Active Surface-Enhanced Raman Scattering Platform Based on a 2D Material–Flexible Nanotip Array
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langer, J.; de Aberasturi, D.J.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28. [Google Scholar] [CrossRef]
- Guselnikova, O.; Lim, H.; Kim, H.-J.; Kim, S.H.; Gorbunova, A.; Eguchi, M.; Postnikov, P.; Nakanishi, T.; Asahi, T.; Na, J.; et al. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. Small 2022, 18, 2107182. [Google Scholar] [CrossRef] [PubMed]
- Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Liz-Marzán, L.M.; de Abajo, F.J.G. Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. ACS Photonics 2017, 4, 329. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Ko, Y.; Kwon, G.; Kim, U.-J.; Lee, J.H.; You, J. 2,2,6,6-Tetramethylpiperidine-1-Oxy-Oxidized Cellulose Nanofiber-Based Nanocomposite Papers for Facile In Situ Surface-Enhanced Raman Scattering Detection. ACS Sustain. Chem. Eng. 2019, 7, 15640. [Google Scholar] [CrossRef]
- Yilmaz, M.; Senlik, E.; Biskin, E.; Yavuz, M.S.; Tamer, U.; Demirel, G. Combining 3-D Plasmonic Gold Nanorod Arrays with Colloidal Nanoparticles as a Versatile Concept for Reliable, Sensitive, and Selective Molecular Detection by SERS. Phys. Chem. Chem. Phys. 2014, 16, 5563. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Ko, H. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film. ACS Appl. Mater. Interfaces 2017, 9, 44088. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, N.; Mizaikoff, B.; Cárdenas, S.; López-Lorente, Á.I. Gold-Nanostar-Based SERS Substrates for Studying Protein Aggregation Processes. Analyst 2018, 143, 5103. [Google Scholar] [CrossRef]
- Qiu, H.; Huo, Y.; Li, Z.; Zhang, C.; Chen, P.; Jiang, S.; Xu, S.; Ma, Y.; Wang, S.; Li, H. Surface- Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection. ChemPhysChem 2015, 16, 2953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Xing, Z.; Wan, D.; Gao, H.; Han, Y.; Gao, Y.; Hu, H.; Cheng, Z.; Liu, T. Surface- Enhanced Raman Spectroscopy Chips Based on Two-Dimensional Materials beyond Graphene. J. Semicond. 2021, 42, 51001. [Google Scholar] [CrossRef]
- Oliverio, M.; Perotto, S.; Messina, G.C.; Lovato, L.; De Angelis, F. Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS Appl. Mater. Interfaces 2017, 9, 29394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V.V. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem. Rev. 2017, 117, 12942. [Google Scholar] [CrossRef] [PubMed]
- Kwon, G.; Kim, J.; Kim, D.; Ko, Y.; Yamauchi, Y.; You, J. Nanoporous Cellulose Paper-Based SERS Platform for Multiplex Detection of Hazardous Pesticides. Cellulose 2019, 26, 4935. [Google Scholar] [CrossRef]
- Du, J.; Jing, C. Preparation of Thiol Modified Fe3O4@Ag Magnetic SERS Probe for PAHs Detection and Identification. J. Phys. Chem. C 2011, 115, 17829. [Google Scholar] [CrossRef]
- Raja, S.S.; Cheng, C.-W.; Sang, Y.; Chen, C.-A.; Zhang, X.-Q.; Dubey, A.; Yen, T.-J.; Chang, Y.-M.; Lee, Y.-H.; Gwo, S. Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization. ACS Nano 2020, 14, 8838. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; He, J.; Li, J.; Zhang, Y. Lotus Seedpod Inspired SERS Substrates: A Novel Platform Consisting of 3D Sub-10 Nm Annular Hot Spots for Ultrasensitive SERS Detection. Adv. Opt. Mater. 2018, 6, 1800056. [Google Scholar] [CrossRef]
- Tong, L.; Xu, H.; Käll, M. Nanogaps for SERS Applications. MRS Bull. 2014, 39, 163. [Google Scholar] [CrossRef]
- Luo, W.; Xiong, W.; Han, Y.; Yan, X.; Mai, L. Application of Two-Dimensional Layered Materials in Surface-Enhanced Raman Spectroscopy (SERS). Phys. Chem. Chem. Phys. 2022, 24, 26398. [Google Scholar] [CrossRef]
- Chen, M.; Liu, D.; Du, X.; Lo, K.H.; Wang, S.; Zhou, B.; Pan, H. 2D Materials: Excellent Substrates for Surface-Enhanced Raman Scattering (SERS) in Chemical Sensing and Biosensing. TrAC Trends Anal. Chem. 2020, 130, 115983. [Google Scholar] [CrossRef]
- Moe, Y.A.; Sun, Y.; Ye, H.; Liu, K.; Wang, R. Probing Evolution of Local Strain at MoS2-Metal Boundaries by Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2018, 10, 40246. [Google Scholar] [CrossRef]
- Shinde, S.M.; Das, T.; Hoang, A.T.; Sharma, B.K.; Chen, X.; Ahn, J.-H. Surface- Functionalization-Mediated Direct Transfer of Molybdenum Disulfide for Large-Area Flexible Devices. Adv. Funct. Mater. 2018, 28, 1706231. [Google Scholar] [CrossRef]
- Sun, H.; Yao, M.; Liu, S.; Song, Y.; Shen, F.; Dong, J.; Yao, Z.; Zhao, B.; Liu, B. SERS Selective Enhancement on Monolayer MoS2 Enabled by a Pressure-Induced Shift from Resonance to Charge Transfer. ACS Appl. Mater. Interfaces 2021, 13, 26551. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Chen, Y.; Kong, L.; Luo, C.; Lu, Z.; Tao, Q.; Song, W.; Ma, L.; Li, Z.; Li, W.; et al. Strain-Plasmonic Coupled Broadband Photodetector Based on Monolayer MoS2. Small 2022, 18, 2107104. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Ali, R.N.; Yang, Y.; Zheng, Z.; Xiang, B.; Cui, X. Monolayer MoS2 Thermoelectric Properties Engineering via Strain Effect. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 109, 248. [Google Scholar] [CrossRef]
- Huang, Z.; Lu, N.; Wang, Z.; Xu, S.; Guan, J.; Hu, Y. Large-Scale Ultrafast Strain Engineering of CVD-Grown Two-Dimensional Materials on Strain Self-Limited Deformable Nanostructures toward Enhanced Field-Effect Transistors. Nano Lett. 2022, 22, 7734. [Google Scholar] [CrossRef]
- Wang, H.; Cui, L.; Chen, S.; Guo, M.; Lu, S.; Xiang, Y. A New Perspective on Metal Particles Enhanced MoS2 Photocatalysis in Hydrogen Evolution: Excited Electric Field by Surface Plasmon Resonance. J. Appl. Phys. 2019, 126, 15101. [Google Scholar] [CrossRef]
- Xu, H. Enhanced Light–Matter Interaction of a MoS2 Monolayer with a Gold Mirror Layer. RSC Adv. 2017, 7, 23109. [Google Scholar] [CrossRef]
- Wen, L.; Xu, R.; Mi, Y.; Lei, Y. Multiple Nanostructures Based on Anodized Aluminium Oxide Templates. Nat. Nanotechnol. 2017, 12, 244. [Google Scholar] [CrossRef]
- Robatjazi, H.; Bahauddin, S.M.; Macfarlan, L.H.; Fu, S.; Thomann, I. Ultrathin AAO Membrane as a Generic Template for Sub-100 Nm Nanostructure Fabrication. Chem. Mater. 2016, 28, 4546. [Google Scholar] [CrossRef]
- Tian, G.; Chen, D.; Yao, J.; Luo, Q.; Fan, Z.; Zeng, M.; Zhang, Z.; Dai, J.; Gao, X.; Liu, J.-M. BiFeO3 Nanorings Synthesized via AAO Template-Assisted Pulsed Laser Deposition and Ion Beam Etching. RSC Adv. 2017, 7, 41210. [Google Scholar] [CrossRef]
- Tsai, M.-L.; Su, S.-H.; Chang, J.-K.; Tsai, D.-S.; Chen, C.-H.; Wu, C.-I.; Li, L.-J.; Chen, L.-J.; He, J.-H. Monolayer MoS2 Heterojunction Solar Cells. ACS Nano 2014, 8, 8317. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Kim, S.; Chen, W.; Yuan, J.; Bashir, R.; Lou, J.; van der Zande, A.M.; King, W.P. Monolayer MoS2 Nanoribbon Transistors Fabricated by Scanning Probe Lithography. Nano Lett. 2019, 19, 2092. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, S.; Zhang, Y. Effects of laser power and substrate on the Raman shift of carbon-nanotube papers. Carbon Trends 2020, 1, 100009. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695. [Google Scholar] [CrossRef] [PubMed]
- Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund, R.F.J.; Pantelides, S.T.; Bolotin, K.I. Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 3626. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Xiao, P.; Zhang, X. Atomic-layer soft plasma etching of MoS2. Sci. Rep. 2016, 6, 19945. [Google Scholar] [CrossRef]
- Carvalho, B.R.; Wang, Y.; Mignuzzi, S.; Roy, D.; Terrones, M.; Fantini, C.; Crespi, V.H.; Malard, L.M.; Pimenta, M.A. Intervalley Scattering by Acoustic Phonons in Two-Dimensional MoS2 Revealed by Double-Resonance Raman Spectroscopy. Nat. Commun. 2017, 8, 14670. [Google Scholar] [CrossRef]
- Lin, J.D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S.; Zhang, X.-A.; Wang, L.; Zhang, H.; Wee, A.T.S.; et al. Electron-Doping-Enhanced Trion Formation in Monolayer Molybdenum Disulfide Functionalized with Cesium Carbonate. ACS Nano 2014, 8, 5323. [Google Scholar] [CrossRef]
- Kiriya, D.; Tosun, M.; Zhao, P.; Kang, J.S.; Javey, A. Air-Stable Surface Charge Transfer Doping of MoS2 by Benzyl Viologen. J. Am. Chem. Soc. 2014, 136, 7853. [Google Scholar] [CrossRef] [PubMed]
- Pak, S.; Lee, J.; Lee, Y.-W.; Jang, A.-R.; Ahn, S.; Ma, K.Y.; Cho, Y.; Hong, J.; Lee, S.; Jeong, H.Y.; et al. Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS2/WS2 van Der Waals Heterobilayer. Nano Lett. 2017, 17, 5634. [Google Scholar] [CrossRef] [PubMed]
- Frank, O.; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Riaz, I.; Jalil, R.; Novoselov, K.S.; Galiotis, C. Compression Behavior of Single-Layer Graphenes. ACS Nano 2010, 4, 3131. [Google Scholar] [CrossRef]
- Dadgar, A.M.; Scullion, D.; Kang, K.; Esposito, D.; Yang, E.H.; Herman, I.P.; Pimenta, M.A.; Santos, E.-J.G.; Pasupathy, A.N. Strain Engineering and Raman Spectroscopy of Monolayer Transition Metal Dichalcogenides. Chem. Mater. 2018, 30, 5148. [Google Scholar] [CrossRef]
- Meng, X.; Pandey, T.; Jeong, J.; Fu, S.; Yang, J.; Chen, K.; Singh, A.; He, F.; Xu, X.; Zhou, J.; et al. Thermal Conductivity Enhancement in MoS2 under Extreme Strain. Phys. Rev. Lett. 2019, 122, 155901. [Google Scholar] [CrossRef]
- Chakraborty, B.; Bera, A.; Muthu, D.V.S.; Bhowmick, S.; Waghmare, U.V.; Sood, A.K. Symmetry-Dependent Phonon Renormalization in Monolayer MoS2 Transistor. Phys. Rev. B 2012, 85, 161403. [Google Scholar] [CrossRef]
- Velický, M.; Rodriguez, A.; Bouša, M.; Krayev, A.V.; Vondráček, M.; Honolka, J.; Ahmadi, M.; Donnelly, G.E.; Huang, F.; Abruña, H.D.; et al. Strain and Charge Doping Fingerprints of the Strong Interaction between Monolayer MoS2 and Gold. J. Phys. Chem. Lett. 2020, 11, 6112. [Google Scholar] [CrossRef] [PubMed]
- Gołasa, K.; Grzeszczyk, M.; Binder, J.; Bożek, R.; Wysmołek, A.; Babiński, A. The Disorder- Induced Raman Scattering in Au/MoS2 Heterostructures. AIP Adv. 2015, 5, 77120. [Google Scholar] [CrossRef]
- Li, Z.; Lv, Y.; Ren, L.; Li, J.; Kong, L.; Zeng, Y.; Tao, Q.; Wu, R.; Ma, H.; Zhao, B.; et al. Efficient Strain Modulation of 2D Materials via Polymer Encapsulation. Nat. Commun. 2020, 11, 1151. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-W.; Ishii, S.; Li, S.; Ku, C.-J.; Chen, S.-Y.; Nagao, T.; Chen, K.-P. Enhancing Raman Spectra by Coupling Plasmons and Excitons for Large Area MoS2 Monolayers. Appl. Surf. Sci. 2022, 605, 154767. [Google Scholar] [CrossRef]
- Cook, A.L.; Haycook, C.P.; Locke, A.K.; Mu, R.R.; Giorgio, T.D. Optimization of electron beam-deposited silver nanoparticles on zinc oxide for maximally surface enhanced Raman spectroscopy. Nanoscale Adv. 2021, 3, 407–417. [Google Scholar] [CrossRef]
- Guo, S.; Cao, H.; Yang, Y.; Wang, M. Silver nanoparticles modified on cicada wings affect fluorescence and Raman signals based on electromagnetic and chemical enhancement mechanisms. Opt. Laser Technol. 2025, 181, 111912. [Google Scholar] [CrossRef]
- Irfan, I.; Golovynskyi, S.; Yeshchenko, O.A.; Bosi, M.; Zhou, T.; Xue, B.; Li, B.; Qu, J.; Seravalli, L. Plasmonic enhancement of exciton and trion photoluminescence in 2D MoS2 decorated with Au nanorods: Impact of nonspherical shape. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 140, 115213. [Google Scholar] [CrossRef]
- Zheng, H.; Li, M.; Chen, B.; Sangho, B.; Joseph, C.M.; Gangopadhyay, K.; Gangopadhyay, S. Surface-Plasmon-Enhanced Raman and Photoluminescence of Few-Layers and Bulk MoS2 on Silver Grating. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO): Applications and Technology 2016, San Jose, CA, USA, 5–10 June 2016; p. JW2A.111. [Google Scholar]
- Li, D.; Lu, H.; Li, Y.; Shi, S.; Yue, Z.; Zhao, J. Plasmon-Enhanced Photoluminescence from MoS2 Monolayer with Topological Insulator Nanoparticle. Nanophotonics 2022, 11, 995. [Google Scholar] [CrossRef]
- Su, L.; Bradley, L.; Yu, Y.; Yu, Y.; Cao, L.; Zhao, Y.; Zhang, Y. Surface-Enhanced Raman Scattering of Monolayer Transition Metal Dichalcogenides on Ag Nanorod Arrays. Opt. Lett. 2019, 44, 5493. [Google Scholar] [CrossRef] [PubMed]
- Farhat, P.; Avilés, M.O.; Legge, S.; Wang, Z.; Sham, T.K.; Lagugné-Labarthet, F. Tip-Enhanced Raman Spectroscopy and Tip-Enhanced Photoluminescence of MoS2 Flakes Decorated with Gold Nanoparticles. J. Phys. Chem. C. 2022, 126, 7086. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.; Park, S.; Seo, C.; Yun, S.J.; Han, G.H.; Kim, J.; Lee, Y.H.; Lee, H.S. Locally Enhanced Light–Matter Interaction of MoS2 Monolayers at Density-Controllable Nanogrooves of Template-Stripped Ag Films. Curr. Appl. Phys. 2022, 33, 59. [Google Scholar] [CrossRef]
- Hao, Q.; Pang, J.; Zhang, Y.; Wang, J.; Ma, L.; Schmidt, O.G. Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 Nm Gap. Adv. Opt. Mater. 2018, 6, 1700984. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, Z.; Gu, Y.; Chang, Y.-H.; Zhang, L.; Li, L.-J.; Zhao, W.; Eda, G.; Zhang, W.; Grinblat, G.; et al. Giant Photoluminescence Enhancement in Tungsten-Diselenide–Gold Plasmonic Hybrid Structures. Nat. Commun. 2016, 7, 11283. [Google Scholar] [CrossRef]
- Akselrod, G.M.; Ming, T.; Argyropoulos, C.; Hoang, T.B.; Lin, Y.; Ling, X.; Smith, D.R.; Kong, J.; Mikkelsen, M.H. Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors. Nano Lett. 2015, 15, 3578. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.B.; Behera, S.; Lee, D.; Namgung, S.; Park, K.-D.; Kim, D.-S.; Das, B. Active Surface-Enhanced Raman Scattering Platform Based on a 2D Material–Flexible Nanotip Array. Biosensors 2024, 14, 619. https://doi.org/10.3390/bios14120619
Kim YB, Behera S, Lee D, Namgung S, Park K-D, Kim D-S, Das B. Active Surface-Enhanced Raman Scattering Platform Based on a 2D Material–Flexible Nanotip Array. Biosensors. 2024; 14(12):619. https://doi.org/10.3390/bios14120619
Chicago/Turabian StyleKim, Yong Bin, Satyabrat Behera, Dukhyung Lee, Seon Namgung, Kyoung-Duck Park, Dai-Sik Kim, and Bamadev Das. 2024. "Active Surface-Enhanced Raman Scattering Platform Based on a 2D Material–Flexible Nanotip Array" Biosensors 14, no. 12: 619. https://doi.org/10.3390/bios14120619
APA StyleKim, Y. B., Behera, S., Lee, D., Namgung, S., Park, K. -D., Kim, D. -S., & Das, B. (2024). Active Surface-Enhanced Raman Scattering Platform Based on a 2D Material–Flexible Nanotip Array. Biosensors, 14(12), 619. https://doi.org/10.3390/bios14120619