Electrochemical and Optical Multi-Detection of Escherichia coli Through Magneto-Optic Nanoparticles: A Pencil-on-Paper Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Graphite Sensors
2.3. Synthesis of Antibody-Modified CdSe/ZnS@Fe2O3 NPs
2.4. Preparation of the Sensor Surface
2.5. Characterization Techniques for CdSe/ZnS@Fe2O3 NPs
2.6. Detection of E. coli Bacteria by Prepared Sensors
2.7. QCM Characterization
Detection System
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.J.; Kwon, C.; Noh, H. Based diagnostic system facilitating escherichia coli assessments by duplex coloration. ACS Sens. 2019, 4, 2435–2441. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Huang, H.; Deng, J.; Fang, L.; Luo, J.; Zhang, S.; Huang, J.; Liang, W.; Zheng, J. A sensitive electrochemical strategy via multiple amplification reactions for the detection of E. coli O157: H7. Biosens. Bioelectron. 2020, 147, 111752. [Google Scholar] [CrossRef] [PubMed]
- Cimafonte, M.; Fulgione, A.; Gaglione, R.; Papaianni, M.; Capparelli, R.; Arciello, A.; Bolletti Censi, S.; Borriello, G.; Velotta, R.; Della Ventura, B. Screen printed based impedimetric immunosensor for rapid detection of Escherichia coli in drinking water. Sensors 2020, 20, 274. [Google Scholar] [CrossRef]
- Santosh, T.S.; Parmar, R.; Anand, H.; Srikanth, K.; Saritha, M. A review of salivary diagnostics and its potential implication in detection of COVID-19. Cureus 2020, 12, e7708. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, Y. Biosensors for bacterial detection. Int. J. Biosens. Bioelectron. 2017, 2, 197–199. [Google Scholar]
- Karam, M.R.A.; Habibi, M.; Bouzari, S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol. Immunol. 2019, 108, 56–67. [Google Scholar] [CrossRef]
- Yao, L.; Wang, L.; Huang, F.; Cai, G.; Xi, X.; Lin, J. A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157: H7. Sens. Actuators B Chem. 2018, 259, 1013–1021. [Google Scholar] [CrossRef]
- Gupta, A.; Bhardwaj, S.K.; Sharma, A.L.; Kim, K.-H.; Deep, A. Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite. Environ. Res. 2019, 171, 395–402. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, G.; Dou, W. An electrochemical immunoassay for Escherichia coli O157: H7 using double functionalized Au@ Pt/SiO2 nanocomposites and immune magnetic nanoparticles. Talanta 2018, 182, 354–362. [Google Scholar] [CrossRef]
- Zhu, F.; Zhao, G.; Dou, W. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157: H7 using Au@ Pt and graphene. Anal. Biochem. 2018, 559, 34–43. [Google Scholar] [CrossRef]
- Das, R.; Chaterjee, B.; Kapil, A.; Sharma, T.K. Aptamer-NanoZyme mediated sensing platform for the rapid detection of Escherichia coli in fruit juice. Sens. Bio-Sens. Res. 2020, 27, 100313. [Google Scholar]
- Shaibani, P.M.; Etayash, H.; Jiang, K.; Sohrabi, A.; Hassanpourfard, M.; Naicker, S.; Sadrzadeh, M.; Thundat, T. Portable nanofiber-light addressable potentiometric sensor for rapid Escherichia coli detection in orange juice. ACS Sens. 2018, 3, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Soylu, M.C.; Kirimli, C.E.; Wu, W.; Sen, B.; Joshi, S.G.; Emery, C.L.; Au, G.; Niu, X.; Hamilton, R. Rapid, label-free genetic detection of enteropathogens in stool without genetic isolation or amplification. Biosens. Bioelectron. 2019, 130, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Deng, X.; Lee, M.; Sucu, Y.D.; Arevalo, S.; Stryke, D.; Federman, S.; Gopez, A.; Reyes, K.; Zorn, K. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat. Med. 2021, 27, 115–124. [Google Scholar] [CrossRef]
- Pebdeni, A.B.; Roshani, A.; Mirsadoughi, E.; Behzadifar, S.; Hosseini, M. Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water. Food Control 2022, 135, 108822. [Google Scholar] [CrossRef]
- Vaezi, Z.; Azizi, M.; Mohammadi, S.S.; Hashemi, N.; Naderi-Manesh, H. A novel iron quantum cluster confined in hemoglobin as fluorescent sensor for rapid detection of Escherichia coli. Talanta 2020, 218, 121137. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, J.; Zheng, M.; Zhong, Y.; Yang, J.; Zhao, Y.; Wu, W.; Ye, W.; Wen, J.; Wang, Q. An aptamer-based biosensor for colorimetric detection of Escherichia coli O157: H7. PLoS ONE 2012, 7, e48999. [Google Scholar] [CrossRef]
- Wang, C.; Mu, X.; Huo, J.; Zhang, B.; Zhang, K. Highly-efficient SERS detection for E. coli using a microfluidic chip with integrated NaYF 4: Yb, Er@ SiO 2@ Au under near-infrared laser excitation. Microsyst. Technol. 2021, 27, 3285–3291. [Google Scholar] [CrossRef]
- Nakano, S.; Nagao, M.; Yamasaki, T.; Morimura, H.; Hama, N.; Iijima, Y.; Shinomiya, H.; Tanaka, M.; Yamamoto, M.; Matsumura, Y. Evaluation of a surface plasmon resonance imaging-based multiplex O-antigen serogrouping for Escherichia coli using eleven major serotypes of Shiga-toxin-producing E. coli. J. Infect. Chemother. 2018, 24, 443–448. [Google Scholar] [CrossRef]
- Sun, D.; Fan, T.; Liu, F.; Wang, F.; Gao, D.; Lin, J.-M. A microfluidic chemiluminescence biosensor based on multiple signal amplification for rapid and sensitive detection of E. coli O157: H7. Biosens. Bioelectron. 2022, 212, 114390. [Google Scholar] [CrossRef]
- Amin, N.; Torralba, A.S.; Álvarez-Diduk, R.; Afkhami, A.; Merkoçi, A. Lab in a tube: Point-of-care detection of Escherichia coli. Anal. Chem. 2020, 92, 4209–4216. [Google Scholar] [CrossRef] [PubMed]
- Zeinhom, M.M.A.; Wang, Y.; Song, Y.; Zhu, M.-J.; Lin, Y.; Du, D. A portable smart-phone device for rapid and sensitive detection of E. coli O157: H7 in Yoghurt and Egg. Biosens. Bioelectron. 2018, 99, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Mou, X.-Z.; Chen, X.-Y.; Wang, J.; Zhang, Z.; Yang, Y.; Shou, Z.-X.; Tu, Y.-X.; Du, X.; Wu, C.; Zhao, Y. Bacteria-instructed click chemistry between functionalized gold nanoparticles for point-of-care microbial detection. ACS Appl. Mater. Interfaces 2019, 11, 23093–23101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Song, Y.; Zeinhom, M.M.; Chang, Y.-C.; Sheng, L.; Li, H.; Du, D.; Li, L.; Zhu, M.-J.; Luo, Y. Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces 2017, 9, 40671–40680. [Google Scholar] [CrossRef]
- Bai, Z.; Xu, X.; Wang, C.; Wang, T.; Sun, C.; Liu, S.; Li, D. A comprehensive review of detection methods for Escherichia coli O157: H7. TrAC Trends Anal. Chem. 2022, 152, 116646. [Google Scholar] [CrossRef]
- Wang, S.; Sun, C.; Hu, Q.; Li, S.; Wang, C.; Wang, P.; Zhou, L. A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of Escherichia coli O157: H7. Biochem. Eng. J. 2020, 156, 107513. [Google Scholar] [CrossRef]
- Bu, S.-J.; Wang, K.-Y.; Bai, H.-S.; Leng, Y.; Ju, C.-J.; Wang, C.-Y.; Liu, W.-S.; Wan, J.-Y. Immunoassay for pathogenic bacteria using platinum nanoparticles and a hand-held hydrogen detector as transducer. Application to the detection of Escherichia coli O157: H7. Microchim. Acta 2019, 186, 296. [Google Scholar] [CrossRef]
- Mo, X.; Wu, Z.; Huang, J.; Zhao, G.; Dou, W. A sensitive and regenerative electrochemical immunosensor for quantitative detection of Escherichia coli O157: H7 based on stable polyaniline coated screen-printed carbon electrode and rGO-NR-Au@ Pt. Anal. Methods 2019, 11, 1475–1482. [Google Scholar] [CrossRef]
- Štukovnik, Z.; Fuchs-Godec, R.; Bren, U. Nanomaterials and their recent applications in impedimetric biosensing. Biosensors 2023, 13, 899. [Google Scholar] [CrossRef]
- Wilson, D.; Materón, E.M.; Ibáñez-Redín, G.; Faria, R.C.; Correa, D.S.; Oliveira Jr, O.N. Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides. Talanta 2019, 194, 611–618. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Graphene quantum dot-based electrochemical immunosensors for biomedical applications. Materials 2019, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Yang, L.; Yang, H.; Cheng, C.; Deng, W.; Tan, Y.; Xie, Q.; Yao, S. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157: H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens. Bioelectron. 2019, 126, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Altintas, Y.; Genc, S.; Talpur, M.Y.; Mutlugun, E. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications. Nanotechnology 2016, 27, 295604. [Google Scholar] [CrossRef] [PubMed]
- Ekici, D.D.; Mutlugun, E. Superior CdSe/ZnS@ Fe2O3 Yolk-Shell Nanoparticles as Optically Active MRI Contrast Agents. ChemistrySelect 2022, 7, e202104323. [Google Scholar] [CrossRef]
- Icoz, K.; Soylu, M.C.; Canikara, Z.; Unal, E. Quartz-crystal microbalance measurements of CD19 antibody immobilization on gold surface and capturing B lymphoblast cells: Effect of surface functionalization. Electroanalysis 2018, 30, 834–841. [Google Scholar] [CrossRef]
- Ishankulov, A.; Shamilov, R.; Galyametdinov, Y.G.; Mukhamadiev, N. Modified hybrid CdSe/ZnS quantum dots and their size dependent unique characteristics. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 1008, p. 012033. [Google Scholar]
- Mirzaei, A.; Janghorban, K.; Hashemi, B.; Hosseini, S.R.; Bonyani, M.; Leonardi, S.G.; Bonavita, A.; Neri, G. Synthesis and characterization of mesoporous α-Fe2O3 nanoparticles and investigation of electrical properties of fabricated thick films. Process. Appl. Ceram. 2016, 10, 209–217. [Google Scholar] [CrossRef]
- Nguyen, N.-V.; Yang, C.-H.; Liu, C.-J.; Kuo, C.-H.; Wu, D.-C.; Jen, C.-P. An Aptamer-Based Capacitive Sensing Platform for Specific Detection of Lung Carcinoma Cells in the Microfluidic Chip. Biosensors 2018, 8, 98. [Google Scholar] [CrossRef]
- Schrattenecker, J.D.; Heer, R.; Melnik, E.; Maier, T.; Fafilek, G.; Hainberger, R. Hexaammineruthenium (II)/(III) as alternative redox-probe to Hexacyanoferrat (II)/(III) for stable impedimetric biosensing with gold electrodes. Biosens. Bioelectron. 2019, 127, 25–30. [Google Scholar] [CrossRef]
- Karuppiah, S.; Mishra, N.C.; Tsai, W.-C.; Liao, W.-S.; Chou, C.-F. Ultrasensitive and low-cost paper-based graphene oxide nanobiosensor for monitoring water-borne bacterial contamination. ACS Sens. 2021, 6, 3214–3223. [Google Scholar] [CrossRef]
- Salazar, J.; Amer, M.-À.; Turó, A.; Castro, N.; Navarro, M.; Soto, S.; Gabasa, Y.; López, Y.; Chávez, J.-A. Real-time detection of the bacterial biofilm formation stages using QCM-based sensors. Chemosensors 2023, 11, 68. [Google Scholar] [CrossRef]
- Yongabi, D.; Khorshid, M.; Korbas, C.; Losada-Pèrez, P.; Givanoudi, S.; Jooken, S.; Ahmed Sadiq, F.; Bartic, C.; Wübbenhorst, M.; Heyndrickx, M. QCM-D Viscoelastic and Adhesion Monitoring Facilitate Label-Free and Strain-Selective Bacterial Discrimination. Phys. Status Solidi (A) 2023, 220, 2300310. [Google Scholar] [CrossRef]
- Acet, Ö.; Odabaşı, M. Detection of N-hexanoyl-L-homoserine lactone via MIP-based QCM sensor: Preparation and characterization. Polym. Bull. 2023, 80, 6657–6674. [Google Scholar] [CrossRef]
- Eshun, G.B.; Crapo, H.A.; Yazgan, I.; Cronmiller, L.; Sadik, O.A. Sugar–lectin interactions for direct and selective detection of Escherichia coli bacteria using QCM biosensor. Biosensors 2023, 13, 337. [Google Scholar] [CrossRef]
- Jaradat, H.; Al-Hamry, A.; Ibbini, M.; Fourati, N.; Kanoun, O. Novel sensitive electrochemical immunosensor development for the selective detection of HopQ H. pylori bacteria biomarker. Biosensors 2023, 13, 527. [Google Scholar] [CrossRef]
- Buck, R.P.; Lindner, E. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar] [CrossRef]
- Settu, K.; Chen, C.-J.; Liu, J.-T.; Chen, C.-L.; Tsai, J.-Z. Impedimetric method for measuring ultra-low E. coli concentrations in human urine. Biosens. Bioelectron. 2015, 66, 244–250. [Google Scholar] [CrossRef]
- Soysaldı, F.; Soylu, M.Ç. The Effect of (3-Mercaptopropyl) trimethoxysilane (MPS) Coating on the Genetic Detection Performance of Quartz Crystal Microbalance-Dissipation (QCM-D) Biosensor: Novel Intact Double-Layered Surface Modification on QCM-D. ChemistrySelect 2021, 6, 6056–6062. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Xu, W.; Wang, D.; Li, D.; Liu, C.C. Recent developments of electrochemical and optical biosensors for antibody detection. Int. J. Mol. Sci. 2019, 21, 134. [Google Scholar] [CrossRef]
- Khan, M.A.; Mujahid, M. Recent advances in electrochemical and optical biosensors designed for detection of Interleukin 6. Sensors 2020, 20, 646. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhang, X.; He, F. Rapid detection of Escherichia coli based on 16S rDNA nanogap network electrochemical biosensor. Biosens. Bioelectron. 2018, 118, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, Y.; Bie, S.; Suo, T.; Jia, G.; Liu, B.; Ye, R.; Li, Z. Development of an electrochemical biosensor for rapid and effective detection of pathogenic Escherichia coli in licorice extract. Appl. Sci. 2019, 9, 295. [Google Scholar] [CrossRef]
- Housaindokht, M.R.; Sheikhzadeh, E.; Pordeli, P.; Rouhbakhsh Zaeri, Z.; Janati-Fard, F.; Nosrati, M.; Mashreghi, M.; Nakhaeipour, A.; Esmaeili, A.; Solimani, S. A sensitive electrochemical aptasensor based on single wall carbon nanotube modified screen printed electrode for detection of Escherichia coli O157: H7. Adv. Mater. Lett 2018, 9, 369–374. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Ranjbar, S. Aptamer immobilization on amino-functionalized metal–organic frameworks: An ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157: H7. Analyst 2018, 143, 3191–3201. [Google Scholar] [CrossRef]
- Razmi, N.; Hasanzadeh, M.; Willander, M.; Nur, O. Recent progress on the electrochemical biosensing of Escherichia coli O157: H7: Material and methods overview. Biosensors 2020, 10, 54. [Google Scholar] [CrossRef]
- Bai, X.; Ga, L.; Du, Y.; Ai, J. Carbon quantum dot-based label-free fluorescent biosensor to detect E. coli. IEEE Sens. J. 2024, 24, 25284–25290. [Google Scholar] [CrossRef]
- Bai, X.; Ga, L.; Ai, J. A fluorescent biosensor based on carbon quantum dots and single-stranded DNA for the detection of Escherichia coli. Analyst 2023, 148, 3892–3898. [Google Scholar] [CrossRef]
- Michael, I.; Kim, D.; Gulenko, O.; Kumar, S.; Kumar, S.; Clara, J.; Ki, D.Y.; Park, J.; Jeong, H.Y.; Kim, T.S. A fidget spinner for the point-of-care diagnosis of urinary tract infection. Nat. Biomed. Eng. 2020, 4, 591–600. [Google Scholar] [CrossRef]
- Varshney, M.; Li, Y. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157: H7 in food samples. Biosens. Bioelectron. 2007, 22, 2408–2414. [Google Scholar] [CrossRef]
- González-González, R.B.; Flores-Contreras, E.A.; Gonzalez-Gonzalez, E.; Torres Castillo, N.E.; Parra-Saldivar, R.; Iqbal, H.M. Biosensor constructs for the monitoring of persistent emerging pollutants in environmental matrices. Ind. Eng. Chem. Res. 2022, 62, 4503–4520. [Google Scholar] [CrossRef]
- Huang, Y.; Su, Z.; Li, W.; Ren, J. Recent progresses on biosensors for Escherichia coli detection. Food Anal. Methods 2022, 15, 338–366. [Google Scholar] [CrossRef]
- Dhehibi, A.; Allaoui, A.; Raouafi, A.; Terrak, M.; Bouhaouala-Zahar, B.; Hammadi, M.; Raouafi, N.; Salhi, I. Nanobody-based sandwich immunoassay for pathogenic Escherichia coli F17 strain detection. Biosensors 2023, 13, 299. [Google Scholar] [CrossRef]
- Cossettini, A.; Vidic, J.; Maifreni, M.; Marino, M.; Pinamonti, D.; Manzano, M. Rapid detection of Listeria monocytogenes, Salmonella, Campylobacter spp., and Escherichia coli in food using biosensors. Food Control 2022, 137, 108962. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, J.; Kim, M.Y.; Park, J.-M.; Jose, J.; Park, M. Autodisplay of streptococcal protein G for construction of an orientation-controlled immunoaffinity layer. Analyst 2023, 148, 742–751. [Google Scholar] [CrossRef]
- Štukovnik, Z.; Bren, U. Recent developments in electrochemical-impedimetric biosensors for virus detection. Int. J. Mol. Sci. 2022, 23, 15922. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Z.; Ying, Y. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors 2012, 12, 3449–3471. [Google Scholar] [CrossRef]
- Zeng, J.; Duarte, P.A.; Ma, Y.; Savchenko, O.; Shoute, L.; Khaniani, Y.; Babiuk, S.; Zhuo, R.; Abdelrasoul, G.N.; Charlton, C. An impedimetric biosensor for COVID-19 serology test and modification of sensor performance via dielectrophoresis force. Biosens. Bioelectron. 2022, 213, 114476. [Google Scholar] [CrossRef]
Element | Weight% | Atomic% |
---|---|---|
O K | 2.24 | 7.36 |
S K | 22.16 | 36.4 |
Cd L | 9.62 | 4.51 |
Fe K | 1.04 | 0.98 |
Zn K | 53.61 | 43.2 |
Se K | 11.33 | 7.56 |
Method | Sensor Preparation Time (min) | Detection Method (Electrochemical (EC)/Optical (O)) | Limit of Detection (CFU/mL) | Detection Time (min) | Reference |
---|---|---|---|---|---|
Multiple amplification strategy via 3D DNA walker | 750 | EC | 7 | Not specified | [2] |
Immunosensor | 180 | EC | 30 | 60 | [3] |
Aptasensor based on Urease catalysis amplification strategy | 120 | EC | 12 | 5 | [7] |
Immunosensor | 210 | EC | 2 | 2 | [8] |
Personal Glucometer (PGM) Immunoassay | 4260 | EC | 1.83 × 102 | 90 | [9] |
Nonenzymatic immunoassay | 3600 | EC | 4.5 × 102 | 40 | [10] |
Aptasensor | Not specified | EC | 10 | 5 | [11] |
pH sensitive nanofiber | Not specified | EC | 102 | 60 | [12] |
Sandwich type immunosensor | 180 | EC | 3 | 120 | [32] |
SsDNA | 180 | EC | 102 | 60 | [52] |
Aptamer | 150 | EC | 80 | 30 | [53] |
Aptasensor | 1790 | EC | 17 | 35 | [54] |
Aptasensor | Not specified | EC | 2 | 40 | [55] |
Immunosensor | 260 | EC | 4 | 60 | [56] |
Carbon Quantum Dot(CQD)-Based Label-Free Fluorescent | 755 | O | 185 | Not specified | [57] |
Fluorescent CQDs SsDNA | 870 | O | 60 | 60 | [58] |
This work | 90 | EC-O | 2.7 × 102 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soysaldı, F.; Dincyurek Ekici, D.; Soylu, M.Ç.; Mutlugun, E. Electrochemical and Optical Multi-Detection of Escherichia coli Through Magneto-Optic Nanoparticles: A Pencil-on-Paper Biosensor. Biosensors 2024, 14, 603. https://doi.org/10.3390/bios14120603
Soysaldı F, Dincyurek Ekici D, Soylu MÇ, Mutlugun E. Electrochemical and Optical Multi-Detection of Escherichia coli Through Magneto-Optic Nanoparticles: A Pencil-on-Paper Biosensor. Biosensors. 2024; 14(12):603. https://doi.org/10.3390/bios14120603
Chicago/Turabian StyleSoysaldı, Furkan, Derya Dincyurek Ekici, Mehmet Çağrı Soylu, and Evren Mutlugun. 2024. "Electrochemical and Optical Multi-Detection of Escherichia coli Through Magneto-Optic Nanoparticles: A Pencil-on-Paper Biosensor" Biosensors 14, no. 12: 603. https://doi.org/10.3390/bios14120603
APA StyleSoysaldı, F., Dincyurek Ekici, D., Soylu, M. Ç., & Mutlugun, E. (2024). Electrochemical and Optical Multi-Detection of Escherichia coli Through Magneto-Optic Nanoparticles: A Pencil-on-Paper Biosensor. Biosensors, 14(12), 603. https://doi.org/10.3390/bios14120603