Review of the Capacity to Accurately Detect the Temperature of Human Skin Tissue Using the Microwave Radiation Method
Abstract
:1. Introduction
2. Application of Microwave Radiometry in Biomedical Research
2.1. Contact Thermometry by Microwave Radiometers
2.2. Non-Contact Thermometry by Microwave Radiometers
3. Current Limitations of Microwave Radiometry
4. Research Progress and Analysis of Key Technologies
4.1. Optimization of Near-Field Radiation Characteristics of Temperature Measurement Antenna and Antenna Structural Parameter Inversion Technology for Pencil-Shaped Beam Distribution
4.2. Quantification of Uncertainties in Architectural Performance Bottlenecks of Microwave Radiometers and Dual-Electro-Thermal Blackbody Calibration Sources
4.3. Near-Field Temperature Contribution Weight Function Measurement of Skin Tissue and the Core Difficulty of Temperature Inversion Technology
5. Implementation Routes of Key Technologies
5.1. A Priori Knowledge Neural Network Optimization Model Combining Multi-Node Matching with Q-Value Constraints and Multi-Objective Function Constraints
- (a)
- Investigate the factors limiting the voltage standing wave ratio (VSWR) for each structural segment of a temperature-measuring antenna under octave conditions; enhance the antenna’s power transmission efficiency by optimizing VSWR parameters; introduce a Q-constrained multi-branch broadband matching approach utilizing Chebyshev and multi-branch matching theories.
- (b)
- Investigate the drawbacks of manual tuning in antenna optimization; implement an optimization algorithm that integrates swarm intelligence with neural networks; simultaneously target the optimization of the main lobe beam, side-lobe, and transition zone; establish the constraint ranges for various sub-objective functions; adjust weights to enhance the pointing accuracy of the temperature measurement antenna.
- (c)
- Overcome the challenge of excessive data requirements for inverse modeling of the antenna structure; explore a neural network model informed by a priori knowledge; as illustrated in Figure 2, employ multiple sub-forward neural networks (FNNs) for the structural parameter inversion of the antenna, incorporating prior knowledge and multiple indices, culminating in the development of a multi-index optimization system equipped with an ultra-narrow pencil beam temperature-measuring antenna.
5.2. Channel Phase Shifting Correction Algorithm and Calibration Link Uncertainty Calibration for Measuring Radiation Brightness Temperature Errors
- (a)
- Develop an error model for the microwave radiometer architecture focusing on key metrics like sensitivity and accuracy; examine how phase, amplitude, offset, and other errors affect radiometer output; devise a periodic phase-shifting error correction algorithm using a uniform polar circle combined with a phase modulation circuit to adjust the detected output data.
- (b)
- Propose a finite element method informed by forward and backward modeling theory to calibrate the scattering model of the calibration source; explore control strategies for the electro-thermal performance of the calibration source, refine its structure, and analyze the impact of the antenna beam on the brightness temperature transmission from the perspective of overall directional radiation temperature; trace the uncertainty in the calibration link and correct the transmission brightness temperature error.
5.3. Incoherent Skin Tissue Radiation Forward Model and Objective Function Constrained Deep Learning Combined Inversion Method
- (a)
- Define the relationship between the human skin tissue radiation brightness temperature and the weight function; study the temperature distribution across the human epidermis, dermis, subcutaneous tissue, and muscle layer utilizing C, X, and Ku frequency bands; formulate a mathematical representation of skin tissue heat transfer using an incoherent method; deduce the estimation equation for apparent brightness temperature when the human body’s transmissivity is zero; incorporate scattering effects and establish the forward model for radiation transmission of incoherent skin tissue, as illustrated in Figure 4.
- (b)
- Investigate the factors influencing the accuracy of temperature measurement in near-field conditions; examine the microwave radiation forward model for human skin tissue; determine the constraint range for temperature variations between adjacent skin tissue areas by calculating the contribution weight of each tissue layer’s brightness temperature; establish the objective function for the penalty function correction algorithm.
- (c)
- To enhance the accuracy, generalization, and robustness of the inversion algorithm, introduce a closed-loop high-precision forward and inversion modeling detection method for human tissue temperature measurement, as depicted in Figure 5. Begin by constructing a dataset and defining constraint conditions using the forward model; then, perform tests on human-simulated tissue fluids, skin tissues, and other samples, and collect clinical data to validate the inversion algorithm. A clinical experiment guided by test outcomes and evaluation metrics refines the forward model’s mathematical and physical relationships through comparisons of clinical and simulation data, thereby improving the method’s scientific validity.
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Health Observatory; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Pacheco, A.G.C.; Krohling, R.A. An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification. IEEE J. Biomed. Health Inform. 2021, 25, 3554–3563. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.X.; Fan, W.Q.; Zhou, C.L.; Hu, Y.; Xu, L.Q.; Zhang, T. Extraction and application of the biological microwave thermal information. J. Microw. 1987, 2, 63–71. [Google Scholar]
- Bocquet, B.; van de Velde, J.C.; Mamouni, A.; Leroy, Y.; Giaux, G.; Delannoy, J.; Delvalee, D. Microwave radiometric imaging at 3 GHz for the exploration of breast tumors. IEEE Trans. Microw. Theory Technol. 1990, 38, 791–793. [Google Scholar] [CrossRef]
- Alabaster, C.M. Permittivity of human skin in millimetre wave band. Electron. Lett. 2003, 39, 1521–1522. [Google Scholar] [CrossRef]
- Vesnin, S.; Turnbull, A.K.; Dixon, J.M.; Goryanin, I. Modern microwave thermometry for breast cancer. J. Mol. Imaging Dyn. 2017, 7, 1000136. [Google Scholar]
- Shevelev, O.; Petrova, M.; Smolensky, A.; Osmonov, B.; Toimatov, S.; Kharybina, T.; Karbainov, T.; Ovchinnikov, l.; Vesnin, S.; Tarakanov, A.; et al. Using medical microwave radiometry for brain temperature measurements. Drug Discov. Today 2022, 27, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Toutouzas, K.; Benetos, G.; Koutagiar, I.; Barampoutis, N.; Mitropoulou, F.; Davlouros, P.; Sfikakis, P.P.; Alexopoulos, D.; Stefanadis, C.; Siores, E.; et al. Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year: Results from a prospective multicenter study. Atherosclerosis 2017, 262, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulou, M.; Moldovan, C.; Toutouzas, K.; Tousoulis, D. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective. Curr. Opin. Pharmacol. 2018, 39, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.B.; Maccarini, P.F.; Salahi, S.; Colebeck, E.; Topsakal, E.; Pereira, P.J.S.; Limao-Vieira, P.; Stauffer, P.R. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism. Proc. SPIE 2013, 8584, 573–582. [Google Scholar]
- Pentazos, G.; Laskari, K.; Prekas, K.; Raftakis, J.; Sfikakis, P.P.; Siores, E. Microwave radiometry-derived thermal changes of small joints as additional potential biomarker in rheumatoid arthritis: A prospective pilot study. J. Clin. Rheumatol. 2018, 24, 259–263. [Google Scholar] [CrossRef]
- Laskari, K.; Pentazos, G.; Pitsilka, D.; Raftakis, J.; Konstantonis, G.; Toutouzas, K.; Siores, E.; Tektonidou, M.; Sfikakis, P.P. Joint microwave radiometry for inflammatory arthritis assessment. Rheumatology 2020, 59, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Tarakanov, A.V.; Ladanova, E.S.; Lebedenko, A.A.; Tarakanova, T.D.; Vesnin, S.G.; Kharybina, T.; Goryanin, I.I. Passive microwave radiometry (MWR) as a component of imaging diagnostics in Juvenile Idiopathic Arthritis (JIA). Rheumatology 2022, 2, 55–68. [Google Scholar]
- Zampeli, E.; Raftakis, I.; Michelongona, A.; Nikolaou, C.; Elezoglou, A.; Toutouzas, K.; Siores, E.; Sfikakis, P.P. Detection of subclinical synovial inflammation by microwave radiometry. PLoS ONE 2013, 8, e64606. [Google Scholar] [CrossRef] [PubMed]
- Levshinskii, V.; Galazis, C.; Losev, A.; Zamechnik, T.; Kharybina, T.; Vesnin, S.; Goryanin, I. Using AI and passive medical radiometry for diagnostics (MWR) of venous diseases. Comput. Meth. Programs Biomed. 2022, 215, 106611. [Google Scholar] [CrossRef]
- Arunachalam, K.; MacCarini, P.; De Luca, V.; Tognolatti, P.; Bardati, F.; Snow, B.; Stauffer, P. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms. IEEE Trans. Biomed. Eng. 2011, 58, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Kaprin, A.D.; Kostin, A.A.; Andryukhin, M.I.; Ivanenko, K.V.; Popov, S.V.; Shegai, P.V.; Kruglov, D.P.; Mangutov, F.S.; Leushin, V.Y.; Agasieva, S.V. Microwave radiometry in the diagnosis of various urological diseases. Biomed. Eng. Meditsinskaya Teknika 2019, 53, 87–91. [Google Scholar] [CrossRef]
- Tarakanov, A.V.; Tarakanov, A.A.; Vesnin, S.; Efremov, V.V.; Goryanin, I.I.; Roberts, N. Microwave radiometry (MWR) temperature measurement is related to symptom severity in patients with Low Back Pain (LBP). J. Bodyw. Mov. Ther. 2021, 26, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Spiliopoulos, S.; Theodosiadou, V.; Barampoutis, N.; Katsanos, K.; Davlouros, P.; Reppas, L.; Kitrou, P.; Palialexis, K.; Konstantos, C.; Siores, E.; et al. Multi-center feasibility study of microwave radiometry thermometry for non-invasive differential diagnosis of arterial disease in diabetic patients with suspected critical limb ischemia. J. Diabetes Complicat. 2017, 31, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Zinovyev, S.V. New Medical Technology—Functional Microwave Thermography: Experimental Study. KnE Energy. 2018, 3, 547. [Google Scholar] [CrossRef]
- Enander, B.; Larson, G. Microwave radiometric measurements of the temperature inside a body. Electron. Lett. 2007, 10, 317. [Google Scholar] [CrossRef]
- Barrett, A.H.; Myers, P.C. Subcutaneous temperatures: A method of noninvasive sensing. Science 1975, 190, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Scheeler, R.; Kuester, E.F.; Popovic, Z. Sensing depth of microwave radiation for internal body temperature measurement. IEEE Trans. Antennas Propag. 2014, 62, 1293–1303. [Google Scholar] [CrossRef]
- He, F. Study of Nondestructive Retrieval Method for the Measurement of Human Internal Temperature by Microwave. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2015. [Google Scholar]
- Park, W.; Jeong, J. Total power radiometer for medical sensor applications using matched and mismatched noise sources. Sensors 2017, 17, 2105. [Google Scholar] [CrossRef] [PubMed]
- Momenroodaki, P.; Haines, W.; Fromandi, M.; Popovic, Z. Noninvasive internal body temperature tracking with near-field microwave radiometry. IEEE Trans. Microw. Theory Technol. 2018, 66, 2535–2545. [Google Scholar] [CrossRef]
- Vesnin, S.G.; Sedankin, M.K.; Ovchinnikov, L.M.; Gudkov, A.G.; Leushin, V.Y.; Sidorov, I.A.; Goryanin, I.I. Portable microwave radiometer for wearable devices. Sens. Actuator A-Phys. 2021, 318, 112506. [Google Scholar] [CrossRef]
- Villa, E.; Arteaga-Marrero, N.; Leon, G.H.; Herran, L.F.; Mateos, I.; Ruiz-Alzola, J. A 3.5-GHz Pseudo-correlation type radiometer for biomedical applications. AEU-Int. J. Electron. Commun. 2021, 130, 153558. [Google Scholar] [CrossRef]
- Streeter, R.; Botello, G.S.; Hall, K.; Popovic, Z. Correlation radiometry for subcutaneous temperature measurements. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 230–237. [Google Scholar] [CrossRef]
- Issac, J.P.; Sugumar, S.P.; Arunachalam, K. Self-balanced near-field microwave radiometer for passive tissue thermometry. IEEE Sens. J. 2022, 22, 6544–6552. [Google Scholar] [CrossRef]
- Tian, H.; Zhuge, X.D.; Hu, A.Y.; Dou, Q.L.; Miao, J.G. Physical temperature sensing of targets with shelters under indoor scenes by a revised Ku band microwave radiometer. AEU-Int. J. Electron. Commun. 2024, 176, 155121. [Google Scholar] [CrossRef]
- Xiang, X.X.; Hu, Y.; Fan, W.Q.; Xu, L.Q. An S-band microwave cancer detection. J. Huazhong Univ. Sci. Technol. 1990, 4, 171–174. [Google Scholar]
- Li, E.Z.; Wang, J.Y.; Xu, L.Q.; Xiang, X.X. Clinical study on microwave thermal radiometer for detecting Nasopharyngeal Carcinoma. Pract. J. Cancer 1989, 4, 10–11. [Google Scholar]
- Li, E.Z.; Xu, L.Q.; Wang, J.Y.; Xiang, X.X. Microwave radiometry in the detection of Esophageal Cancer. Chin. J. Clin. Oncol. 1991, 18, 31–33. [Google Scholar]
- Hand, J.W.; Van Leeuwen, G.M.J.; Mizushina, S.; Van de Kamer, J.B.; Maruyama, K.; Sugiura, T.; Azzopardi, D.V.; Edwards, A.D. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling. Phys. Med. Biol. 2001, 46, 1885–1903. [Google Scholar] [CrossRef] [PubMed]
- Maruyma, K.; Mizushina, S.; Sugiura, T.; Van Leeuwen, G.M.J.; Hand, J.W.; Marrocco, G.; Bardati, F.; Edwards, A.D.; Azzopardi, D.; Land, D. Feasibility of noninvasive measurement of deep brain temperature in newborn infants by multifrequency microwave radiometry. IEEE Trans. Microw. Theory Tech. 2000, 48, 2141–2147. [Google Scholar]
- Sugiura, T.; Kouno, Y.; Hashizume, A.; Hirata, H.; Hand, J.W.; Okita, Y.; Mizushina, S. Five-band microwave radiometer system for non-invasive measurement of brain temperature in new-born infants: System calibration and its feasibility. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS), San Francisco, CA, USA, 1–5 September 2004; pp. 2292–2295. [Google Scholar]
- Birkelund, Y.; Klemetsen, Ø.; Jacobsen, S.K.; Arunachalam, K.; Maccarini, P.; Stauffer, P.R. Vesicoureteral Reflux in children: A phantom study of microwave heating and radiometric thermometry of Pediatric Bladder. IEEE Trans. Biomed. Eng. 2011, 58, 3269–3278. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.K.; Klemetsen, Ø. Improved detectability in medical microwave radio-thermometers as obtained by active antennas. IEEE Trans. Biomed. Eng. 2008, 55, 2778. [Google Scholar] [CrossRef] [PubMed]
- Klemetsen, Ø.; Birkelund, Y.; Jacobsen, S.K.; Maccarini, P.F.; Stauffer, P.R. Design of medical radiometer front-end for improved performance. Prog. Electromagn. Res. 2011, 27, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Klemetsen, Ø.; Jacobsen, S.K.; Birkelund, Y. Radiometric temperature reading of a hot ellipsoidal object inside the oral cavity by a shielded microwave antenna put flush to the cheek. Phys. Med. Biol. 2012, 57, 2633–2652. [Google Scholar] [CrossRef] [PubMed]
- Klemetsen, Ø.; Jacobsen, S.K. Improved radiometric performance attained by an elliptical microwave antenna with suction. IEEE Trans. Biomed. Eng. 2012, 59, 263–271. [Google Scholar] [CrossRef]
- Jacobsen, S.K.; Klemetsen, Ø. Active antennas in medical microwave radiometry. Electron. Lett. 2007, 43, 606–608. [Google Scholar] [CrossRef]
- Arunachalam, K.; Stauffer, P.R.; Maccarini, P.F.; Jacobsen, S.; Sterzer, F. Characterization of a digital microwave radiometry system for noninvasive thermometry using a temperature-controlled homogeneous test load. Phys. Med. Biol. 2008, 53, 883–901. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.B.; Stauffer, P.R.; Maccarini, P.F. Monitoring Brown Fat Metabolic activity using microwave radiometry: Antenna design and frequency selection. In Proceedings of the 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-systems for Radar, Telecommunications, and Biomedical Applications (BenMAS), Philadelphia, PA, USA, 26 September 2014; pp. 1–3. [Google Scholar]
- Rodrigues, D.B.; Maccarini, P.F.; Salahi, S.; Oliveira, T.R.; Pereira, P.J.S.; Limao-Vieira, P.; Snow, B.W.; Reudink, D.; Stauffer, P.R. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Trans. Biomed. Eng. 2014, 61, 2154–2160. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, P.R.; Snow, B.W.; Rodrigues, D.B.; Salahi, S.; Oliveira, T.R.; Reudink, D.; Maccarini, P.F. Non-invasive measurement of brain temperature with microwave radiometry: Demonstration in a head phantom and clinical case. Neuradiol. J. 2014, 27, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Maccarini, P.F.; Shah, A.; Palani, S.Y.; Pearce, D.V.; Vardhan, M.; Oliveira, T.R.; Stauffer, P.R.; Rodrigues, D.B.; Reudink, D.; Salahi, S.; et al. A novel compact microwave radiometric sensor to noninvasively track deep tissue thermal profiles. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 7–10 September 2015; pp. 690–693. [Google Scholar]
- Popovic, Z.; Momenroodaki, P.; Scheeler, R. Toward wearable wireless thermometers for internal body temperature measurements. IEEE Commun. Mag. 2014, 52, 118–125. [Google Scholar] [CrossRef]
- Haines, W.; Momenroodaki, P.; Berry, E.; Fromandi, M.; Popovic, Z. Wireless system for continuous monitoring of core body temperature. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 541–543. [Google Scholar]
- Ravi, V.M.; Sharma, A.K.; Arunachalam, K. Pre-clinical testing of microwave radiometer and a pilot study on the screening inflammation of knee joints. Bioelectromagnetics 2019, 40, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Tarakanov, A.V.; Tarakanov, A.A.; Kharybina, T.; Goryanin, I. Treatment and companion diagnostics of lower back pain using Self-Controlled Energo-Neuroadaptive Regulator (SCENAR) and Passive Microwave Radiometry (MWR). Diagnostics 2022, 12, 1220. [Google Scholar] [CrossRef] [PubMed]
- Bonds, Q.; Weller, T.; Roeder, B.; Herzig, P. A Total Power Radiometer (TPR) and measurement test bed for non-contact biomedical sensing applications. In Proceedings of the 2009 IEEE 10th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, USA, 20–21 April 2009; pp. 1–5. [Google Scholar]
- Bonds, Q. A Microwave Radiometer for Close Proximity Core Body Temperature Monitoring: Design, Development, and Experimentation. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2010. [Google Scholar]
- Bonds, Q.; Weller, T.; Roeder, B.; Herzig, P. A tunable Cavity Backed Slot Antenna (CBSA) for close proximity biomedical sensing applications. In Proceedings of the 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), Tel Aviv, Israel, 9–11 November 2009; pp. 1–5. [Google Scholar]
- Bonds, Q.; Gerig, J.; Weller, T.M.; Herzig, P. Towards core body temperature measurement via close proximity radiometric sensing. IEEE Sens. J. 2012, 12, 519–526. [Google Scholar] [CrossRef]
- Pi, Z.F. Research on Microwave Radiometer Antenna for Human Body Temperature Measurement. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2015. [Google Scholar]
- Stephan, K.D.; Mead, J.B.; Pozar, D.M.; Wang, L.; Pearce, J.A. A near field focused microstrip array for a radiometric temperature sensor. IEEE Trans. Antennas Propag. 2007, 55, 1199–1203. [Google Scholar] [CrossRef]
- Ravi, V.M.; Arunachalam, K. SIW slot antenna for passive measurement of thermal anomalies in biological tissues. IET Microw. Antennas Propag. 2018, 12, 1048–1053. [Google Scholar] [CrossRef]
- Sun, G.M.; Ma, P.; Liu, J.; Zhang, K.; Sun, Z.L.; Wu, Q.; Wang, H.; Liu, Y.M. Design and implementation of a novel interferometric microwave radiometer for human body temperature measurement. Sensors 2021, 21, 1619. [Google Scholar] [CrossRef]
- Sun, G.M.; Liu, J.; Ma, J.Y.; Zhang, K.; Sun, Z.L.; Wu, Q.; Wang, H.; Liu, Y.M. Design and implementation of multiband noncontact temperature-measuring microwave radiometer. Micromachines 2021, 12, 1202. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, R.Q.; Sun, G.M.; Zhu, Y.X.; Gao, W.Y.; Liu, Y.X. Design and implementation of high sensitivity microwave radiometer. AEU-Int. J. Electron. Commun. 2023, 170, 154800. [Google Scholar] [CrossRef]
- Tian, H.; Zhuge, X.D.; Hu, A.Y.; Dou, Q.L.; Miao, J.G. A novel noncontact Ku-band microwave radiometer for human body temperature measurements. Prog. Electromagn. Res. 2023, 178, 13–36. [Google Scholar] [CrossRef]
- Liu, J.; Cai, X.Y.; Liu, Y.X.; Sun, Z.L.; Sun, G.M. Closed-loop high precision human tissue temperature measurements using a joint forward and inverse method. Biomed. Signal Process. Control 2024, 93, 106196. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, L.; Yang, X.S.; Huang, H.; Wang, B.Z. An efficient artificial neural network model for inverse design of metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1013–1017. [Google Scholar] [CrossRef]
- Xiao, L.Y.; Shao, W.; Jin, F.L.; Wang, B.Z. Multi-parameter modeling with ANN for antenna design. IEEE Trans. Antennas Propag. 2018, 66, 3718–3723. [Google Scholar] [CrossRef]
- Xiao, L.Y.; Shao, W.; Jin, F.L.; Wang, B.Z.; Liu, Q.H. Inverse artificial neural network for multi-objective antenna design. IEEE Trans. Antennas Propag. 2021, 69, 6651–6659. [Google Scholar] [CrossRef]
- Naseri, P.; Hum, S.V. A Generative machine learning-based approach for inverse design of multilayer metasurfaces. IEEE Trans. Antennas Propag. 2021, 69, 5725–5739. [Google Scholar] [CrossRef]
- Goryanin, I.; Karbainov, S.; Shevelev, O.; Tarakanov, A.; Redpath, K.; Vesnin, S.; Ivanov, Y. Passive microwave radiometry in biomedical studies. Drug Discov. Today 2020, 25, 757–763. [Google Scholar] [CrossRef]
- Chen, R.H.; Luo, J.; Hu, A.Y.; Miao, J.G. Uniform circular multiphase modulation correlation radiometer and its sensitivity analysis. J. Beijing Univ. Aeronaut. Astronaut. 2023, 49, 1857–1863. [Google Scholar]
- Jacob, K.; Schroder, A.; Murk, A. Design, manufacturing, and characterization of conical blackbody targets with optimized profile. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 76–84. [Google Scholar] [CrossRef]
- Houtz, D.A.; Emery, W.; Gu, D.Z.; Walker, D.K. Brightness temperature calculation and uncertainty propagation for conical microwave blackbody targets. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7246–7256. [Google Scholar] [CrossRef]
- Schröder, A.; Murk, A.; Wylde, R.; Schobert, D.; Winser, M. Brightness temperature computation of microwave calibration targets. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7104–7112. [Google Scholar] [CrossRef]
- Virone, G.; Addamo, G.; Bosisio, A.V.; Zannoni, M.; Valenziano, L.; Rizzo, D.; Radaelli, P. Thermal vacuum cold target for the Metop-SG microwave imager. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 10348–10356. [Google Scholar] [CrossRef]
- Jin, M.; Yuan, R.; Li, X.; Tao, Y.; Gao, Q.S.; Bai, M. Wideband microwave calibration target design for improved directional brightness temperature radiation. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Z.L.; Sun, G.M.; Li, Y.; Cao, T.; Tang, W.J. Design and implementation of a Ku-band high-precision blackbody calibration target. Micromachines 2023, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Scheeler, R. A Microwave Radiometer for Internal Body Temperature Measurement. Ph.D. Thesis, University of Colorado, Boulder, CO, USA, 2013. [Google Scholar]
- Qian, P.C.; Barry, M.A.; Lu, J.T.; Al-Raisi, S.; Mina, A.; Ryan, J.; Bandodkar, S.; Alvarez, S.; James, V.; Ronquillo, J.; et al. Transcatheter microwave ablation can deliver deep and circumferential perivascular nerve injury without significant arterial injury to provide effective renal denervation. J. Hypertens. 2019, 37, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, K.; Ma, J.Y.; Wu, Q.; Sun, Z.L.; Wang, H.; Zhang, Y.Q. High-precision temperature inversion algorithm for correlative microwave radiometer. Sensors 2021, 21, 5336. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Ding, Y.; Gong, Z.; Chen, Y.F. Hybrid microwave medical imaging approach combining quantitative and qualitative algorithms. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 438–442. [Google Scholar] [CrossRef]
- Tisdale, K.; Bringer, A.; Kiourti, A. A core body temperature retrieval method for microwave radiometry when tissue permittivity is unknown. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 470–476. [Google Scholar] [CrossRef]
- Tisdale, K.; Bringer, A.; Kiourti, A. Development of a coherent model for radiometric core body temperature sensing. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Groumpas, E.; Koutsoupidou, M.; Karanasiou, I.S.; Papageorgiou, C.; Uzunoglu, N. Real-time passive brain monitoring system using near-field microwave radiometry. IEEE Trans. Biomed. Eng. 2020, 67, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, J.Q.; Lu, T.Y.; Sandell, M.; Chen, L.Q. Secret key generation for IRS-assisted multi-antenna systems: A machine learning-based approach. IEEE Trans. Inf. Forensic Secur. 2024, 19, 1086–1098. [Google Scholar] [CrossRef]
- Owda, A.Y.; Salmon, N.; Rezgui, N.D.; Shylo, S. Millimetre wave radiometers for medical diagnostics of human skin. In Proceedings of the IEEE Sensors, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar]
- Mirzaee, M.; Mirbeik-Sabzevari, A.; Tavassolian, N. 10 GHz-100 GHz compact double-ridge horn antenna for ultra-wideband millimeter-wave biomedical imaging applications. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (IEEECONF), Virtually, Toronto, ON, Canada, 5–10 July 2020; pp. 1421–1422. [Google Scholar]
- Chen, Y.C.; Zhou, Y.G.; Xu, T.; Jiang, H.Z.; Zhao, Y.J.; Wang, H.Z.; Yang, H.M. A dual-polarized improved Gaussian profiled corrugated horn antenna with low cross-polarization. In Proceedings of the 2021 International Conference on Microwave and Millimeter Wave Technology, Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- Joshi, K.; Yadav, D.; Bhardwaj, D.; Rathi, A. Multi frequency broadband circularly polarized archimedean spiral slot antenna with spiral DGS structure for 5G application. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India, 21–22 January 2022; pp. 1–5. [Google Scholar]
- Teniente, J.; Martinez, A.; Larumbe, B.; Ibanez, A.; Gonzalo, R. Design guidelines of horn antennas that combine horizontal and vertical corrugations for satellite communications. IEEE Trans. Antennas Propag. 2015, 63, 1314–1323. [Google Scholar] [CrossRef]
- Yu, H.; Su, J.X.; Li, Z.R. High-gain lens antenna using transmissive phase gradient metasurface. In Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 1032–1036. [Google Scholar]
- Mozharovskiy, A.V.; Artemenko, A.A.; Mal’tsev, A.A.; Maslennikov, R.O.; Sevast’yanov, A.G.; Ssorin, V.N. An efficient method for calculating the characteristics of the integrated lens antennas on the basis of the geometrical and physical optics approximations. Radiophys. Quantum Electron. 2015, 58, 443–453. [Google Scholar] [CrossRef]
- Lin, W.Q.; Zhang, Z.Y.; Fu, G. Design of a high gain and low cross-polarization Tri-band horn antenna. In Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 7–11 May 2018; pp. 1–3. [Google Scholar]
- Gouveia, C.; Loss, C.; Pinho, P.; Vieira, J. Different antenna designs for non-contact vital signs measurement: A review. Electronics 2019, 8, 1–1294. [Google Scholar] [CrossRef]
- Wu, G.B.; Chan, K.F.; Shum, K.M.; Chan, C.H. Millimeter-wave holographic flat lens antenna for orbital angular momentum multiplexing. IEEE Trans. Antennas Propag. 2021, 69, 4289–4303. [Google Scholar] [CrossRef]
- Biswas, A.; Islam, A.J.; Al-Faruk, A.; Alam, S.S. Design and performance analysis of a microstrip line-fed on-body matched flexible UWB antenna for biomedical applications. In Proceedings of the 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 181–185. [Google Scholar]
- Bardati, F.; Brown, V.J.; Tognolatti, P. Temperature reconstructions in a dielectric cylinder by multi-frequency microwave radiometry. J. Electromagn. Waves Appl. 1993, 7, 1549–1571. [Google Scholar] [CrossRef]
- Livanos, N.A.; Hammal, S.; Siores, E. Design and interdisciplinary simulations of a hand-held device for internal-body temperature sensing using microwave radiometry. IEEE Sens. J. 2018, 18, 2421–2433. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, K.S.; Lee, S.M.; Eom, S.J.; Troitsky, R.V. A novel design of thermal anomaly for Mammary Gland Tumor phantom for microwave radiometer. IEEE Trans. Biomed. Eng. 2002, 49, 694–699. [Google Scholar]
- Gudkov, A.G.; Leushin, V.Y.; Sidorov, I.A.; Vesnin, S.G.; Porokhov, I.O.; Sedankin, M.K.; Agasieva, S.V.; Chizhikov, S.V.; Gorlacheva, E.N.; Lazarenko, M.I.; et al. Use of multichannel microwave radiometry for functional diagnostics of the brain. Biomed. Eng. 2019, 53, 108–111. [Google Scholar] [CrossRef]
- Osmonov, B.; Ovchinnikov, L.; Galazis, C.; Emilov, B.; Karaibragimov, M.; Seitov, M.; Vesnin, S.; Losev, A.; Levshinskii, V.; Popov, I.; et al. Passive microwave radiometry for the diagnosis of Coronavirus Disease 2019 lung complications in Kyrgyzstan. Diagnostics 2021, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Li, B.; Fan, B.H.; Li, Z.P.; Bai, M. On the Reflectivity extraction based on partial bistatic near-field scattering from microwave blackbody. IEEE Trans. Antennas Propag. 2021, 69, 1692–1705. [Google Scholar] [CrossRef]
- Houtz, D.A.; Emery, W.; Gu, D.Z.; Jacob, K.; Murk, A.; Walker, D.K.; Wylde, R.J. Electromagnetic design and performance of a conical microwave blackbody target for radiometer calibration. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4586–4596. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Li, F.; Yang, Y.J.; Chen, Y.M. Emissivity measurement study on wide aperture microwave radiator. In Proceedings of the 2008 International Conference on Microwave and Millimeter Wave Technology Proceedings (ICMMT), Nanjing, China, 21–24 April 2008; pp. 914–917. [Google Scholar]
- Sandeep, S.; Gasiewski, A.J. Electromagnetic analysis of radiometer calibration targets using dispersive 3D FDTD. IEEE Trans. Antennas Propag. 2012, 60, 2821–2828. [Google Scholar] [CrossRef]
- Bai, M.; Xia, D.; Jin, M. Effects of coating material properties on the wideband reflectivity performance of microwave calibration targets. IEEE Trans. Antennas Propag. 2017, 65, 4909–4913. [Google Scholar] [CrossRef]
- Bai, M.; Jin, M.; Ou, N.; Miao, J. On scattering from an array of absorptive material coated cones by the PWS approach. IEEE Trans. Antennas Propag. 2013, 61, 3216–3224. [Google Scholar] [CrossRef]
- Jin, M.; Bai, M.; Zhang, L.S.; Pan, G.W.; Miao, J.G. On the Coiflet-TDS solution for scattering by sharp coated cones and its application to emissivity determination. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1399–1409. [Google Scholar] [CrossRef]
- Gu, D.Z.; Houtz, D.; Randa, J.; Walker, D.K. Reflectivity study of microwave blackbody target. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3443–3451. [Google Scholar]
- Sandeep, S.; Gasiewski, A. Effect of geometry on the reflectivity spectrum of radiometer calibration targets. IEEE Geosci. Remote Sens. Lett. 2013, 11, 84–88. [Google Scholar] [CrossRef]
- Wang, J.H.; Miao, J.G.; Yang, Y.J.; Chen, Y.M. Scattering property and emissivity of a periodic pyramid array covered with absorbing material. IEEE Trans. Antennas Propag. 2008, 56, 2656–2663. [Google Scholar] [CrossRef]
- Xiong, H.T.; Sun, H.Y.; Zhou, J.P.; Li, H.T.; Zhang, H.; Liu, S.J.; Cai, J.H.; Feng, L.; Miao, J.G.; Chen, S.; et al. Terahertz anisotropy in fascia and lean meat tissues. Biomed. Opt. Express 2022, 13, 2605–2615. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Yang, Y.J.; Miao, J.G.; Chen, Y.M. Emissivity calculation for a finite circular array of pyramidal absorbers based on Kirchhoff’s Law of thermal radiation. IEEE Trans. Antennas Propag. 2010, 58, 1173–1180. [Google Scholar] [CrossRef]
- Momenroodaki, P.; Popovic, Z.; Scheeler, R. A 1.4-GHz radiometer for internal body temperature measurements. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 7–10 September 2015; pp. 694–697. [Google Scholar]
- Momenroodaki, P.; Haines, W.; Popovic, Z. Non-invasive microwave thermometry of multilayer human tissues. In Proceedings of the 2017 IEEE/MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1387–1390. [Google Scholar]
- Saunders, P.; Fischer, J.; Sadli, M.; Battuello, M.; Park, C.W.; Yuan, Z.; Yoon, H.; Li, W.; van der Ham, E.; Sakuma, F.; et al. Uncertainty budgets for calibration of radiation thermometers below the silver point. Int. J. Thermophys. 2008, 29, 1066–1083. [Google Scholar] [CrossRef]
- Vaks, V.L.; Gaikovich, K.P.; Reznik, A.N. Thermal near field and the possibilities of its use for in-depth temperature diagnostics of media. Radiophys. Quantum Electron. 2002, 45, 7–22. [Google Scholar] [CrossRef]
- Mizushina, S.; Shimizu, T.; Suzuki, K.; Kinomura, M.; Ohba, H.; Sugiura, T. Retrieval of temperature-depth profiles in biological objects from multi-frequency microwave radiometric data. J. Electromagn. Waves Appl. 1993, 7, 1515–1548. [Google Scholar] [CrossRef]
- Bardati, F.; Iudicello, S. Modeling the visibility of breast malignancy by a microwave radiometer. IEEE Trans. Biomed. Eng. 2008, 55, 214–221. [Google Scholar] [CrossRef]
- Sidorov, I.A.; Gudkov, A.G.; Leushin, V.Y.; Gorlacheva, E.N.; Novichikhin, E.P.; Agasieva, S.V. Measurement and 3D visualization of the human internal heat field by means of microwave radiometry. Sensors 2021, 21, 4005. [Google Scholar] [CrossRef]
- Goodberlet, M.A.; Mead, J.B. Two-load radiometer precision and accuracy. IEEE Trans. Geosci. Remote Sens. 2005, 44, 58–67. [Google Scholar] [CrossRef]
- Tarakanov, A.V.; Vesnin, S.G.; Efremov, V.V.; Roberts, N.; Goryanin, I. Influence of ambient temperature on recording of skin and deep tissue temperature in region of lumbar spine. Eur. J. Mol. Clin. Med. 2020, 7, 21–26. [Google Scholar]
- Al-Nuaimi, M.; Hong, W.; Zhang, Y. Design of high-directivity compact-size conical horn lens antenna. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 467–470. [Google Scholar] [CrossRef]
- Ma, J.Y.; Liu, J.; Tian, Y.P.; Sun, G.M.; Zhang, K.; Li, Y. Design and implementation of Ku-band high directionality antenna. IEEE Trans. Antennas Propag. 2022, 70, 11514–11525. [Google Scholar] [CrossRef]
- Budhu, J.; Rahmat-Samii, Y.A. Novel and systematic approach to inhomogeneous dielectric lens design based on curved ray geometrical optics and particle swarm optimization. IEEE Trans. Antennas Propag. 2019, 67, 3657–3669. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, H.; Hong, W. Multi-stage collaborative machine learning and its application to antenna modeling and optimization. IEEE Trans. Antennas Propag. 2020, 67, 1659–1668. [Google Scholar]
- Yuan, L.; Yang, X.S.; Wang, C.; Wang, B.Z. Multibranch artificial neural network modeling for inverse estimation of antenna array directivity. IEEE Trans. Antennas Propag. 2020, 68, 4417–4427. [Google Scholar] [CrossRef]
- Zhu, D.; Tao, J.Y.; Su, J.L.; He, F. BlockMFRAs: Block-wise multiple-fold redundancy arrays for joint optimization of radiometric sensitivity and angular resolution in interferometric radiometers. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Einizade, A.; Sardouie, S.H. Iterative Pseudo-Sparse Partial Least Square and Its Higher Order Variant: Application to Inference from High-Dimensional Biosignals. IEEE Trans. Cogn. Dev. Syst. 2024, 16, 296–307. [Google Scholar] [CrossRef]
Year | Author | Architecture of Radiometer | Method of Measurement | Number of Frequency Bands | Accuracy (K) | Sensitivity (K) |
---|---|---|---|---|---|---|
2013 | Rodrigues D.B. et al. [10] | Total power | Contact | 1 | 0.8 | 0.4 |
2014 | Scheeler R. et al. [23] | Dicke | Contact | 3 | 0.5 | 0.2 |
2015 | He F. et al. [24] | Dicke | Non-contact | 1 | 7 | 2 |
2017 | Park W. et al. [25] | Total power | Non-contact | 1 | 0.85 | 0.62 |
2018 | Momenroodaki P. et al. [26] | Dicke | Contact | 1 | 0.6 | 0.4 |
2021 | Vesnin S.G. et al. [27] | Dicke | Contact | 1 | 0.6 | 0.3 |
2021 | Villa E. et al. [28] | Correlation | Contact | 1 | 0.4 | 0.15 |
2022 | Streeter R. et al. [29] | Correlation | Contact | 1 | 0.5 | 0.25 |
2022 | Issac J.P. et al. [30] | Dicke | Contact | 2 | 0.41 | 0.25 |
2024 | Tian H. et al. [31] | Dicke | Non-contact | 1 | 0.7 | 0.062 |
Reference | Type of Microwave Radiometer | Operation Frequency (GHz) | Performance | Assessed Target |
---|---|---|---|---|
Hand J.W. et al., 2001 [35] | Dicke | 1~4 | Resolution of 0.07 K Standard error of 0.75 K | Brain of newborn infant |
Arunachalam K. et al., 2008 [44] | Digital | 3.7~4.2 | Resolution of 0.075 K Standard error of 0.217 K | Homogeneous and layered water |
Birkelund Y. et al., 2011 [38] | Dicke | 3~4 | Standard error of 0.8 K Detection depth of 8 mm | Urine inside a pediatric bladder |
Rodrigues D.B. et al., 2013 [10] | Total power | 1.5~2.2 | Resolution of 0.4 K Detection depth of 12 mm | Multilayer 3D computational model of skin, subcutaneous fat, muscle, and a BAT region located between fat and muscle |
Stauffer P.R. et al., 2014 [47] | Total power | 1.1~1.6 | Maximum error of 0.4 K Correlation (r = 0.9979) | Head model with separate brain and scalp regions |
Popovic Z. et al., 2014 [49] | Dicke | 1.4, 2.7 | Resolution of 0.2 K Minimum error of 0.5 K | Skin, fat, and muscle |
Haines W. et al., 2017 [50] | Total power | 1.4~1.427 | Maximum error of 0.6 K Detection depth of 8 mm | Phantoms of muscle, fat, and skin |
Momenroodaki P. et al., 2018 [26] | Dicke | 1.4~1.427 | Resolution of 0.4 K Minimum error of 0.6 K | Human cheek and mouth |
Ravi V.M. et al., 2019 [51] | Total power | 1.0~1.6 | Resolution of 0.25 K Standard error of 0.4 K | Knee joints |
Laskari K. et al., 2020 [12] | RTM-01-RES | 1.14, 3.8 | Standard error of 0.4 K Detection depth of 7 cm | Small and large joints (hand/arm, foot/leg, wrist, elbow, knee, ankle); sacroiliac joints |
Tarakanov A.V. et al., 2021 [13] | MWR-2020 | 3.4~4.2 | Accuracy of 0.2 K Detection depth of 7 cm | Knee |
Tarakanov A.V. et al., 2021 [18] | MWR-2020 | 3.4~4.2 | Accuracy of 0.2 K Detection depth of 7 cm | Lumbar spine |
Tarakanov A.V. et al., 2022 [52] | MWR-2020 | 3.4~4.2 | Accuracy of 0.2 K Detection depth of 7 cm | Lumbar spine |
Levshinskii V. et al., 2022 [15] | MWR-2020 | 3.4~4.2 | Accuracy of 0.2 K Detection depth of 7 cm | Lower extremities and their models |
Reference | Type of Microwave Radiometer | Type of Antenna | Central Frequency (GHz) | Bandwidth (GHz) | Performance | Assessed Target |
---|---|---|---|---|---|---|
Stephan K.D. et al., 2007 [58] | Total power | Microstrip array antenna | 12.5 | 0.47 | Accuracy of 4 K Detection depth of 2 mm | Hamburger patty |
Bonds Q. et al., 2009 [53] | Total power | Printed dipole antenna | 1.4 | 0.4 | Accuracy of 4 K Detection depth of 5 cm | Muscle tissue phantom |
Bonds Q. et al., 2009 [55] | Total power | Cavity-backed slot antenna (CBSA) | 1.4 | 0.4 | Accuracy of 1.5 K Detection depth of 2 cm | Skin tissue phantom |
Pi Z.F. 2015 [57] | Dicke | Monopole bare probe cap antenna | 4.15 | 4 | Resolution of 0.6 K Accuracy of 0.8 K | Water |
He F. et al., 2015 [24] | Dicke | Horn antenna | 4 | 1 | Resolution of 2 K Accuracy of 7 K | Water of different depths |
Park W. et al., 2017 [25] | Total power | Horn antenna | 3 | 0.23 | Resolution of 0.62 K Accuracy of 0.85 K | Water |
Ravi V.M. et al., 2018 [59] | Dicke | SIW slot antenna | 1.3 | 0.2 | Resolution of 0.6 K Detection depth of 45 mm | Tissue phantom |
Sun G.M. et al., 2021 [60] | Correlation | Horn antenna | 5 | 2 | Resolution of 0.4 K Maximum error of 0.5 K | Water |
Sun G.M. et al., 2021 [61] | Correlation | Horn antenna | 14 | 4 | Sensitivity of 0.047 K/mV Detection of 215 mV/dBm | Water |
Liu J. et al., 2023 [62] | Correlation | Horn antenna | 14 | 4 | Average error of 0.034 K Detection of 299 mV/dBm | Palm |
Tian H. et al., 2023 [63] | Dicke | Horn antenna | 15 | 6 | Resolution of 0.08 K Maximum error 0.6 K | Water, swine skin tissue |
Tian H. et al., 2024 [31] | Dicke | Horn antenna | 15 | 6 | Resolution of 0.062 K Maximum error 0.7 K | Water sheltered by 5-layer cotton cloth |
Liu J. et al., 2024 [64] | Correlation | Horn antenna | 10, 14, 16 | 4 | Mean absolute error of 0.5921 K Root mean squared error of 0.6387 K | Swine skin tissue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Liu, J. Review of the Capacity to Accurately Detect the Temperature of Human Skin Tissue Using the Microwave Radiation Method. Biosensors 2024, 14, 221. https://doi.org/10.3390/bios14050221
Wu J, Liu J. Review of the Capacity to Accurately Detect the Temperature of Human Skin Tissue Using the Microwave Radiation Method. Biosensors. 2024; 14(5):221. https://doi.org/10.3390/bios14050221
Chicago/Turabian StyleWu, Jingtao, and Jie Liu. 2024. "Review of the Capacity to Accurately Detect the Temperature of Human Skin Tissue Using the Microwave Radiation Method" Biosensors 14, no. 5: 221. https://doi.org/10.3390/bios14050221
APA StyleWu, J., & Liu, J. (2024). Review of the Capacity to Accurately Detect the Temperature of Human Skin Tissue Using the Microwave Radiation Method. Biosensors, 14(5), 221. https://doi.org/10.3390/bios14050221