Electrochemical DNA Cleavage Sensing for EcoRV Activity and Inhibition with an ERGO Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Fabrication of the Substrate DNA-Modified ERGO-GCE Sensor
3. Results and Discussion
3.1. Characterization
3.2. Optimization
3.3. Electrochemical Sensing Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Kim, Y.-K.; Min, D.-H. A New Assay for Endonuclease/Methyltransferase Activities Based on Graphene Oxide. Anal. Chem. 2011, 83, 8906–8912. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, Z.; Li, T.; Wang, Z. Assaying Multiple Restriction Endonucleases Functionalities and Inhibitions on DNA Microarray with Multifunctional Gold Nanoparticle Probes. Biosens. Bioelectron. 2014, 52, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Selent, U.; Rüter, T.; Köhler, E.; Liedtke, M.; Thielking, V.; Alves, J.; Oelgeschläger, T.; Wolfes, H.; Peters, F.; Pingoud, A. A Site-Directed Mutagenesis Study to Identify Amino Acid Residues Involved in the Catalytic Function of the Restriction Endonuclease EcoRV. Biochemistry 1992, 31, 4808–4815. [Google Scholar] [CrossRef] [PubMed]
- Horton, N.C.; Otey, C.; Lusetti, S.; Sam, M.D.; Kohn, J.; Martin, A.M.; Ananthnarayan, V.; Perona, J.J. Electrostatic Contributions to Site Specific DNA Cleavage by EcoRV Endonuclease. Biochemistry 2002, 41, 10754–10763. [Google Scholar] [CrossRef] [PubMed]
- Winkler, F.K.; Banner, D.W.; Oefner, C.; Tsernoglou, D.; Brown, R.S.; Heathman, S.P.; Bryan, R.K.; Martin, P.D.; Petratos, K.; Wilson, K.S. The Crystal Structure of EcoRV Endonuclease and of Its Complexes with Cognate and Non-cognate DNA Fragments. EMBO J. 1993, 12, 1781–1795. [Google Scholar] [CrossRef] [PubMed]
- Kostrewa, D.; Winkler, F.K. Mg2+ Binding to the Active Site of EcoRV Endonuclease: A Crystallographic Study of Complexes with Substrate and Product DNA at 2 A Resolution. Biochemistry 1995, 34, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Hiller, D.A.; Rodriguez, A.M.; Perona, J.J. Non-Cognate Enzyme-DNA Complex: Structural and Kinetic Analysis of EcoRV Endonuclease Bound to the EcoRI Recognition Site GAATTC. J. Mol. Biol. 2005, 354, 121–136. [Google Scholar] [CrossRef]
- Horton, N.C.; Perona, J.J. Role of Protein-Induced Bending in the Specificity of DNA Recognition: Crystal Structure of EcoRV Endonuclease Complexed with d(AAAGAT) + d(ATCTT). J. Mol. Biol. 1998, 277, 779–787. [Google Scholar] [CrossRef]
- Vipond, I.B.; Halford, S.E. Structure-Function Correlation for the EcoRV Restriction Enzyme: From Non-Specific Binding to Specific DNA Cleavage. Mol. Microbiol. 1993, 9, 225–231. [Google Scholar] [CrossRef]
- Zahran, M.; Daidone, I.; Smith, J.C.; Imhof, P. Mechanism of DNA Recognition by the Restriction Enzyme EcoRV. J. Mol. Biol. 2010, 401, 415–432. [Google Scholar] [CrossRef]
- Thielking, V.; Selent, U.; Koehler, E.; Wolfes, H.; Pieper, U.; Geiger, R.; Urbanke, C.; Winkler, F.K.; Pingoud, A. Site-Directed Mutagenesis Studies with EcoRV Restriction Endonuclease to Identify Regions Involved in Recognition and Catalysis. Biochemistry 1991, 30, 6416–6422. [Google Scholar] [CrossRef] [PubMed]
- Grindley, N.D.F.; Whiteson, K.L.; Rice, P.A. Mechanisms of Site-Specific Recombination. Annu. Rev. Biochem. 2006, 75, 567–605. [Google Scholar] [CrossRef] [PubMed]
- Rittié, L.; Perbal, B. Enzymes Used in Molecular Biology: A Useful Guide. J. Cell Commun. Signal. 2008, 2, 25–45. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, D.; Spitzer, D.; Kothari, P.; Shaikh, A.; Liszewski, M.K.; Richards, A.; Atkinson, J.P. New Roles for the Major Human 3′-5′ Exonuclease TREX1 in Human Disease. Cell Cycle 2008, 7, 1718–1725. [Google Scholar] [CrossRef] [PubMed]
- Shevelev, I.V.; Hübscher, U. The 3′–5′ Exonucleases. Nat. Rev. Mol. Cell Biol. 2002, 3, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Bouriotis, V.; Zafeiropoulos, A.; Clonis, Y.D. High-Performance Liquid Chromatography for the Purification of Restriction Endonucleases, Application to BanII, SacI, and SphI. Anal. Biochem. 1987, 160, 127–134. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, L.W.; Benseler, F.; Graeser, E.; Piel, N.; Scholtissek, S. Effects of Functional Group Changes in the EcoRI Recognition Site on the Cleavage Reaction Catalyzed by the Endonuclease. Biochemistry 1987, 26, 7238–7245. [Google Scholar] [CrossRef]
- Schaefer, A.; Ohyama, K.; Gamborg, O.L. Detection by Agarose Gel Electrophoresis of Nucleases Associated with Cells and Protoplasts from Plant Supension Cultures Using Agrobacterium Tumefaciens Ti Plasmid. Agric. Biol. Chem. 1981, 45, 1441–1445. [Google Scholar] [CrossRef]
- Seawright, G.L.; Despommier, D.; Zimmermann, W.; Isenstein, R.S. Enzyme Immunoassay for Swine Trichinellosis Using Antigens Purified by Immunoaffinity Chromatography. Am. J. Trop. Med. Hyg. 1983, 32, 1275–1284. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, Y.; Lu, L.; Cai, Y. A Label-Free DNA-Templated Silver Nanocluster Probe for Fluorescence on–off Detection of Endonuclease Activity and Inhibition. Biosens. Bioelectron. 2014, 51, 408–412. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Bao, J.; Dai, Z. Construction of Metal-Ion-Free G-Quadruplex-Hemin DNAzyme and Its Application in S1 Nuclease Detection. ACS Appl. Mater. Interfaces 2016, 8, 827–833. [Google Scholar] [CrossRef]
- Cho, H.; Oh, D.E.; Côté, S.; Lee, C.-S.; Kim, T.H. Orientation-Guided Immobilization of Probe DNA on swCNT-FET for Enhancing Sensitivity of EcoRV Detection. Nano Lett. 2023; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Chand, R.; Han, D.; Shin, I.-S.; Kim, Y.-S. An Electrochemical Assay for Restriction Endonuclease Activity Using Graphene Monolayer. J. Electrochem. Soc. 2014, 161, B261. [Google Scholar] [CrossRef]
- Yu, S.H.; Kim, T.H. T-T Mismatch-Based Electrochemical Aptasensor for Ultratrace Level Detection of Hg2+ Using Electrochemically Reduced Graphene Oxide-Modified Electrode. J. Biomed. Nanotechnol. 2019, 15, 1824–1831. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Lei, K.F.; Tsai, S.-W.; Tsang, N.-M. Development of Graphene-Based Sensors on Paper Substrate for the Measurement of pH Value of Analyte. BioChip J. 2016, 10, 182–188. [Google Scholar] [CrossRef]
- Labroo, P.; Cui, Y. Electrical, Enzymatic Graphene Biosensing of 5-Aminosalicylic Acid. Analyst 2013, 138, 1325–1328. [Google Scholar] [CrossRef]
- Palanisamy, S.; Ku, S.; Chen, S.-M. Dopamine Sensor Based on a Glassy Carbon Electrode Modified with a Reduced Graphene Oxide and Palladium Nanoparticles Composite. Microchim. Acta 2013, 180, 1037–1042. [Google Scholar] [CrossRef]
- Lee, J.; Samson, A.A.S.; Yim, Y.; Kim, S.-Y.; Jeon, N.L.; Min, D.-H.; Song, J.M. A FRET Assay for the Quantitation of Inhibitors of Exonuclease EcoRV by Using Parchment Paper Inkjet-Printed with Graphene Oxide and FAM-Labelled DNA. Microchim. Acta 2019, 186, 211. [Google Scholar] [CrossRef] [PubMed]
- Shahriary, L.; Athawale, A. Graphene Oxide Synthesized by Using Modified Hummers Approach. Renew. Energy Environ. Eng. 2014, 2, 58–63. [Google Scholar]
- Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and Controllable Electrochemical Reduction of Graphene Oxide and Its Applications. J. Mater. Chem. 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Chen, L.; Tang, Y.; Wang, K.; Liu, C.; Luo, S. Direct Electrodeposition of Reduced Graphene Oxide on Glassy Carbon Electrode and Its Electrochemical Application. Electrochem. Commun. 2011, 13, 133–137. [Google Scholar] [CrossRef]
- Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.D.; Stankovich, S.; Jung, I.; Field, D.A.; Ventrice, C.A.; et al. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy. Carbon 2009, 47, 145–152. [Google Scholar] [CrossRef]
- Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W.R.W. Graphene Production via Electrochemical Reduction of Graphene Oxide: Synthesis and Characterisation. Chem. Eng. J. 2014, 251, 422–434. [Google Scholar] [CrossRef]
- William, R.V.; Das, G.M.; Dantham, V.R.; Laha, R. Enhancement of Single Molecule Raman Scattering Using Sprouted Potato Shaped Bimetallic Nanoparticles. Sci. Rep. 2019, 9, 10771. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Huang, Y.; Lai, K.; Rasco, B.A.; Fan, Y. Analysis of Trace Methylene Blue in Fish Muscles Using Ultra-Sensitive Surface-Enhanced Raman Spectroscopy. Food Control 2016, 65, 99–105. [Google Scholar] [CrossRef]
- Naujok, R.R.; Duevel, R.V.; Corn, R.M. Fluorescence and Fourier Transform Surface-Enhanced Raman Scattering Measurements of Methylene Blue Adsorbed onto a Sulfur-Modified Gold Electrode. Langmuir 1993, 9, 1771–1774. [Google Scholar] [CrossRef]
- Jang, S.J.; Lee, C.-S.; Kim, T.H. α-Synuclein Oligomer Detection with Aptamer Switch on Reduced Graphene Oxide Electrode. Nanomaterials 2020, 10, 832. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, Y.; Ji, X.; He, Z. Enzymatic Polymerization-Based Formation of Fluorescent Copper Nanoparticles for the Nuclease Assay. Sens. Actuators B Chem. 2017, 239, 262–269. [Google Scholar] [CrossRef]
- Hu, J.; Liu, M.; Zhang, C. Construction of Tetrahedral DNA-Quantum Dot Nanostructure with the Integration of Multistep Förster Resonance Energy Transfer for Multiplex Enzymes Assay. ACS Nano 2019, 13, 7191–7201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, D.E.; Kim, H.B.; Kim, T.H. Electrochemical DNA Cleavage Sensing for EcoRV Activity and Inhibition with an ERGO Electrode. Biosensors 2024, 14, 73. https://doi.org/10.3390/bios14020073
Oh DE, Kim HB, Kim TH. Electrochemical DNA Cleavage Sensing for EcoRV Activity and Inhibition with an ERGO Electrode. Biosensors. 2024; 14(2):73. https://doi.org/10.3390/bios14020073
Chicago/Turabian StyleOh, Da Eun, Hyun Beom Kim, and Tae Hyun Kim. 2024. "Electrochemical DNA Cleavage Sensing for EcoRV Activity and Inhibition with an ERGO Electrode" Biosensors 14, no. 2: 73. https://doi.org/10.3390/bios14020073
APA StyleOh, D. E., Kim, H. B., & Kim, T. H. (2024). Electrochemical DNA Cleavage Sensing for EcoRV Activity and Inhibition with an ERGO Electrode. Biosensors, 14(2), 73. https://doi.org/10.3390/bios14020073