Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection
Abstract
:1. Introduction
1.1. Antibiotics
1.2. Rapid Antibiotic-Detection Methods
2. CRISPR/Cas Detection System
2.1. Introduction to the CRISPR/Cas System
2.2. CRISPR/Cas System for Detection of Nucleic Acid Targets
2.3. CRISPR/Cas System for Non-Nucleic Acid Target Detection
3. Application of CRISPR Technology for Antibiotic Detection
3.1. CRISPR/Cas for the Detection of Antibiotic-Resistance Genes
3.1.1. Cas9 for the Detection of Drug-Resistance Genes
3.1.2. Cas12 for the Detection of Drug-Resistance Genes
3.1.3. Cas13 and Others
Cas Effectors | Detection Platform | Whether to Amplify or Not 1 | Target | LOD | Time (min) | Ref. |
---|---|---|---|---|---|---|
CRISPR/Cas9 | CRISPR/Cas9 combined with optical DNA mapping | N | ESBL gene family blaCTX-M; The carbapenemase gene families blaNDM and blaKPC | NR | NR | [104,110] |
FLASH | Y | antimicrobial-resistance genes | 1.9 aM | NR | [82] | |
IEXPAR | Y | mecA gene in real genomic DNA samples | 81 fM | NR | [106] | |
CRISPR/dCas9 | CRISPR/dCas9-SERS | N | macrolide antibiotic-resistant macB gene in milk | 11.9 fM | NR | [121] |
CRISPR/Cas12a | RPA amplification | Y | carbapenemases-resistance genes such as KPC, NDM and OXA | 100 aM | <120 | [107] |
Au-Fe3O4 nanozyme coupled with CRISPR/Cas12a | N | Kana-resistance genes; AMPI-resistance genes; Chloramphenicol-resistance genes | <0.1 CFU/μL | <60 | [108] | |
Colorimetric detection based on CRISPR/Cas system | N | ermB; sul1; tetW | 5 nM | 50 | [110] | |
Portable biosensor combining CRISPR/Cas12a and LAMP | Y | ermB in wastewater | 2.75 × 103 copies/μL | 70 | [111] | |
RPA coupled with CRISPR/Cas12a platform | Y | Colistin Resistance Gene mcr-1 | 1.6 × 103 CFU/mL | 60 | [122] | |
Cas12a/3D DNAzyme colorimetric paper sensor | Y | NDM-1 gene encoding metallo-β-lactamase | 100 fM | <90 | [123] | |
Cas12a dual detection platform (Cas12a-Ddp) | Y (PCR&RPA) | mcr-1 and invA genes | 33/214 fM | 45/75 | [124] | |
CRISPR/Cas12a cou- pled with PCR | Y | blaNDM in Carbapenem-Resistant Enterobacterales | 2.7 CFU/mL | NR | [112] | |
CRISPR/Cas13a | CRISPR/Cas system Combining ERASE | Y | Staphylococcus aureus mecA-resistance gene | 10 copies/μL | NR | [114] |
RAA-CRISPR/Cas13a Fluorescence Detection System | Y | A2142G and A2143G mutant DNAs causing clarithromycin resistance | 50 copies/μL | NR | [115] | |
Combines RPA and CRISPR/Cas13a: one-tube and two-step reaction | Y | mexX gene in P. aeruginosa | 10 aM/1 aM | 5/40 | [125] | |
RPA-Cas13a assay | Y | blaKPC | 2.5 copies/μL | 60 | [126] | |
LAMP-CRISPR/Cas13a-based assay | Y | OXA-48 and GES Carbapenemases | NR | <120 | [116] |
3.2. CRISPR/Cas for the Detection of Antibiotic Molecules
4. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wright, G.D. The antibiotic resistome. Expert Opin. Drug Discov. 2010, 5, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Xu, Y.; Wang, Y.; Sui, Q.; Xin, Y.; Wang, H.; Zhang, J.; Zhong, H.; Wei, Y. An extensive assessment of seasonal rainfall on intracellular and extracellular antibiotic resistance genes in Urban River systems. J. Hazard. Mater. 2023, 455, 131561. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.R.; Duan, Y.P.; Zhang, Z.B.; Gao, Y.F.; Dai, C.M.; Tu, Y.J.; Gao, J. Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: Emission, multimedia fate and risk assessment. J. Hazard. Mater. 2024, 465, 133247. [Google Scholar] [CrossRef]
- Antimicrobial Additives Market to Reach $5.63 Billion By 2030. Available online: https://www.grandviewresearch.com/press-release/global-antimicrobial-additives-market (accessed on 31 January 2024).
- Su, H.-C.; Liu, Y.-S.; Pan, C.-G.; Chen, J.; He, L.-Y.; Ying, G.-G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. Sci. Total Environ. 2018, 616–617, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef]
- Mestrovic, T.; Aguilar, G.R.; Swetschinski, L.R.; Ikuta, K.S.; Gray, A.P.; Weaver, N.D.; Han, C.; Wool, E.E.; Hayoon, A.G.; Hay, S.I.; et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. Lancet Public Health 2022, 7, e897–e913. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Li, W.; Zhang, J.; Zhou, W.; Chen, J.; Li, Y.; Ma, J. Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: A review. Front. Environ. Sci. Eng. 2019, 13, 1–15. [Google Scholar] [CrossRef]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- WHO Updates List of Drug-Resistant Bacteria Most Threatening to Human Health. Available online: https://www.who.int/publications/i/item/9789240093461 (accessed on 17 May 2024).
- Hoffman, P.S. Antibacterial Discovery: 21st Century Challenges. Antibiotics 2020, 9, 213. [Google Scholar] [CrossRef]
- Wong, F.; Zheng, E.J.; Valeri, J.A.; Donghia, N.M.; Anahtar, M.N.; Omori, S.; Li, A.; Cubillos-Ruiz, A.; Krishnan, A.; Jin, W.; et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 2023, 626, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, A.; Chandrima, B.; Ana, B.G.; Eduardo, C.N.; Youping, D.; Christelle, D.; Emmanuel, D.N.; Eran, E.; Gregorio, I.; Soojin, J.; et al. COVID-19 drug practices risk antimicrobial resistance evolution. Lancet Microbe 2021, 2, e135–e136. [Google Scholar]
- Baljit, S.; Abhijnan, B.; Lesa, D.; Riya, P.K.; Yaroslav, K.; Isha, D. Electrochemical Biosensors for the Detection of Antibiotics in Milk: Recent Trends and Future Perspectives. Biosensors 2023, 13, 867. [Google Scholar] [CrossRef]
- Liu, K.; Gan, C.; Peng, Y.; Gan, Y.; He, J.; Du, Y.; Tong, L.; Shi, J.; Wang, Y. Occurrence and source identification of antibiotics and antibiotic resistance genes in groundwater surrounding urban hospitals. J. Hazard. Mater. 2023, 465, 133368. [Google Scholar] [CrossRef]
- Magdalena, M.; Martyna, B.-H.; Łukasz, P.; Mateusz, M.; Izabela, W.; Monika, H.; Ewa, K. Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. J. Environ. Manag. 2023, 348, 119303. [Google Scholar]
- Wanyan, R.; Pan, M.; Mai, Z.; Xiong, X.; Wang, S.; Han, Q.; Yu, Q.; Wang, G.; Wu, S.; Li, H. Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: Geographical differentiation and corresponding drivers. Sci. Total Environ. 2023, 905, 167068. [Google Scholar] [CrossRef]
- Bueno, I.; Williams-Nguyen, J.; Hwang, H.; Sargeant, J.M.; Nault, A.J.; Singer, R.S. Impact of point sources on antibiotic resistance genes in the natural environment: A systematic review of the evidence. Anim. Health Res. Rev. 2017, 18, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Maximilian, S.; Anton, S.; Markus, F.; Christian, L.; Stefan, H.; Oliver, S. A liquid chromatography-tandem mass spectrometry method for the quantification of ampicillin/sulbactam and clindamycin in jawbone, plasma, and platelet-rich fibrin: Application to patients with osteonecrosis of the jaw. J. Pharm. Biomed. Anal. 2022, 224, 115167. [Google Scholar]
- Jank, L.; Martins, M.T.; Arsand, J.B.; Motta, T.M.C.; Hoff, R.B.; Barreto, F.; Pizzolato, T.M. High-throughput method for macrolides and lincosamides antibiotics residues analysis in milk and muscle using a simple liquid–liquid extraction technique and liquid chromatography–electrospray–tandem mass spectrometry analysis (LC–MS/MS). Talanta 2015, 144, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Moudgil, P.; Bedi, J.S.; Aulakh, R.S.; Gill, J.P.S.; Kumar, A. Validation of HPLC Multi-residue Method for Determination of Fluoroquinolones, Tetracycline, Sulphonamides and Chloramphenicol Residues in Bovine Milk. Food Anal. Methods 2019, 12, 338–346. [Google Scholar] [CrossRef]
- Saleh, H.; Elhenawee, M.; Hussien, E.M.; Ahmed, N.; Ibrahim, A.E. Validation of HPLC-UV Multi-Residue Method for the Simultaneous Determination of Tetracycline, Oxytetracycline, Spiramycin and Neospiramycin in Raw Milk. Food Anal. Methods 2020, 14, 36–43. [Google Scholar] [CrossRef]
- Dou, X.; Wu, Q.; Luo, S.; Yang, J.; Dong, B.; Wang, L.; Qu, H.; Zheng, L. A miniaturized biosensor for rapid detection of tetracycline based on a graphene field-effect transistor with an aptamer modified gate. Talanta 2024, 271, 125702. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, C.; Qin, H.; Ye, Z.; Liu, X.; Zong, B.; Li, Z.; Mao, S. Fast, specific, and ultrasensitive antibiotic residue detection by monolayer WS2-based field-effect transistor sensor. J. Hazard. Mater. 2022, 443, 130299. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wei, H.; Santiago, P.J.; Thrift, W.J.; Ragan, R.; Jiang, S. Sensing Antibiotics in Wastewater Using Surface-Enhanced Raman Scattering. Environ. Sci. Technol. 2023, 57, 4880–4891. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Ning, J.; Peng, D.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z.; Abu bakr Shabbir, M.; Cheng, G.; Yuan, Z. Current advances in immunoassays for the detection of antibiotics residues: A review. Food Agric. Immunol. 2020, 31, 268–290. [Google Scholar] [CrossRef]
- Kumaran, A.; Jude Serpes, N.; Gupta, T.; James, A.; Sharma, A.; Kumar, D.; Nagraik, R.; Kumar, V.; Pandey, S. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application. Biosensors 2023, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Chen, J.; Rao, Z.; Guo, B.; Xu, Y. Recent Advances of Biosensors for Detection of Multiple Antibiotics. Biosensors 2023, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Gupta, R.; Priyadarshi, N.; Sagar, P.; Bisht, V.; Navani, N.K.; Singhal, N.K. Emerging trends: Smartphone-assisted aptasensors enabling detection of pathogen and chemical contamination. Microchem. J. 2024, 207, 111736. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, F.; Li, H.; Chen, Z.; Yan, M.; Li, L.; Qu, F. CRISPR/Cas systems accelerating the development of aptasensors. Trends Anal. Chem. 2023, 158, 116775. [Google Scholar] [CrossRef]
- Zein, M.I.; Hardianto, A.; Irkham, I.; Zakiyyah, S.N.; Devi, M.J.; Manan, N.S.; Ibrahim, A.U.; Hartati, Y.W. Recent development of electrochemical and optical aptasensors for detection of antibiotics in food monitoring applications. J. Food Compos. Anal. 2023, 124, 105644. [Google Scholar] [CrossRef]
- Hu, M.; Yue, F.; Dong, J.; Tao, C.; Bai, M.; Liu, M.; Zhai, S.; Chen, S.; Liu, W.; Qi, G.; et al. Screening of broad-spectrum aptamer and development of electrochemical aptasensor for simultaneous detection of penicillin antibiotics in milk. Talanta 2024, 269, 125508. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Jian, D.; Zhang, Y.; Shan, Y.; Wang, S.; Liu, F. Paper-based antibiotic sensor (PAS) relying on colorimetric indirect competitive enzyme-linked immunosorbent assay for quantitative tetracycline and chloramphenicol detection. Sens. Actuators B Chem. 2020, 329, 129173. [Google Scholar] [CrossRef]
- Hu, W.; Xia, L.; Hu, Y.; Li, G. Fe3O4-carboxyl modified AuNPs-chitosan@AgNPs as a robust surface-enhanced Raman scattering substrate for rapid analysis of tryptamine and ofloxacin in aquatic products. Talanta 2024, 266, 125057. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, M.; Chen, Y.; Tang, F.; Dai, J.; Jin, Y.; Wang, C.; Xue, F. Ultrasensitive and selective detection of sulfamethazine in milk via a Janus-labeled Au nanoparticle-based surface-enhanced Raman scattering-immunochromatographic assay. Talanta 2023, 267, 125208. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Zong, B.; Fang, X.; Liu, M.; Li, Z.; Mao, S.; Ostrikov, K.K. Discriminative and quantitative color-coding analysis of fluoroquinolones with dual-emitting lanthanide metal-organic frameworks. Sens. Actuators B Chem. 2022, 373, 132701. [Google Scholar] [CrossRef]
- Varsha, M.V.; Nageswaran, G. Ruthenium doped Cu-MOF as an efficient sensing platform for the voltammetric detection of ciprofloxacin. Microchem. J. 2023, 188, 108481. [Google Scholar] [CrossRef]
- Wang, B.B.; Zhao, X.; Chen, L.J.; Yang, C.; Yan, X.P. Functionalized Persistent Luminescence Nanoparticle-Based Aptasensor for Autofluorescence-free Determination of Kanamycin in Food Samples. Anal. Chem. 2021, 93, 2589–2595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, N.-Y.; Ruan, Q.; Lu, D.-Q.; Yang, Y.-H.; Hu, R. A label-free and sensitive photoluminescence sensing platform based on long persistent luminescence nanoparticles for the determination of antibiotics and 2,4,6-trinitrophenol. RSC Adv. 2018, 8, 5714–5720. [Google Scholar] [CrossRef]
- Yee, B.J.; Shafiqah, N.F.; Mohd-Naim, N.F.; Ahmed, M.U. A CRISPR/Cas12a-based fluorescence aptasensor for the rapid and sensitive detection of ampicillin. Int. J. Biol. Macromol. 2023, 242, 125211. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ling, S.; Wu, H.; Yang, Z.; Lv, B. CRISPR/Cas12a-based biosensors for ultrasensitive tobramycin detection with single- and double-stranded DNA activators. Sens. Actuators B Chem. 2022, 355, 131329. [Google Scholar] [CrossRef]
- Hu, J.; Song, H.; Zhou, J.; Liu, R.; Lv, Y. Metal-Tagged CRISPR/Cas12a Bioassay Enables Ultrasensitive and Highly Selective Evaluation of Kanamycin Bioaccumulation in Fish Samples. Anal. Chem. 2021, 93, 14214–14222. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Shen, Z.; Cao, Y.; Li, T.; Wu, D.; Dong, Y.; Gan, N. A microfluidic chip based ratiometric aptasensor for antibiotic detection in foods using stir bar assisted sorptive extraction and rolling circle amplification. Analyst 2019, 144, 2755–2764. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef]
- Bhatia, S.; Yadav, S.K. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. Int. J. Biol. Macromol. 2023, 238, 124054. [Google Scholar] [CrossRef]
- Chylinski, K.; Le Rhun, A.; Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 2013, 10, 726–737. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; Oost, J.v.d.; Regev, A.; et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.T.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, aaf5573. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, X.; Zhang, M.; Wang, X.; Chen, Y.; Qian, C.; Wu, J.; Xu, J. Versatile detection with CRISPR/Cas system from applications to challenges. Trends Anal. Chem. 2021, 135, 116150. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Costa, M.D.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wei, J.J.; Sabatini, D.M.; Lander, E.S. Genetic Screens in Human Cells Using the CRISPR-Cas9 System. Science 2014, 343, 80–84. [Google Scholar] [CrossRef]
- Sun, W.; Huang, X.; Wang, X. CRISPR-based molecular diagnostics: A review. Chin. J. Biotechnol. 2023, 39, 60–73. [Google Scholar]
- Pardee, K.; Green, A.A.; Takahashi, M.K.; Braff, D.; Lambert, G.; Lee, J.W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M.; et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016, 165, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.X.; Hunnewell, P.; Alfonse, L.E.; Carte, J.M.; Keston-Smith, E.; Sothiselvam, S.; Garrity, A.J.; Chong, S.; Makarova, K.S.; Koonin, E.V.; et al. Functionally diverse type V CRISPR-Cas systems. Science 2018, 363, 88–91. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Wu, N.; Wu, J.; Wang, G.; Zhao, G.; Wang, J. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation. ACS Synth. Biol. 2019, 8, 2228–2237. [Google Scholar] [CrossRef]
- Teng, F.; Guo, L.; Cui, T.; Wang, X.-G.; Xu, K.; Gao, Q.; Zhou, Q.; Li, W. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 2019, 20, 1–7. [Google Scholar] [CrossRef]
- Harrington, L.B.; Burstein, D.; Chen, J.S.; Paez-Espino, D.; Ma, E.; Witte, I.P.; Cofsky, J.C.; Kyrpides, N.C.; Banfield, J.F.; Doudna, J.A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018, 362, 839–842. [Google Scholar] [CrossRef]
- Heng, Z.; Zhuang, L.; Renjian, X.; Leifu, C. Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease. Nat. Struct. Mol. Biol. 2020, 27, 1069–1076. [Google Scholar]
- Marraffini, L.A. CRISPR-Cas immunity in prokaryotes. Nature 2015, 526, 55–61. [Google Scholar] [CrossRef]
- Li, S.Y.; Cheng, Q.X.; Liu, J.K.; Nie, X.Q.; Zhao, G.P.; Wang, J. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 2018, 28, 491–493. [Google Scholar] [CrossRef]
- Abavisani, M.; Khayami, R.; Hoseinzadeh, M.; Kodori, M.; Kesharwani, P.; Sahebkar, A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist. Updates 2023, 68, 100948. [Google Scholar] [CrossRef]
- Shmakov, S.; Abudayyeh, O.O.; Makarova, K.S.; Wolf, Y.I.; Gootenberg, J.S.; Semenova, E.; Minakhin, L.; Joung, J.; Konermann, S.; Severinov, K.; et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol. Cell 2015, 60, 385–397. [Google Scholar] [CrossRef] [PubMed]
- East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.D.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016, 538, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Konermann, S.; Lotfy, P.; Brideau, N.J.; Oki, J.; Shokhirev, M.N.; Hsu, P.D. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 2018, 173, 665–676.e14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Ye, Y.; Ye, W.; Perčulija, V.; Jiang, H.; Chen, Y.; Li, Y.; Chen, J.; Lin, J.; Wang, S.; et al. Two Hepn Domains Dictate Crispr Rna Maturation and Target Cleavage in Cas13d. Sci. Lett. 2019, 10, 2544. [Google Scholar] [CrossRef]
- Han, Y.; Li, F.; Yang, L.; Guo, X.; Dong, X.; Niu, M.; Jiang, Y.; Li, L.; Li, H.; Sun, Y. Imunocapture Magnetic Beads Enhanced and Ultrasensitive CRISPR-Cas13a-Assisted Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. Biosensors 2023, 13, 597. [Google Scholar] [CrossRef] [PubMed]
- Burstein, D.; Harrington, L.B.; Strutt, S.C.; Probst, A.J.; Anantharaman, K.; Thomas, B.C.; Doudna, J.A.; Banfield, J.F. New CRISPR-Cas systems from uncultivated microbes. Nature 2017, 542, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Malinin, N.L.; Lee, G.; Lazzarotto, C.R.; Li, Y.; Zheng, Z.; Nguyen, N.T.; Liebers, M.; Topkar, V.V.; Iafrate, A.J.; Le, L.P.; et al. Defining genome-wide CRISPR-Cas genome-editing nuclease activity with GUIDE-seq. Nat. Protoc. 2021, 16, 5592–5615. [Google Scholar] [CrossRef] [PubMed]
- Son, H. Harnessing CRISPR/Cas Systems for DNA and RNA Detection: Principles, Techniques, and Challenges. Biosensors 2024, 14, 460. [Google Scholar] [CrossRef]
- Feng, W.; Newbigging, A.M.; Tao, J.; Cao, Y.; Peng, H.; Le, C.; Wu, J.; Pang, B.; Li, J.; Tyrrell, D.L.; et al. CRISPR technology incorporating amplification strategies: Molecular assays for nucleic acids, proteins, and small molecules. Chem. Sci. 2021, 12, 4683–4698. [Google Scholar] [CrossRef]
- Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc. 2019, 14, 2986–3012. [Google Scholar] [CrossRef]
- Li, S.Y.; Cheng, Q.X.; Wang, J.M.; Li, X.Y.; Zhang, Z.L.; Gao, S.; Cao, R.B.; Zhao, G.P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Xie, S.; Tian, R.; Wang, S.; Lu, Q.; Gao, D.; Lei, C.; Zhu, H.; Nie, Z. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. Sci. Adv. 2021, 7, eabc7802. [Google Scholar] [CrossRef]
- Xu, J.; Bai, X.; Zhang, X.; Yuan, B.; Guo, Y.; Cui, Y.; Liu, J.; Cui, H.; Ren, X.; Wang, J.; et al. Development and application of DETECTR-based rapid detection for pathogenic Bacillusanthracis. Anal. Chim. Acta 2023, 1247, 340891. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Chen, Y.; He, J.; Wu, J.; Wang, M.; Zhong, X. A Designed Vessel Using Dissolvable Polyvinyl Alcohol Membrane as Automatic Valve to Couple LAMP with CRISPR/Cas12a System for Visual Detection. Biosensors 2023, 13, 111. [Google Scholar] [CrossRef]
- Atçeken, N.; Yigci, D.; Ozdalgic, B.; Tasoglu, S. CRISPR-Cas-Integrated LAMP. Biosensors 2022, 12, 1035. [Google Scholar] [CrossRef] [PubMed]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef]
- Li, H.; Kielich, D.M.; Liu, G.; Smith, G.; Bello, A.; Strong, J.E.; Pickering, B.S. Strategies to Improve Multi-enzyme Compatibility and Coordination in One-Pot SHERLOCK. Anal. Chem. 2023, 95, 10522–10531. [Google Scholar] [CrossRef]
- Pena, J.M.; Manning, B.J.; Li, X.; Fiore, E.S.; Carlson, L.; Shytle, K.; Nguyen, P.P.; Azmi, I.; Larsen, A.; Wilson, M.K.; et al. Real-time, multiplexed SHERLOCK for in vitro diagnostics. J. Mol. Diagn. JMD 2023, 25, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Langelier, C.; Kuchta, A.; Batson, J.; Teyssier, N.; Lyden, A.; Caldera, S.; McGeever, A.; Dimitrov, B.; King, R.; et al. FLASH: A next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019, 47, e83. [Google Scholar] [CrossRef]
- Munawar, N.; Ahsan, K.; Ahmad, A. CRISPR-edited plants’ social, ethical, policy, and governance issues. In Global Regulatory Outlook for CRISPRized Plants; Elsevier: Amsterdam, The Netherlands, 2024; pp. 367–396. [Google Scholar]
- Kolkur, S.U.; Sharma, A.; Gouda, M.R.; Praveen, K.; Singh, A. CRISPR in Agriculture and it’s Ethical Implications: A Bibliometric analysis. Food Humanit. 2024, 3, 100322. [Google Scholar] [CrossRef]
- Sobral, A.F.; Oliveira, R.J.D.; Barbosa, D.J. CRISPR-Cas technology in forensic investigations: Principles, applications, and ethical considerations. Forensic Sci. Int. Genet. 2024, 74, 103163. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Li, Y.; Kou, J.; Liao, D.; Zhang, W.; Yin, L.; Man, S.; Ma, L. Novel non-nucleic acid targets detection strategies based on CRISPR/Cas toolboxes: A review. Biosens. Bioelectron. 2022, 215, 114559. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, S.; Pei, X.; Li, S.; He, Y.; Tong, Y.; Liu, G. Fluorescence Signal-Readout of CRISPR/Cas Biosensors for Nucleic Acid Detection. Biosensors 2022, 12, 779. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Li, Z.; Wang, W.; Liu, J.; Liu, L.; Zhu, G.; Karthik, L.; Wang, M.; Wang, K.F.; Wang, Z.; et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat. Commun. 2019, 10, 3672. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, D.; Chang, Y.; Zhang, Q.; Liu, Y.; Brennan, J.D.; Li, Y.; Liu, M. Nucleic Acid Enzyme-Activated CRISPR-Cas12a with Circular CRISPR RNA for Biosensing. Small 2023, 19, e2303007. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, D.; Joseph, C.M.; Parambil, J.C.; Murali, S.; Yahiya, M.; K, S. Superbugs: An invicible threat in post antibiotic era. Clin. Epidemiol. Glob. Health 2024, 28, 101499. [Google Scholar] [CrossRef]
- Rayan, R.A. Pharmaceutical effluent evokes superbugs in the environment: A call to action. Biosaf. Health 2023, 5, 363–371. [Google Scholar] [CrossRef]
- Brolund, A.; Sandegren, L. Characterization of ESBL disseminating plasmids. Infect. Dis. 2016, 48, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Von Wintersdorff, C.J.; Penders, J.; Van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef]
- Evans, D.R.; Griffith, M.P.; Sundermann, A.J.; Shutt, K.A.; Saul, M.I.; Mustapha, M.M.; Marsh, J.W.; Cooper, V.S.; Harrison, L.H.; Van Tyne, D. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. eLife 2020, 9, e53886. [Google Scholar] [CrossRef]
- Haaber, J.; Penadés, J.R.; Ingmer, H. Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends Microbiol. 2017, 25, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.C.; Edouard, S.; Pagnier, I.; Mediannikov, O.; Drancourt, M.; Raoult, D. Current and past strategies for bacterial culture in clinical microbiology. Clin. Microbiol. Rev. 2015, 28, 208–236. [Google Scholar] [CrossRef]
- Ouyang, B.; Yang, C.; Lv, Z.; Chen, B.; Tong, L.; Shi, J. Recent advances in environmental antibiotic resistance genes detection and research focus: From genes to ecosystems. Environ. Int. 2024, 191, 108989. [Google Scholar] [CrossRef]
- Shrestha, S.; Malla, B.; Haramoto, E. High-throughput microfluidic quantitative PCR system for the simultaneous detection of antibiotic resistance genes and bacterial and viral pathogens in wastewater. Environ. Res. 2024, 255, 119156. [Google Scholar] [CrossRef] [PubMed]
- Gorecki, A.; Decewicz, P.; Dziurzynski, M.; Janeczko, A.; Drewniak, L.; Dziewit, L. Literature-based, manually-curated database of PCR primers for the detection of antibiotic resistance genes in various environments. Water Res. 2019, 161, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Manghwar, H.; Lindsey, K.; Zhang, X.; Jin, S. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends Plant Sci. 2019, 24, 1102–1125. [Google Scholar] [CrossRef]
- Okaiyeto, S.A.; Sutar, P.P.; Chen, C.; Ni, J.B.; Wang, J.; Mujumdar, A.S.; Zhang, J.S.; Xu, M.Q.; Fang, X.M.; Zhang, C.; et al. Antibiotic resistant bacteria in food systems: Current status, resistance mechanisms, and mitigation strategies. Agric. Commun. 2024, 2, 100027. [Google Scholar] [CrossRef]
- Raro, O.H.F.; Bouvier, M.; Kerbol, A.; Poirel, L.; Nordmann, P. MultiRapid ATB NP test for detecting concomitant susceptibility and resistance of last-resort novel antibiotics available to treat multidrug-resistant Enterobacterales infections. Int. J. Antimicrob. Agents 2024, 64, 107206. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Müller, V.; Rajer, F.; Frykholm, K.; Nyberg, L.K.; Quaderi, S.; Fritzsche, J.; Kristiansson, E.; Ambjörnsson, T.; Sandegren, L.; Westerlund, F. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci. Rep. 2016, 6, 37938. [Google Scholar] [CrossRef]
- Nyblom, M.; Johnning, A.; Frykholm, K.; Wrande, M.; Müller, V.; Goyal, G.; Robertsson, M.; Dvirnas, A.; Sewunet, T.; Kk, S.; et al. Strain-level bacterial typing directly from patient samples using optical DNA mapping. Commun. Med. 2023, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.; Zhang, P.; Li, Z. Specific detection of antibiotic-resistant bacteria using CRISPR/Cas9 induced isothermal exponential amplification reaction (IEXPAR). Talanta 2023, 253, 124045. [Google Scholar] [CrossRef]
- Curti, L.A.; Pereyra-Bonnet, F.; Repizo, G.D.; Fay, J.V.; Salvatierra, K.; Blariza, M.J.; Ibañez-Alegre, D.; Rinflerch, A.R.; Miretti, M.; Gimenez, C.A. CRISPR-based platform for carbapenemases and emerging viruses detection using Cas12a (Cpf1) effector nuclease. Emerg. Microbes Infect. 2020, 9, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, B.; Shi, S.; Zhou, T.; Wang, X.; Wang, Z.; Zhou, X.; Wang, M.; Shi, W.; Ren, L. Au–Fe3O4 nanozyme coupled with CRISPR-Cas12a for sensitive and visual antibiotic resistance diagnosing. Anal. Chim. Acta 2023, 1251, 341014. [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Haizan, I.; Ahn, M.J.; Choi, M.Y.; Kim, M.J.; Choi, J.H. One-Pot CRISPR-Cas12a-Based Viral DNA Detection via HRP-Enriched Extended ssDNA-Modified Au@Fe3O4 Nanoparticles. Biosensors 2024, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Li, Y.; Dong, T.; Tang, Y.; Li, F. A sequence-specific plasmonic loop-mediated isothermal amplification assay with orthogonal color readouts enabled by CRISPR Cas12a. Chem. Commun. 2020, 56, 3536. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Zhang, H.; Ran, F.; Cao, H.; Feng, R.; Du, W.; Li, X.; Yang, Z. Portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification for antibiotic resistance gene ermB in wastewater. J. Hazard. Mater. 2023, 462, 132793. [Google Scholar] [CrossRef]
- Shin, J.; Kim, S.R.; Xie, Z.; Jin, Y.S.; Wang, Y.C. A CRISPR/Cas12a-Based System for Sensitive Detection of Antimicrobial-Resistant Genes in Carbapenem-Resistant Enterobacterales. Biosensors 2024, 14, 194. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- Hu, Q.; Li, H.; Hu, X.; Han, X.; Sun, Y.; Liu, Y. A CRISPR/Cas13a-based detection method for the drug resistance gene mecA of Staphylococcus aureus. Acta Microbiol. Sin. 2023, 63, 3628–3640. [Google Scholar] [CrossRef]
- Yan, K.C.; Wang, X.H.; Han, Y.; Tian, Y.; Niu, M.W.; Dong, X.; Li, X.W.; Li, H.; Sun, Y.S. Simultaneous Detection of Helicobacter pylori and Clarithromycin Resistance Mutations Using RAA-CRISPR/Cas13a Assay. Infect. Drug Resist. 2024, 17, 3001–3010. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Cartagena, C.; Pablo-Marcos, D.; Fernández-García, L.; Blasco, L.; Pacios, O.; Bleriot, I.; Siller, M.; López, M.; Fernández, J.; Aracil, B.; et al. CRISPR-Cas13a-Based Assay for Accurate Detection of OXA-48 and GES Carbapenemases. Microbiol. Spectr. 2023, 11, e0132923. [Google Scholar] [CrossRef]
- Price, V.J.; Huo, W.; Sharifi, A.; Palmer, K.L.; Fey, P.D. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis. mSphere 2016, 1, e00064. [Google Scholar] [CrossRef] [PubMed]
- Hille, F.; Charpentier, E. CRISPR-Cas: Biology, mechanisms and relevance. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2016, 371, 20150496. [Google Scholar] [CrossRef] [PubMed]
- Mackow, N.A.; Shen, J.; Adnan, M.; Khan, A.S.; Fries, B.C.; Diago-Navarro, E. CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae. PLoS ONE 2019, 14, e0225131. [Google Scholar] [CrossRef]
- Pursey, E.; Dimitriu, T.; Paganelli, F.L.; Westra, E.R.; van Houte, S. CRISPR-Cas is associated with fewer antibiotic resistance genes in bacterial pathogens. Philos. Trans. R. Soc. B 2022, 377, 20200464. [Google Scholar] [CrossRef]
- Du, Y.; Han, D.; An, Z.; Wang, J.; Gao, Z. CRISPR/dCas9—Surface-enhanced Raman scattering for the detection of drug resistance gene macB. Microchim. Acta 2022, 189, 394. [Google Scholar] [CrossRef]
- Gong, L.; Jin, Z.; Liu, E.; Tang, F.; Yuan, F.; Liang, J.; Wang, Y.; Liu, X.; Wang, Y. Highly Sensitive and Specific Detection of Mobilized Colistin Resistance Gene mcr-1 by CRISPR-Based Platform. Microbiol. Spectr. 2022, 10, e0188422. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Li, Y.; Li, Y.; Qu, K.; Zhang, K.; Li, J. Detection of antibiotic-resistance genes in bacterial pathogens using a Cas12a/3D DNAzyme colorimetric paper sensor. Fundam. Res. 2023. [Google Scholar] [CrossRef]
- Fu, X.; Sun, J.; Ye, Y.; Zhang, Y.; Sun, X. A rapid and ultrasensitive dual detection platform based on Cas12a for simultaneous detection of virulence and resistance genes of drug-resistant Salmonella. Biosens. Bioelectron. 2022, 195, 113682. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.X.; Wang, Y.S.; Li, S.J.; Peng, R.Q.; Wen, X.; Peng, H.; Shi, Q.S.; Zhou, G.; Xie, X.B.; Wang, J. Rapid detection of mexX in Pseudomonas aeruginosa based on CRISPR-Cas13a coupled with recombinase polymerase amplification. Front. Microbiol. 2024, 15, 1341179. [Google Scholar] [CrossRef]
- Mingjun, L.; Bin, X.; Lidan, C.; Xiaoyan, H.; Jinchao, L.; Zhenzhan, K.; Xinping, C.; Xiuna, H.; Zhaohui, S.; Linhai, L. Rapid Detection of blaKPC in Carbapenem-Resistant Enterobacterales Based on CRISPR/Cas13a. Curr. Microbiol. 2023, 80, 352. [Google Scholar]
- Michael, E. Seven technologies to watch in 2022. Nature 2022, 601, 658–661. [Google Scholar]
- Jianyu, H.; Jing, Z.; Rui, L.; Yi, L. Element probe based CRISPR/Cas14 bioassay for non-nucleic-acid targets. Chem. Commun. 2021, 57, 10423–10426. [Google Scholar]
- Mahas, A.; Wang, Q.; Marsic, T.; Mahfouz, M.M. Development of Cas12a-Based Cell-Free Small-Molecule Biosensors via Allosteric Regulation of CRISPR Array Expression. Anal. Chem. 2022, 94, 4617–4626. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shi, G.; Yan, C. Portable biosensor for on-site detection of kanamycin in water samples based on CRISPR-Cas12a and an off-the-shelf glucometer. Sci. Total Environ. 2023, 872, 162279. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, X.; Yang, L.; Qiu, S.; Liu, G.; Xiong, X.; Xiao, T.; Huang, K.; Zhu, L. Label-free electrochemical sensing platform for sensitive detection of ampicillin by combining nucleic acid isothermal enzyme-free amplification circuits with CRISPR/Cas12a. Talanta 2024, 273, 125950. [Google Scholar] [CrossRef]
- Yee, B.J.; Zakaria, S.N.A.; Chandrawati, R.; Ahmed, M.U. Detection of Tetracycline with a CRISPR/Cas12a Aptasensor Using a Highly Efficient Fluorescent Polystyrene Microsphere Reporter System. ACS Synth. Biol. 2024, 13, 2166–2176. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, L.; Yang, L.; Liu, G.; Qiu, S.; Xiong, X.; Huang, K.; Xiao, T.; Zhu, L. A sensitive and versatile electrochemical sensor based on hybridization chain reaction and CRISPR/Cas12a system for antibiotic detection. Anal. Chim. Acta 2024, 1304, 342562. [Google Scholar] [CrossRef] [PubMed]
No. | Detection Methods | Readout Detector | Target | Detection Range | LOD | Real Sample | Time (min) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | National Standard Method -LC-MS/MS | MS | Methicillin | NR | 0.1 μg/kg | Food of animal origin | NR | GB/T 21315-2007 |
2 | LC-MS/MS | MS | Ampicillin(AMPI)/clarithromycin | 4 × 105~ 2.5 × 107 nM | 0.14~59.8 μM | Jawbone | NR | [19] |
3 | HPLC | Chromatograph | Sulfadiazine | 50~500 ng/mL | 22.4 ng/mL | Milk | NR | [21] |
4 | ELISA | Smartphone | Tetracycline chloromycetin | 1~103 ng/mL; 0.1~100 ng/ml | 0.5 ng/mL 0.05 ng/mL | Milk/fish | NR | [34] |
5 | SERS | Raman spectrometer | loxacin | NR | 15.8 μg/L | Aquatic products (fish) | 30 | [35] |
6 | SERS | SERS-ICA test strip | Sulfadimethoxine | 0.1~ 103 pg/mL | 0.1 ng/L | Milk | 15 | [36] |
7 | FET | FET | Ampicillin | 10−12~ 10−6 M | 0.556 pM | Creek | 3 | [24] |
8 | Aptamer-modified graphene field-effect transistors (Apt-SGGT) | Digital seismograph | Tetracycline | NR | 2.073 pM | Skim milk | 8 | [23] |
9 | MOF Fluorescence Sensor | Smartphone | Fluoroquinolone | 0~90 μM | 16 nM | NR | 20 | [37] |
10 | MOF Electrochemical Sensors | Electrochemical workstation | Ciprofloxacin | 2.5~ 100 µM | 3.29 nM | Tap water/seawater | NR | [38] |
11 | Long Afterglow Optical Sensors | Spectrophotometer | Kanamycin | 1 pg/mL~ 5 ng/m L | 0.32 pg/mL | Milk/honey/powdered milk | 90 | [39] |
12 | Long Afterglow Markless Sensors | Fluorescence spectrophotometer | Furacilinum | 0.1~50 mM | 5 nM | Milk/Dianchi water samples | NR | [40] |
13 | CRISPR/Cas12a Light Sensors | Microplate Reader | Ampicillin | 0.01 nM~ 500 nM | 10 pM | Milk/eggs/honey | 30 | [41] |
14 | CRISPR/Cas12a Biosensor | Spectrophotometer | Tobramycin | 10~300 pM | 3.719 pM | Milk/lake water | 40 | [42] |
15 | Metal-labeled CRISPR/Cas12a biosensors | ICPMS | Kanamycin | 8~120 pm | 4.06 pM | Wild fish | 30 | [43] |
16 | Microfluidic Sensors | UV-visible spectrophotometer | Kanamycin | 0.8 pg/mL~10 ng/mL | 0.3 pg/mL | Milk/fish | NR | [44] |
CAS Type | Detection Object | Sensing Method | Readout Detector | Detecting Linear Range | LOD | Time (min) | Real Sample | Ref. |
---|---|---|---|---|---|---|---|---|
CRISPR/Cas14 | Ampicillin | Metal isotope labeling | ICPMS | NR | 2.06 nM | 45 | NR | [43] |
CRISPR/Cas12a | Kanamycin | Metal isotope labeling | ICPMS | 8–120 pM | 4.06 pM | 30 | Wild fish | [128] |
Tobramycin | Aptasensor | Spectrophotometer | 10–300 pM | 3.719 pM | 40 | Milk/lake Water | [42] | |
Tetracycline | aTF | Smartphone | NR | 2 μM | NR | NR | [129] | |
Ampicillin | Aptasensor | Microplate reader | 0.01–500 nM | 10 pM | 30 | Milk/eggs/honey | [41] | |
Kanamycin | Aptasensor | glucometer | 1pM–100 nM | 1 pM | NR | Water sample | [130] | |
Ampicillin | HCR/ Electrochemical sensor | Electrochemical workstation | 5 pM–100 nM | 1.60 pM | 160 | Milk/ livestock wastewater | [131] | |
KanamycinAmpicillin | HCR/ Electrochemical sensor | Electrochemical workstation | 0.10 pM–10 nM; 0.05 pM–10 nM | 60 fM; 10 fM | NR | Milk/ livestock wastewater | [132] | |
Tetracycline | Aptasensor | Spectrophotometer | 15–500 μM | 0.1 μM | 120 | Milk/raw Beef | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Huang, Z.; Zhang, Y.; Wang, W.; Ye, Z.; Liang, P.; Sun, K.; Kang, W.; Tang, Q.; Yu, X. Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection. Biosensors 2024, 14, 633. https://doi.org/10.3390/bios14120633
Zhang X, Huang Z, Zhang Y, Wang W, Ye Z, Liang P, Sun K, Kang W, Tang Q, Yu X. Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection. Biosensors. 2024; 14(12):633. https://doi.org/10.3390/bios14120633
Chicago/Turabian StyleZhang, Xuejiao, Zhaojie Huang, Yanxia Zhang, Wen Wang, Zihong Ye, Pei Liang, Kai Sun, Wencheng Kang, Qiao Tang, and Xiaoping Yu. 2024. "Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection" Biosensors 14, no. 12: 633. https://doi.org/10.3390/bios14120633
APA StyleZhang, X., Huang, Z., Zhang, Y., Wang, W., Ye, Z., Liang, P., Sun, K., Kang, W., Tang, Q., & Yu, X. (2024). Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection. Biosensors, 14(12), 633. https://doi.org/10.3390/bios14120633