Advanced Bioluminescence Reporter with Engineered Gaussia Luciferase via Sequence-Guided Mutagenesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparative Sequence Analysis for Site-Directed GLuc Mutagenesis
2.2. Single Site-Directed Mutagenesis of GLuc for Enhanced BL
2.3. Multiple Site-Directed Mutagenesis of GLuc for Enhanced BL
2.4. BL Reporter Assay in Cell Culture Medium by Transfection of the GLuc5 Variant
3. Materials and Methods
3.1. Materials
3.2. Sequence-Guided Mutagenesis
3.3. Expression and Purification of GLuc Mutants
3.4. Protein-Based BL Assay of Bacteria-Expressed GLuc Mutants
3.5. Secretion-Based BL Assay of Mammalian Cell-Expressed GLuc Mutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Billard, P.; DuBow, M.S. Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin. Biochem. 1998, 31, 1–14. [Google Scholar] [CrossRef]
- Kim, E.H.; Park, S.; Kim, Y.K.; Moon, M.; Park, J.; Lee, K.J.; Lee, S.; Kim, Y.P. Self-luminescent photodynamic therapy using breast cancer targeted proteins. Sci. Adv. 2020, 6, eaba3009. [Google Scholar] [CrossRef]
- Fan, F.; Wood, K.V. Bioluminescent assays for high-throughput screening. Assay Drug. Dev. Technol. 2007, 5, 127–136. [Google Scholar] [CrossRef]
- Lorenz, W.W.; McCann, R.O.; Longiaru, M.; Cormier, M.J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. USA 1991, 88, 4438–4442. [Google Scholar] [CrossRef]
- Markova, S.V.; Burakova, L.P.; Vysotski, E.S. High-active truncated luciferase of copepod Metridia longa. Biochem. Biophys. Res. Commun. 2012, 417, 98–103. [Google Scholar] [CrossRef]
- Takenaka, Y.; Masuda, H.; Yamaguchi, A.; Nishikawa, S.; Shigeri, Y.; Yoshida, Y.; Mizuno, H. Two forms of secreted and thermostable luciferases from the marine copepod crustacean, Metridia pacifica. Gene 2008, 425, 28–35. [Google Scholar] [CrossRef]
- Fisher, A.J.; Thompson, T.B.; Thoden, J.B.; Baldwin, T.O.; Rayment, I. The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions. J. Biol. Chem. 1996, 271, 21956–21968. [Google Scholar] [CrossRef]
- Tannous, B.A.; Kim, D.E.; Fernandez, J.L.; Weissleder, R.; Breakefield, X.O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol. Ther. 2005, 11, 435–443. [Google Scholar] [CrossRef]
- Loening, A.M.; Fenn, T.D.; Gambhir, S.S. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 2007, 374, 1017–1028. [Google Scholar] [CrossRef]
- Tannous, B.A. Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat. Protoc. 2009, 4, 582–591. [Google Scholar] [CrossRef]
- Enjalbert, B.; Rachini, A.; Vediyappan, G.; Pietrella, D.; Spaccapelo, R.; Vecchiarelli, A.; Brown, A.J.; d’Enfert, C. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect. Immun. 2009, 77, 4847–4858. [Google Scholar] [CrossRef]
- Remy, I.; Michnick, S.W. A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat. Meth. 2006, 3, 977–979. [Google Scholar] [CrossRef]
- Kim, S.B.; Sato, M.; Tao, H. Split Gaussia luciferase-based bioluminescence template for tracing protein dynamics in living cells. Anal. Chem. 2009, 81, 67–74. [Google Scholar] [CrossRef]
- Chung, E.; Yamashita, H.; Au, P.; Tannous, B.A.; Fukumura, D.; Jain, R.K. Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS ONE 2009, 4, e8316. [Google Scholar] [CrossRef]
- Maguire, C.A.; Deliolanis, N.C.; Pike, L.; Niers, J.M.; Tjon-Kon-Fat, L.A.; Sena-Esteves, M.; Tannous, B.A. Gaussia luciferase variant for high-throughput functional screening applications. Anal. Chem. 2009, 81, 7102–7106. [Google Scholar] [CrossRef]
- Larionova, M.D.; Markova, S.V.; Vysotski, E.S. Bioluminescent and structural features of native folded Gaussia luciferase. J. Photoch. Photobio. B 2018, 183, 309–317. [Google Scholar] [CrossRef]
- Wu, N.; Kobayashi, N.; Tsuda, K.; Unzai, S.; Saotome, T.; Kuroda, Y.; Yamazaki, T. Solution structure of Luciferase with five disulfide bonds and identification of a putative coelenterazine binding cavity by heteronuclear NMR. Sci. Rep. 2020, 10, 20069. [Google Scholar] [CrossRef]
- Dijkema, F.M.; Nordentoft, M.K.; Didriksen, A.K.; Corneliussen, A.S.; Willemoës, M.; Winther, J.R. Flash properties of Gaussia luciferase are the result of covalent inhibition after a limited number of cycles. Protein Sci. 2021, 30, 638–649. [Google Scholar] [CrossRef]
- Ohmuro-Matsuyama, Y.; Matsui, H.; Kanai, M.; Furuta, T. Glow-type conversion and characterization of a minimal luciferase via mutational analyses. FEBS J. 2023, 290, 5554–5565. [Google Scholar] [CrossRef]
- Loening, A.M.; Dragulescu-Andrasi, A.; Gambhir, S.S. A red-shifted Renilla luciferase for transient reporter-gene expression. Nat. Meth. 2010, 7, 5–6. [Google Scholar] [CrossRef]
- Loening, A.M.; Fenn, T.D.; Wu, A.M.; Gambhir, S.S. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel. 2006, 19, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Loening, A.M.; Wu, A.M.; Gambhir, S.S. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat. Meth. 2007, 4, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; von Arnim, A.G. Mutational optimization of the coelenterazine-dependent luciferase from Renilla. Plant Meth. 2008, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Dragulescu-Andrasi, A.; Chan, C.T.; De, A.; Massoud, T.F.; Gambhir, S.S. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proc. Natl. Acad. Sci. USA 2011, 108, 12060–12065. [Google Scholar] [CrossRef]
- Bacart, J.; Corbel, C.; Jockers, R.; Bach, S.; Couturier, C. The BRET technology and its application to screening assays. Biotechnol. J. 2008, 3, 311–324. [Google Scholar] [CrossRef]
- Degeling, M.H.; Bovenberg, M.S.; Lewandrowski, G.K.; de Gooijer, M.C.; Vleggeert-Lankamp, C.L.; Tannous, M.; Maguire, C.A.; Tannous, B.A. Directed molecular evolution reveals Gaussia luciferase variants with enhanced light output stability. Anal. Chem. 2013, 85, 3006–3012. [Google Scholar] [CrossRef]
- Welsh, J.P.; Patel, K.G.; Manthiram, K.; Swartz, J.R. Multiply mutated Gaussia luciferases provide prolonged and intense bioluminescence. Biochem. Biophys. Res. Commun. 2009, 389, 563–568. [Google Scholar] [CrossRef]
- Dijkema, F.M.; Escarpizo-Lorenzana, M.I.; Nordentoft, M.K.; Rabe, H.C.; Sahin, C.; Landreh, M.; Branca, R.M.; Sorensen, E.S.; Christensen, B.; Prestel, A.; et al. A suicidal and extensively disordered luciferase with a bright luminescence. Protein Sci. 2024, 33, e5115. [Google Scholar] [CrossRef]
- Inouye, S.; Sahara, Y. Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps. Biochem. Biophys. Res. Commun. 2008, 365, 96–101. [Google Scholar] [CrossRef]
- Kim, S.B.; Suzuki, H.; Sato, M.; Tao, H. Superluminescent variants of marine luciferases for bioassays. Anal. Chem. 2011, 83, 8732–8740. [Google Scholar] [CrossRef]
- Baneyx, F.; Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 2004, 22, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Goerke, A.R.; Loening, A.M.; Gambhir, S.S.; Swartz, J.R. Cell-free metabolic engineering promotes high-level production of bioactive Gaussia princeps luciferase. Metab. Eng. 2008, 10, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Rathnayaka, T.; Tawa, M.; Nakamura, T.; Sohya, S.; Kuwajima, K.; Yohda, M.; Kuroda, Y. Solubilization and folding of a fully active recombinant Gaussia luciferase with native disulfide bonds by using a SEP-Tag. Biochim. Biophys. Acta. 2011, 1814, 1775–1778. [Google Scholar] [CrossRef]
- Rathnayaka, T.; Tawa, M.; Sohya, S.; Yohda, M.; Kuroda, Y. Biophysical characterization of highly active recombinant Gaussia luciferase expressed in Escherichia coli. Biochim. Biophys. Acta. 2010, 1804, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Markova, S.V.; Larionova, M.D.; Vysotski, E.S. Shining light on the secreted luciferases of marine copepods: Current knowledge and applications. Photochem. Photobiol. 2019, 95, 705–721. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Kim, H.; Kim, D.; Lee, J.O.; Gye, M.C.; Kim, Y.P. Detection of matrix metalloproteinase activity by bioluminescence via intein-mediated biotinylation of luciferase. Sensors 2018, 18, 875. [Google Scholar] [CrossRef]
- Wurdinger, T.; Badr, C.; Pike, L.; de Kleine, R.; Weissleder, R.; Breakefield, X.O.; Tannous, B.A. A secreted luciferase for monitoring of processes. Nat. Meth. 2008, 5, 171–173. [Google Scholar] [CrossRef]
- Weiner, M.P.; Costa, G.L.; Schoettlin, W.; Cline, J.; Mathur, E.; Bauer, J.C. Site-directed mutagenesis of double-stranded DNA by the polymerase chain-reaction. Gene 1994, 151, 119–123. [Google Scholar] [CrossRef]
Species Name | Length (a.a.) | Identity (%) | Similarity (%) |
---|---|---|---|
Metridia asymmmetrica | 186 | 71 | 84 |
Metridia asymmetrica 2 | 191 | 71 | 83 |
Metridia pacifica | 210 | 68 | 74 |
Metridia pacifica 2 | 189 | 72 | 82 |
Metridia curticauda | 186 | 71 | 83 |
Metridia curticauda 2 | 191 | 71 | 82 |
Metridia okhotensis | 190 | 73 | 82 |
Metridia okhotensis 2 | 217 | 63 | 70 |
Metridia longa | 209 | 64 | 73 |
Metridia longa | 219 | 58 | 67 |
Pleuromamma scutullata | 182 | 70 | 79 |
Pleuromamma scutullata 2 | 220 | 61 | 69 |
Pleuromamma abdominalis | 186 | 70 | 82 |
Pleuromamma abdominalis 2 | 211 | 61 | 70 |
Pleuromamma xiphias | 180 | 71 | 80 |
Pleuromamma xiphias 2 | 213 | 62 | 71 |
Heterorhabdus tanneri | 188 | 46 | 58 |
Heterorhabdus tanneri 2 | 196 | 51 | 65 |
Heterostylites major | 205 | 46 | 62 |
Heterostylites major 2 | 203 | 37 | 56 |
Lucicutia ovaliformis | 223 | 68 | 81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedi, V.; Kim, E.H.; Oh, B.; Kim, Y.-P. Advanced Bioluminescence Reporter with Engineered Gaussia Luciferase via Sequence-Guided Mutagenesis. Biosensors 2024, 14, 528. https://doi.org/10.3390/bios14110528
Gedi V, Kim EH, Oh B, Kim Y-P. Advanced Bioluminescence Reporter with Engineered Gaussia Luciferase via Sequence-Guided Mutagenesis. Biosensors. 2024; 14(11):528. https://doi.org/10.3390/bios14110528
Chicago/Turabian StyleGedi, Vinayakumar, Eun Hye Kim, Bohyun Oh, and Young-Pil Kim. 2024. "Advanced Bioluminescence Reporter with Engineered Gaussia Luciferase via Sequence-Guided Mutagenesis" Biosensors 14, no. 11: 528. https://doi.org/10.3390/bios14110528
APA StyleGedi, V., Kim, E. H., Oh, B., & Kim, Y.-P. (2024). Advanced Bioluminescence Reporter with Engineered Gaussia Luciferase via Sequence-Guided Mutagenesis. Biosensors, 14(11), 528. https://doi.org/10.3390/bios14110528