Enhanced BSA Detection Precision: Leveraging High-Performance Dual-Gate Ion-Sensitive Field-Effect-Transistor Scheme and Surface-Treated Sensing Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Specifications
2.2. Fabrication of the DG-FET as Transducer for the BSA-Detection Biosensor Platform
2.3. DG Structure and Capacitive Coupling Effect of Transducer
2.4. Fabrication of the EG for the BSA-Detection Biosensor Platform
2.5. Device Characterization
3. Results and Discussion
3.1. Electrical Characteristics of the DG-FET
3.2. Sensing Characteristics of the DG-FET-Based BSA-Detection Biosensor Platform
3.3. Selectivity Characteristics of the DG-FET-Based BSA-Detection Biosensor
3.4. Reliability and Stability of the DG-FET-Based BSA-Detection Biosensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, S.; Das, S.; Ghangrekar, M.M. The COVID-19 Pandemic: Biological Evolution, Treatment Options and Consequences. Innov. Infrastruc. Solut. 2020, 5, 76. [Google Scholar] [CrossRef]
- Qazi, S.; Sheikh, K.; Faheem, M.; Khan, A.; Raza, K. A Coadunation of Biological and Mathematical Perspectives on the Pandemic COVID-19: A Review. Coronaviruses 2021, 2, 5–20. [Google Scholar] [CrossRef]
- Russell, C.J.; Hu, M.; Okda, F.A. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol. 2018, 26, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Suzuki, T. Low-PH Stability of Influenza A Virus Sialidase Contributing to Virus Replication and Pandemic. Biol. Pharm. Bull. 2015, 38, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Bassey, B.E.; Atsu, J.U. Global Stability Analysis of the Role of Multi-Therapies and Non-Pharmaceutical Treatment Protocols for COVID-19 Pandemic. Chaos Solitons Fractals 2021, 143, 110574. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, I. Stability Evaluation of Vaccines: WHO Approach. Biologicals 2009, 37, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Oude Blenke, E.; Örnskov, E.; Schöneich, C.; Nilsson, G.A.; Volkin, D.B.; Mastrobattista, E.; Almarsson, Ö.; Crommelin, D.J.A. The Storage and In-Use Stability of MRNA Vaccines and Therapeutics: Not A Cold Case. J. Pharm. Sci. 2023, 112, 386–403. [Google Scholar] [CrossRef] [PubMed]
- Crommelin, D.J.A.; Volkin, D.B.; Hoogendoorn, K.H.; Lubiniecki, A.S.; Jiskoot, W. The Science Is There: Key Considerations for Stabilizing Viral Vector-Based Covid-19 Vaccines. J. Pharm. Sci. 2021, 110, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Bajrovic, I.; Schafer, S.C.; Romanovicz, D.K.; Croyle, M.A. Novel Technology for Storage and Distribution of Live Vaccines and Other Biological Medicines at Ambient Temperature. Sci. Adv. 2020, 6, eaau4819. [Google Scholar] [CrossRef]
- Requirements for Vi Polysaccharide Typhoid Vaccine, Annex 1, TRS No. 840. Available online: https://www.who.int/publications/m/item/vi-polysaccharide-typhoid-vaccine-annex-1-trs-no-840 (accessed on 16 January 2024).
- Khamehchian, S.; Madani, R.; Golchinfar, F.; Taghavian, M. Development of a Sandwich Enzyme-Linked Immunosorbent Assay (ELISA) for Determining of Bovine Serum Albumin (BSA) in Trivalent Measles-Mump-Rubella (MMR) Vaccines. Hum. Vaccin. 2008, 4, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Loughney, J.W.; Lancaster, C.; Ha, S.; Rustandi, R.R. Residual Bovine Serum Albumin (BSA) Quantitation in Vaccines Using Automated Capillary Western Technology. Anal. Biochem. 2014, 461, 49–56. [Google Scholar] [CrossRef]
- Wang, Q.L.; Li, J.; Li, X.D.; Tao, W.J.; Ding, L.S.; Luo, P.; Qing, L.-S. An Efficient Direct Competitive Nano-ELISA for Residual BSA Determination in Vaccines. Anal. Bioanal. Chem. 2017, 409, 4607–4614. [Google Scholar] [CrossRef]
- Compton, S.J.; Jones, C.G. Mechanism of Dye Response and Interference in the Bradford Protein Assay. Anal. Biochem. 1985, 151, 369–374. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford Method for Protein Quantitation. In The Protein Protocols Handbook; Springer: Berlin/Heidelberg, Germany, 2009; pp. 17–24. [Google Scholar] [CrossRef]
- Hammond, J.B.W.; Kruger, N.J. The Bradford Method for Protein Quantitation BT—New Protein Techniques. Methods Mol. Biol. 1988, 3, 25–32. [Google Scholar] [CrossRef]
- Van der Schoot, B.H.; Bergveld, P. ISFET Based Enzyme Sensors. Biosensors 1987, 3, 161–186. [Google Scholar] [CrossRef]
- Jimenez-Jorquera, C.; Orozco, J.; Baldi, A. ISFET Based Microsensors for Environmental Monitoring. Sensors 2009, 10, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Sun, P.; Xiao, G.; Tang, Q.; Sun, X.; Zhao, H.; Zhao, S.; Lu, H.; Yue, Z. ISFET-Based Sensors for (Bio)Chemical Applications: A Review. Electrochem. Sci. Adv. 2023, 3, e2100207. [Google Scholar] [CrossRef]
- Keeble, L.; Moser, N.; Rodriguez-Manzano, J.; Georgiou, P. ISFET-Based Sensing and Electric Field Actuation of DNA for On-Chip Detection: A Review. IEEE Sens. J. 2020, 20, 11044–11065. [Google Scholar] [CrossRef]
- Toumazou, C.; Georgiou, P. Piet Bergveld—40 Years of ISFET Technology: From Neuronal Sensing to DNA Sequencing. Electron. Lett. 2011, 47, 7–12. [Google Scholar] [CrossRef]
- Parizi, K.B.; Yeh, A.J.; Poon, A.S.Y.; Wong, H.S.P. Exceeding Nernst Limit (59 mV/PH): CMOS-Based PH Sensor for Autonomous Applications. Technical Digest. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 10–13 December 2012; pp. 24–27. [Google Scholar] [CrossRef]
- Chen, Y.T.; Sarangadharan, I.; Sukesan, R.; Hseih, C.Y.; Lee, G.Y.; Chyi, J.I.; Wang, Y.L. High-Field Modulated Ion-Selective Field-Effect-Transistor (FET) Sensors with Sensitivity Higher than the Ideal Nernst Sensitivity. Sci. Rep. 2018, 8, 8300. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Hseih, C.-Y.; Sarangadharan, I.; Sukesan, R.; Lee, G.-Y.; Chyi, J.-I.; Wang, Y.-L. Beyond the Limit of Ideal Nernst Sensitivity: Ultra-High Sensitivity of Heavy Metal Ion Detection with Ion-Selective High Electron Mobility Transistors. ECS J. Solid State Sci. Technol. 2018, 7, Q176–Q183. [Google Scholar] [CrossRef]
- Dwivedi, P.; Singh, R.; Chauhan, Y.S. Crossing the Nernst Limit (59 MV/PH) of Sensitivity through Tunneling Transistor-Based Biosensor. IEEE Sens. J. 2021, 21, 3233–3240. [Google Scholar] [CrossRef]
- Knopfmacher, O.; Tarasov, A.; Fu, W.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Lett. 2010, 10, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- Spijkman, M.; Smits, E.C.P.; Cillessen, J.F.M.; Biscarini, F.; Blom, P.W.M.; De Leeuw, D.M. Beyond the Nernst-Limit with Dual-Gate ZnO Ion-Sensitive Field-Effect Transistors. Appl. Phys. Lett. 2011, 98, 043502-3. [Google Scholar] [CrossRef]
- Harb, A.; Istanbullu, M. High Sensitive PH Sensor with Graphene Based Dual-Gate ISFET. J. NanoSci. Adv. Mater. 2023, 2, 19–24. [Google Scholar] [CrossRef]
- Zain, A.S.M.; Dinar, A.M.; Salehuddin, F.; Hazura, H.; Hanim, A.R.; Idris, S.K.; Hamid, A.M.A. Beyond Nernst Sensitivity of Ion Sensitive Field Effect Transistor Based on Ultra-Thin Body Box FDSOI. J. Phys. Conf. Ser. 2020, 1502, 012048. [Google Scholar] [CrossRef]
- Kim, Y.-U.; Cho, W.J. Self-Sensitivity Amplifiable Dual-Gate Ion-Sensitive Field-Effect Transistor Based on a High-k Engineered Dielectric Layer. Jpn. J. Appl. Phys. 2023, 62, SC1056. [Google Scholar] [CrossRef]
- Hyun, T.H.; Cho, W.J. High-Performance FET-Based Dopamine-Sensitive Biosensor Platform Based on SOI Substrate. Biosensors 2023, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.T.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Separate Structure Extended Gate H+-Ion Sensitive Field Effect Transistor on a Glass Substrate. Sens. Actuators B Chem. 2000, 71, 106–111. [Google Scholar] [CrossRef]
- Chi, L.L.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Study on Extended Gate Field Effect Transistor with Tin Oxide Sensing Membrane. Mater. Chem. Phys. 2000, 63, 19–23. [Google Scholar] [CrossRef]
- Yin, L.T.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Study of Indium Tin Oxide Thin Film for Separative Extended Gate ISFET. Mater. Chem. Phys. 2001, 70, 12–16. [Google Scholar] [CrossRef]
- Pinto, J.V.; Branquinho, R.; Barquinha, P.; Alves, E.; Martins, R.; Fortunato, E. Extended-Gate ISFETs Based on Sputtered Amorphous Oxides. IEEE/OSA J. Disp. Technol. 2013, 9, 729–734. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Dai, H.; Cai, D.; Guo, C.; Xiao, Y.; Ma, X.; Wang, Y. A Bio-Inspired Extended-Gate Metal-Oxide-Semiconductor Field-Effect-Transistor for Highly Sensitive Amino Acid Enantiodiscrimination. Anal. Chem. 2021, 93, 14425–14431. [Google Scholar] [CrossRef] [PubMed]
- Schöning, M.J.; Poghossian, A. Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions. Electroanalysis 2006, 18, 1893–1900. [Google Scholar] [CrossRef]
- Yu, J.; Gao, G.; Sun, B.; Liang, L.; Shen, Q.; Zhang, Y.; Cao, H. Optimization of Sensing-Pad Functionalizing Strategy toward Separative Extended-Gate FET Biosensors for PSA Detection. J. Pharm. Biomed. Anal. 2022, 211, 114597. [Google Scholar] [CrossRef]
- Koike, K.; Sasaki, T.; Hiraki, K.; Ike, K.; Hirofuji, Y.; Yano, M. Characteristics of an Extended Gate Field-Effect Transistor for Glucose Sensing Using an Enzyme-Containing Silk Fibroin Membrane as the Bio-Chemical Component. Biosensors 2020, 10, 57. [Google Scholar] [CrossRef]
- Firek, P.; Cichomski, M.; Waskiewicz, M.; Piwonski, I.; Kisielewska, A. ISFET Structures with Chemically Modified Membrane for Bovine Serum Albumin Detection. Circuit World 2018, 44, 45–50. [Google Scholar] [CrossRef]
- Ebner, A.; Hinterdorfer, P.; Gruber, H.J. Comparison of Different Aminofunctionalization Strategies for Attachment of Single Antibodies to AFM Cantilevers. Ultramicroscopy 2007, 107, 922–927. [Google Scholar] [CrossRef]
- Riener, C.K.; Stroh, C.M.; Ebner, A.; Klampfl, C.; Gall, A.A.; Romanin, C.; Lyubchenko, Y.L.; Hinterdorfer, P.; Gruber, H.J. Simple Test System for Single Molecule Recognition Force Microscopy. Anal. Chim. Acta 2003, 479, 59–75. [Google Scholar] [CrossRef]
- Chin, Y.L.; Chou, J.C.; Sun, T.P.; Liao, H.K.; Chung, W.Y.; Hsiung, S.K. A Novel SnO2/Al Discrete Gate ISFET PH Sensor with CMOS Standard Process. Sens. Actuators B Chem. 2001, 75, 36–42. [Google Scholar] [CrossRef]
- Batista, P.D.; Mulato, M.; Graeff, C.F.D.O.; Fernandez, F.J.R.; Marques, F.D.C. SnO2 Extended Gate Field-Effect Transistor as PH Sensor. Braz. J. Phys. 2006, 36, 478–481. [Google Scholar] [CrossRef]
- Liao, H.K.; Yang, E.S.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Temperature and Optical Characteristics of Tin Oxide Membrane Gate ISFET. IEEE Trans. Electron Devices 1999, 46, 2278–2281. [Google Scholar] [CrossRef]
- Liao, H.K.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Study of Amorphous Tin Oxide Thin Films for ISFET Applications. Sens. Actuators B Chem. 1998, 50, 104–109. [Google Scholar] [CrossRef]
- Jamasb, S.; Collins, S.; Smith, R.L. A Physical Model for Drift in PH ISFETs. Sens. Actuators B Chem. 1998, 49, 146–155. [Google Scholar] [CrossRef]
- Chen, D.Y.; Chan, P.K. An Intelligent ISFET Sensory System with Temperature and Drift Compensation for Long-Term Monitoring. IEEE Sens. J. 2008, 8, 1948–1959. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Sinha, S.; Sahu, N.; Majumder, S.; Narang, P.; Mukhiya, R. Modeling and Simulation of Temperature Drift for ISFET-Based PH Sensor and Its Compensation through Machine Learning Techniques. Int. J. Circuit Theory Appl. 2019, 47, 954–970. [Google Scholar] [CrossRef]
- Park, J.K.; Jang, H.J.; Park, J.T.; Cho, W.J. SOI Dual-Gate ISFET with Variable Oxide Capacitance and Channel Thickness. Solid State Electron 2014, 97, 2–7. [Google Scholar] [CrossRef]
- Masahara, M.; Liu, Y.; Sakamoto, K.; Endo, K.; Matsukawa, T.; Ishii, K.; Sekigawa, T.; Yamauchi, H.; Tanoue, H.; Kanemaru, S.; et al. Demonstration, Analysis, and Device Design Considerations for Independent DG MOSFETs. IEEE Trans. Electron Devices 2005, 52, 2046–2053. [Google Scholar] [CrossRef]
- Chen, S.; Bomer, J.G.; Carlen, E.T.; Van Den Berg, A. Al2O3/Silicon NanoISFET with near Ideal Nernstian Response. Nano Lett. 2011, 11, 2334–2341. [Google Scholar] [CrossRef]
- Lim, H.K.; Member, S.; Fossum, J.G. Threshold Voltage of Thin-Film Silicon-on-Lnsulator (SOI) MOSFET’s. IEEE Trans. Electron Devices 1983, 30, 1244–1251. [Google Scholar] [CrossRef]
- Eminente, S.; Cristoloveanu, S.; Clerc, R.; Ohata, A.; Ghibaudo, G. Ultra-Thin Fully-Depleted SOI MOSFETs: Special Charge Properties and Coupling Effects. Solid State Electron 2007, 51, 239–244. [Google Scholar] [CrossRef]
- Ohata, A.; Pretet, J.; Cristoloveanu, S.; Zaslavsky, A. Correct Biasing Rules for Virtual DG Mode Operation in SOI-MOSFETs. IEEE Trans. Electron Devices 2005, 52, 124–125. [Google Scholar] [CrossRef]
- Bogart, K.H.A.; Cushing, J.P.; Fisher, E.R. Effects of Plasma Processing Parameters on the Surface Reactivity of OH(X2II) in Tetraethoxysilane/O2 Plasmas during Deposition of SiO2. J. Phys. Chem. B 1997, 101, 10016–10023. [Google Scholar] [CrossRef]
- Roy, N.C.; Hafez, M.G.; Talukder, M.R. Characterization of Atmospheric Pressure H2O/O2 Gliding Arc Plasma for the Production of OH and O Radicals. Phys. Plasmas 2016, 23, 83502. [Google Scholar] [CrossRef]
- Lyubchenko, Y.; Shlyakhtenko, L.; Harrington, R.; Oden, P.; Lindsay, S. Atomic Force Microscopy of Long DNA: Imaging in Air and under Water. Proc. Natl. Acad. Sci. USA 1993, 90, 2137–2140. [Google Scholar] [CrossRef]
- Crampton, N.; Bonass, W.A.; Kirkham, J.; Thomson, N.H. Studying Silane Mobility on Hydrated Mica Using Ambient AFM. Ultramicroscopy 2006, 106, 765–770. [Google Scholar] [CrossRef]
Electrical Parameters | VTH (V) | SS (mV/dec) | ION/IOFF (A/A) | μFE (cm2/V·s) |
---|---|---|---|---|
SG mode | 0.13 | 137.76 | 1.52 × 108 | 140.51 |
DG mode | −0.25 | 213.56 | 8.44 × 107 | 384.55 |
Membrane Type | Operation Mode | Sensitivity [mV/dec] | |||
---|---|---|---|---|---|
BSA | Na+ | Ca2+ | K+ | ||
SiO2 | SG mode | 14.89 (σ = 0.0021) | 2.67 (σ = 0.0012) | 1.67 (σ = 0.0032) | 1.19 (σ = 0.0044) |
DG mode | 70.66 (σ = 0.0119) | 12.81 (σ = 0.0037) | 7.96 (σ = 0.0021) | 5.72 (σ = 0.0016) | |
SnO2 | SG mode | 29.25 (σ = 0.0061) | 3.28 (σ = 0.0018) | 2.15 (σ = 0.0011) | 1.55 (σ = 0.0019) |
DG mode | 140.91 (σ = 0.0121) | 16.02 (σ = 0.0046) | 10.34 (σ = 0.0028) | 7.56 (σ = 0.0037) |
Membrane Type | Operation Mode | Sensitivity [mV/dec] | Drift [mV/h] | Sensitivity- Drift Ratio [%] |
---|---|---|---|---|
SiO2 | SG mode | 14.83 (σ = 0.0023) | 4.51 (σ = 0.0043) | 328.82 |
DG mode | 71.59 (σ = 0.0137) | 9.32 (σ = 0.0047) | 768.13 | |
SnO2 | SG mode | 29.08 (σ = 0.0063) | 4.32 (σ = 0.0028) | 673.15 |
DG mode | 141.19 (σ = 0.0144) | 10.41 (σ = 0.0065) | 1356.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-U.; Cho, W.-J. Enhanced BSA Detection Precision: Leveraging High-Performance Dual-Gate Ion-Sensitive Field-Effect-Transistor Scheme and Surface-Treated Sensing Membranes. Biosensors 2024, 14, 141. https://doi.org/10.3390/bios14030141
Kim Y-U, Cho W-J. Enhanced BSA Detection Precision: Leveraging High-Performance Dual-Gate Ion-Sensitive Field-Effect-Transistor Scheme and Surface-Treated Sensing Membranes. Biosensors. 2024; 14(3):141. https://doi.org/10.3390/bios14030141
Chicago/Turabian StyleKim, Yeong-Ung, and Won-Ju Cho. 2024. "Enhanced BSA Detection Precision: Leveraging High-Performance Dual-Gate Ion-Sensitive Field-Effect-Transistor Scheme and Surface-Treated Sensing Membranes" Biosensors 14, no. 3: 141. https://doi.org/10.3390/bios14030141
APA StyleKim, Y. -U., & Cho, W. -J. (2024). Enhanced BSA Detection Precision: Leveraging High-Performance Dual-Gate Ion-Sensitive Field-Effect-Transistor Scheme and Surface-Treated Sensing Membranes. Biosensors, 14(3), 141. https://doi.org/10.3390/bios14030141