyclist Endurance Tests? J. Therm. Anal. Calorim. 2016, 123, 1973–1979. [Google Scholar] [CrossRef]
- Kenny, G.P.; Journeay, W.S. Human Thermoregulation: Separating Thermal and Nonthermal Effects on Heat Loss. Front. Biosci. (Landmark Ed.) 2010, 15, 259–290. [Google Scholar] [CrossRef]
- Hoga, K.; Ae, M.; Enomoto, Y.; Fujii, N. Mechanical Energy Flow in the Recovery Leg of Elite Race Walkers. Sports Biomech. 2003, 2, 1–13. [Google Scholar] [CrossRef]
- Gomez-Ezeiza, J.; Santos-Concejero, J.; Torres-Unda, J.; Hanley, B.; Tam, N. Muscle Activation Patterns Correlate with Race Walking Economy in Elite Race Walkers: A Waveform Analysis. Int. J. Sports Physiol. Perform. 2019, 14, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.P.; Guten, G.N.; Mollinger, L.A.; Gardner, G.M. Kinematic and Electromyographic Patterns of Olympic Race Walkers. Am. J. Sports Med. 1983, 11, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Gil-Calvo, M.; Herrero-Marco, J.; González-Peña, R.d.J.; Perez-Soriano, P.; Priego-Quesada, J.I. Acute Effect of Induced Asymmetrical Running Technique on Foot Skin Temperature. J. Therm. Biol. 2020, 91, 102613. [Google Scholar] [CrossRef]
- Robles Dorado, V. Variaciones termométricas en la planta del pie y piernas valorada en corredores antes y después de correr 30 km. Rev. Int. Cienc. Podol. 2016, 10, 31–40. [Google Scholar] [CrossRef]
- Gutiérrez-Vargas, R.; Ugalde-Ramírez, J.A.; Rojas-Valverde, D.; Salas-Cabrera, J.; Rodríguez-Montero, A.; Gutiérrez-Vargas, J.C. La termografía infrarroja como herramienta efectiva para detectar áreas músculares dañadas después de correr una maratón. Rev. Fac. Med. 2017, 65, 601–607. [Google Scholar] [CrossRef]
- Millet, G.Y. Can Neuromuscular Fatigue Explain Running Strategies and Performance in Ultra-Marathons?: The Flush Model. Sports Med. 2011, 41, 489–506. [Google Scholar] [CrossRef]
- Adamczyk, J.G.; Boguszewski, D.; Siewierski, M. Thermographic evaluation of lactate level in capillary blood during post-exercise recovery. Kinesiology 2014, 46, 186–193. [Google Scholar]
- Schlader, Z.J.; Stannard, S.R.; Mündel, T. Human Thermoregulatory Behavior during Rest and Exercise—A Prospective Review. Physiol. Behav. 2010, 99, 269–275. [Google Scholar] [CrossRef]
- Brisswalter, J.; Fougeron, B.; Legros, P. Variability in Energy Cost and Walking Gait during Race Walking in Competitive Race Walkers. Med. Sci. Sports Exerc. 1998, 30, 1451–1455. [Google Scholar] [CrossRef]
- Chicharro, J.L.; Vaquero, A.F. Fisiología del Ejercicio; Editorial Médica Panamericana: Madrid, Spain, 2013; ISBN 978-950-06-8247-3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabizosu, A.; Marín-Pagan, C.; Alcaraz, P.E.; Martínez-Noguera, F.J. Infrared Thermography Sensor in the Analysis of Acute Metabolic Stress Response during Race Walking Competition. Biosensors 2024, 14, 478. https://doi.org/10.3390/bios14100478
Cabizosu A, Marín-Pagan C, Alcaraz PE, Martínez-Noguera FJ. Infrared Thermography Sensor in the Analysis of Acute Metabolic Stress Response during Race Walking Competition. Biosensors. 2024; 14(10):478. https://doi.org/10.3390/bios14100478
Chicago/Turabian StyleCabizosu, Alessio, Cristian Marín-Pagan, Pedro E. Alcaraz, and Francisco Javier Martínez-Noguera. 2024. "Infrared Thermography Sensor in the Analysis of Acute Metabolic Stress Response during Race Walking Competition" Biosensors 14, no. 10: 478. https://doi.org/10.3390/bios14100478
APA StyleCabizosu, A., Marín-Pagan, C., Alcaraz, P. E., & Martínez-Noguera, F. J. (2024). Infrared Thermography Sensor in the Analysis of Acute Metabolic Stress Response during Race Walking Competition. Biosensors, 14(10), 478. https://doi.org/10.3390/bios14100478