Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis
Abstract
:1. Introduction
1.1. Nanostructured Metal Oxide-Based Biosensors
1.2. Nanostructured Metal Oxides Used as Nanozymes
1.3. Electrochemical Biosensors Based on Nanostructured Metal Oxides
2. Applications of Nanostructured Metal Oxides Used in Electrochemical Biosensors for Medical Diagnosis
2.1. Zinc Oxide-Based Electrochemical Biosensors
2.2. Titanium Dioxide-Based Electrochemical Biosensors
2.3. Iron (II, III) Oxide-Based Electrochemical Biosensors
2.4. Nickel (II) Oxide-Based Electrochemical Biosensors
2.5. Copper (II) Oxide-Based Electrochemical Biosensors
2.6. Other Nanostructured Metal Oxide-Based Electrochemical Biosensors
3. Discussion and Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alhalili, Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023, 28, 3086. [Google Scholar] [CrossRef] [PubMed]
- Kolahalam, L.A.; Kasi Viswanath, I.V.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L.N. Review on Nanomaterials: Synthesis and Applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Solanki, P.R.; Kaushik, A.; Agrawal, V.V.; Malhotra, B.D. Nanostructured Metal Oxide-Based Biosensors. NPG Asia Mater. 2011, 3, 17–24. [Google Scholar] [CrossRef]
- Dang, S.; Zhu, Q.L.; Xu, Q. Nanomaterials Derived from Metal-Organic Frameworks. Nat. Rev. Mater. 2017, 3, 17075. [Google Scholar] [CrossRef]
- Chavali, M.S.; Nikolova, M.P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Chavali, M.S. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics 2020, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. [Google Scholar] [CrossRef]
- Onoyivwe, M.A.; Suprakas, S.R. Nanostructured Metal-Oxide Electrode Materials for Water Purification; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; ISBN 9783030433451. [Google Scholar]
- Gebre, S.H.; Sendeku, M.G. New Frontiers in the Biosynthesis of Metal Oxide Nanoparticles and Their Environmental Applications: An Overview. SN Appl. Sci. 2019, 1, 928. [Google Scholar] [CrossRef]
- Iravani, S. Methods for Preparation of Metal Nanoparticles. In Metal Nanoparticles Synthesis and Aplications in Pharmaceutical Sciences; Thota, S., Crans, C.D., Eds.; Wiley: Weinheim, Germany, 2018; pp. 15–24. ISBN 978-3-527-33979-2. [Google Scholar]
- Ling, W.; Wang, M.; Xiong, C.; Xie, D.; Chen, Q.; Chu, X.; Qiu, X.; Li, Y.; Xiao, X. Synthesis, Surface Modification, and Applications of Magnetic Iron Oxide Nanoparticles. J. Mater. Res. 2019, 34, 1828–1844. [Google Scholar] [CrossRef]
- Iosub, C.Ş.; Olăret, E.; Grumezescu, A.M.; Holban, A.M.; Andronescu, E. Toxicity of Nanostructures—A General Approach. In Nanostructures for Novel Theraphy Synthesis, Characterization, and Applications; Ficai, D., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 793–806. [Google Scholar]
- Cele, T. Preparation of Nanoparticles. In Engineered Nanomaterials—Health and Safety; Avramescu, S.M., Akhtar, K., Fierascu, I., Khan, S.B., Ali, F., Asiri, A.M., Eds.; IntechOpen: London, UK, 2020; pp. 15–29. ISBN 978-1-83880-411-4. [Google Scholar]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New Horizons for Responsive Biomedical Applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Yan, X.; Fan, K. Structure and Activity of Nanozymes: Inspirations for de Novo Design of Nanozymes. Mater. Today 2020, 41, 81–119. [Google Scholar] [CrossRef]
- Wei, N.; Cui, H.; Wang, X.; Xie, X.; Wang, M.; Zhang, L.; Tian, J. Hierarchical Assembly of In2O3 Nanoparticles on ZnO Hollow Nanotubes Using Carbon Fibers as Templates: Enhanced Photocatalytic and Gas-Sensing Properties. J. Colloid Interface Sci. 2017, 498, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-Dimensional, One-Dimensional, Two-Dimensional and Three-Dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Rafiee, Z.; Mosahebfard, A.; Sheikhi, M.H. High-Performance ZnO Nanowires-Based Glucose Biosensor Modified by Graphene Nanoplates. Mater. Sci. Semicond. Process. 2020, 115, 105116. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8, 320. [Google Scholar] [CrossRef] [PubMed]
- Asal, M.; Özen, Ö.; Şahinler, M.; Polatoğlu, İ. Recent Developments in Enzyme, DNA and Immuno-Based Biosensors. Sensors 2018, 18, 1924. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A. Nanostructured Metal Oxide-Based Microfluidic Biosensors for Point-of-Care Diagnostics; Indian Institute of Technology Hyderabad: Kandi, India, 2014. [Google Scholar]
- Asal, M.; Özen, Ö.; Şahinler, M.; Baysal, H.T.; Polatoğlu, İ. An Overview of Biomolecules, Immobilization Methods and Support Materials of Biosensors. Sens. Rev. 2019, 39, 377–386. [Google Scholar] [CrossRef]
- Akolpoglu, M.B.; Bozuyuk, U.; Erkoc, P.; Kizilel, S. Biosensing–Drug Delivery Systems for In Vivo Applications. In Advanced Biosensors for Health Care Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 249–262. ISBN 9780128157435. [Google Scholar]
- Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical Biosensors Based on ZnO Nanostructures: Advantages and Perspectives. A Review. Sens. Actuators B Chem. 2016, 229, 664–677. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J. Sensors and Biosensors Based on Metal Oxide Nanomaterials. TrAC Trends Anal. Chem. 2019, 121, 115690. [Google Scholar] [CrossRef]
- Hahn, Y.-B.; Ahmadw, R.; Tripathyw, N. Chemical and Biological Sensors Based on Metal Oxide Nanostructures. Chem. Commun. 2012, 48, 10369–10385. [Google Scholar] [CrossRef]
- Brena, B.; González-Pombo, P.; Batista-Viera, F. Immobilization of Enzymes: A Literature Survey. Methods Mol. Biol. 2013, 1051, 15–31. [Google Scholar]
- Sirisha, V.L.; Jain, A.; Jain, A. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes. In Advances in Food and Nutrition Research; Academic Press Inc.: Cambridge, MA, USA, 2016; Volume 79, pp. 179–211. [Google Scholar]
- Sahin, B.; Kaya, T. Electrochemical Amperometric Biosensor Applications of Nanostructured Metal Oxides: A Review. Mater. Res. Express 2019, 6, 042003. [Google Scholar] [CrossRef]
- Liang, M.; Yan, X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Nanozymes: A Promising Horizon for Medical and Environmental Applications. J. Clust. Sci. 2022, 33, 1275–1297. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. Nanozymes in Electrochemical Affinity Biosensing. Microchim. Acta 2020, 187, 423. [Google Scholar] [CrossRef]
- Monošik, R.; Stred’ansky, M.; Šturdík, E. Application of Electrochemical Biosensors in Clinical Diagnosis. J. Clin. Lab. Anal. 2012, 26, 22–34. [Google Scholar] [CrossRef]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef]
- Yarman, A.; Kurbanoglu, S.; Scheller, F.F.W. Noninvasive Biosensors for Diagnostic Biomarkers. In Commercial Biosensors and Their Applications: Clinical, Food, and Beyond; Elsevier: Amsterdam, The Netherlands, 2020; p. 167. ISBN 9780128185926. [Google Scholar]
- Soylemez, S.; Kurbanoglu, S.; Kuralay, F. Nanoscale Physics of Electrochemistry. In Biophysics at the Nanoscale: Applications of Functional Materials; Elsevier: Amsterdam, The Netherlands, 2024; pp. 43–71. [Google Scholar] [CrossRef]
- Yoon, J.Y. Basic Principles of Electrochemical Biosensing Using a Smartphone. In Smartphone Based Medical Diagnostics; Academic Press: Cambridge, MA, USA, 2020; pp. 29–43. ISBN 9780128170441. [Google Scholar]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical Biosensors and Nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar] [CrossRef]
- Srivastava, K.R.; Awasthi, S.; Mishra, P.K.; Srivastava, P.K. Biosensors/Molecular Tools for Detection of Waterborne Pathogens. In Waterborne Pathogens: Detection and Treatment; Butterworth-Heinemann: Oxford, UK, 2020; pp. 237–277. ISBN 9780128187838. [Google Scholar]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A. Electrochemical Biosensors; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128164914. [Google Scholar]
- Scheller, F.; Schubert, F. Biosensors; Elsevier: Amsterdam, The Netherlands, 1992; ISBN 0-444-98783-5. [Google Scholar]
- Kucherenko, I.S.; Soldatkin, O.O.; Dzyadevych, S.V.; Soldatkin, A.P. Electrochemical biosensors based on multienzyme systems: Main groups, advantages and limitations—A review. Anal. Chim. Acta 2020, 1111, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M.; Skládal, P. Electrochemical Biosensors—Principles and Applications. J. Appl. Biomed. 2008, 6, 57–64. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Singh, A.T.; Lantigua, D.; Meka, A.; Taing, S.; Pandher, M.; Camci-Unal, G. Paper-Based Sensors: Emerging Themes and Applications. Sensors 2018, 18, 2838. [Google Scholar] [CrossRef]
- Prodromidis, M.I.M. Impedimetric Immunosensors—A Review. Electrochim. Acta 2010, 55, 4227–4233. [Google Scholar] [CrossRef]
- Singh, P. Chapter 3—Electrochemical Biosensors: Biomonitoring of Clinically Significant Biomarkers. In Electrochemical Biosensors; Singh, P., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 75–106. ISBN 978-0-323-90632-6. [Google Scholar]
- Anik, U. Electrochemical Medical Biosensors for POC Applications. In Medical Biosensors for Point of Care (POC) Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 275–292. ISBN 9780081000786. [Google Scholar]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical Biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Nikoleli, G.-P.; Pingarrón, J.M.; Nikolelis, D.P.; Tzamtzis, N.; Psychoyios, V.N. ZnO and Graphene Microelectrode Applications in Biosensing. In Biosensors Nanotechnology; Tiwari, A., Turner, A.P.F., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2014; pp. 1–35. [Google Scholar]
- Kannan, P.; Maduraiveeran, G. Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications. Biosensors 2023, 13, 542. [Google Scholar] [CrossRef]
- Ramzan, S.; Rahim, A.; Ahmad, A.; Alsaiari, M. Metal Oxide and Their Sensing Applications. In Nanomaterials-Based Electrochemical Sensors: Properties, Applications and Recent Advances; Elsevier: Amsterdam, The Netherlands, 2024; pp. 155–176. [Google Scholar] [CrossRef]
- Ramirez-Vick, J.E. Nanostructured ZnO for Electrochemical Biosensors. Biosens. Bioelectron. 2012, 3, 1000.e109. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Nejad, F.G.; Safaei, M. Recent Advances in ZnO Nanostructure-Based Electrochemical Sensors and Biosensors. J. Mater. Chem. B. 2020, 8, 5826–5844. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Weng, Z.; Li, X.; Liu, X.; Wu, S.; Yeung, K.W.K.; Wang, X.; Cui, Z.; Yang, X.; Chu, P.K. Biomedical Applications of Functionalized ZnO Nanomaterials: From Biosensors to Bioimaging. Adv. Mater. Interfaces 2016, 3, 1500494. [Google Scholar] [CrossRef]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-Based Nanostructured Electrodes for Electrochemical Sensors and Biosensors in Biomedical Applications. Biosens. Bioelectron. 2019, 141, 111417. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.S.; Singh, S.; Batool, M.; Fahmy, H.M.; Seku, K.; Shalan, A.E.; Lanceros-Mendez, S.; Zafar, M.N. A Review on 2D-ZnO Nanostructure Based Biosensors: From Materials to Devices. Mater. Adv. 2023, 4, 320–354. [Google Scholar] [CrossRef]
- Hahm, J.I. Fundamental Properties of One-Dimensional Zinc Oxide Nanomaterials and Implementations in Various Detection Modes of Enhanced Biosensing. Annu. Rev. Phys. Chem. 2016, 67, 691–717. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.M.; Mazon, T. Early Diagnosis of Zika Infection Using a ZnO Nanostructures-Based Rapid Electrochemical Biosensor. Talanta 2019, 203, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Dönmez, S. Green Synthesis of Zinc Oxide Nanoparticles Using Zingiber Officinale Root Extract and Their Applications in Glucose Biosensor. El-Cezeri 2020, 7, 1191–1200. [Google Scholar] [CrossRef]
- Hussain, K.K.; Moon, J.M.; Park, D.S.; Shim, Y.B. Electrochemical Detection of Hemoglobin: A Review. Electroanalysis 2017, 29, 2190–2199. [Google Scholar] [CrossRef]
- Leca-Bouvier, B.; Blum, L.J. Biosensors for Protein Detection: A Review. Anal. Lett. 2005, 38, 1491–1517. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Yang, Y.; Feng, X.; Wang, W.; Liu, Y.; Zhao, M.; Zhang, Z. Fabrication of a Thermal Responsive Hemoglobin (Hb) Biosensor via Hb-Catalyzed EATRP on the Surface of ZnO Nanoflowers. J. Electroanal. Chem. 2019, 848, 113346. [Google Scholar] [CrossRef]
- Thainá, T.; Beatto, T.G.; Gomes, W.E.; Etchegaray, A.; Gupta, R.; Mendes, R.K. Dopamine Levels Determined in Synthetic Urine Using an Electrochemical Tyrosinase Biosensor Based on ZnO@Au Core–Shell. RSC Adv. 2023, 13, 33424–33429. [Google Scholar] [CrossRef]
- Kaya, S.I.I.; Kurbanoglu, S.; Ozkan, S.A.S.A. Nanomaterials-Based Nanosensors for the Simultaneous Electrochemical Determination of Biologically Important Compounds: Ascorbic Acid, Uric Acid, and Dopamine. Crit. Rev. Anal. Chem. 2019, 49, 101–125. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, K.; Khan, A.; Muzaffar Ali Khan Khattak, M. Biological Significance of Ascorbic Acid (Vitamin C) in Human Health-A Review. Pakistan J. Nutr. 2004, 3, 5–13. [Google Scholar]
- Malik, M.; Narwal, V.; Pundir, C.S. Ascorbic Acid Biosensing Methods: A Review. Process Biochem. 2022, 118, 11–23. [Google Scholar] [CrossRef]
- Tolubayeva, D.B.; Gritsenko, L.V.; Kedruk, Y.Y.; Aitzhanov, M.B.; Nemkayeva, R.R.; Abdullin, K.A. Effect of Hydrogen Plasma Treatment on the Sensitivity of ZnO Based Electrochemical Non-Enzymatic Biosensor. Biosensors 2023, 13, 793. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. Nanostructured Titanium Oxide Hybrids-Based Electrochemical Biosensors for Healthcare Applications. Colloids Surfaces B Biointerfaces 2019, 178, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Nadzirah, S.; Gopinath, S.C.B.; Parmin, N.A.; Hamzah, A.A.; Mohamed, M.A.; Chang, E.Y.; Dee, C.F. State-of-the-Art on Functional Titanium Dioxide-Integrated Nano-Hybrids in Electrical Biosensors. Crit. Rev. Anal. Chem. 2022, 52, 637–648. [Google Scholar] [CrossRef]
- Gunatilake, U.B.; Garcia-Rey, S.; Ojeda, E.; Basabe-Desmonts, L.; Benito-Lopez, F. TiO2 Nanotubes Alginate Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: Lactate and Glucose. ACS Appl. Mater. Interfaces 2021, 13, 37734–37745. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhou, B. Titanium Dioxide Nanomaterials for Sensor Applications. Chem. Rev. 2014, 114, 10131–10176. [Google Scholar] [CrossRef] [PubMed]
- Arin, M.; Lommens, P.; Hopkins, S.C.; Pollefeyt, G.; Van Der Eycken, J.; Ricart, S.; Granados, X.; Glowacki, B.A.; Van Driessche, I. Deposition of Photocatalytically Active TiO2 Films by Inkjet Printing of TiO2 Nanoparticle Suspensions Obtained from Microwave-Assisted Hydrothermal Synthesis. Nanotechnology 2012, 23, 165603. [Google Scholar] [CrossRef]
- Shaban, Y.A.; El Sayed, M.A.; El Maradny, A.A.; Al Farawati, R.K.; Al Zobidi, M.I. Photocatalytic Degradation of Phenol in Natural Seawater Using Visible Light Active Carbon Modified (CM)-n-TiO2 Nanoparticles under UV Light and Natural Sunlight Illuminations. Chemosphere 2013, 91, 307–313. [Google Scholar] [CrossRef]
- Amrollahi, R.; Hamdy, M.S.; Mul, G. Understanding Promotion of Photocatalytic Activity of TiO2 by Au Nanoparticles. J. Catal. 2014, 319, 194–199. [Google Scholar] [CrossRef]
- Liu, G.; Han, C.; Pelaez, M.; Zhu, D.; Liao, S.; Likodimos, V.; Ioannidis, N.; Kontos, A.G.; Falaras, P.; Dunlop, P.S.M.; et al. Synthesis, Characterization and Photocatalytic Evaluation of Visible Light Activated C-Doped TiO2 Nanoparticles. Nanotechnology 2012, 23, 294003. [Google Scholar] [CrossRef]
- Rajendran, S.; Manoj, D.; Raju, K.; Dionysiou, D.D.; Naushad, M.; Gracia, F.; Cornejo, L.; Gracia-Pinilla, M.A.; Ahamad, T. Influence of Mesoporous Defect Induced Mixed-Valent NiO (Ni2+/Ni3+)-TiO2 Nanocomposite for Non-Enzymatic Glucose Biosensors. Sens. Actuators B Chem. 2018, 264, 27–37. [Google Scholar] [CrossRef]
- Vadlamani, B.S.; Uppal, T.; Verma, S.C.; Misra, M. Functionalized TiO2 Nanotube-Based Electrochemical Biosensor for Rapid Detection of Sars-Cov-2. Sensors 2020, 20, 5871. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Vivekanandan, S. Biocompatible TiO2-CeO2 Nano-Composite Synthesis, Characterization and Analysis on Electrochemical Performance for Uric Acid Determination. Ain Shams Eng. J. 2020, 11, 777–785. [Google Scholar] [CrossRef]
- Khaliq, N.; Rasheed, M.A.; Cha, G.; Khan, M.; Karim, S.; Schmuki, P.; Ali, G. Development of Non-Enzymatic Cholesterol Bio-Sensor Based on TiO2 Nanotubes Decorated with Cu2O Nanoparticles. Sens. Actuators B Chem. 2020, 302, 127200. [Google Scholar] [CrossRef]
- Yadav, M.; Arora, R.; Dhanda, M.; Singh, G.; Mohan, H.; Lata, S. TiO2-Guanine as a New Amalgamation Compound for Fabrication of a Disposable Biosensor with High Sensitivity and Rapid Detection of H1N1 Swine Flu Virus. Microchim. Acta 2023, 190, 412. [Google Scholar] [CrossRef]
- Ravina; Gill, P.S.; Kumar, A.; Narang, J.; Prasad, M.; Mohan, H. Molecular Detection of H1N1 Virus by Conventional Reverse Transcription PCR Coupled with Nested PCR. Sens. Int. 2022, 3, 100178. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent Progress on Magnetic Iron Oxide Nanoparticles: Synthesis, Surface Functional Strategies and Biomedical Applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Iron and Iron-Oxide Magnetic Nanoparticles as Signal-Amplification Elements in Electrochemical Biosensing. TrAC Trends Anal. Chem. 2015, 72, 1–9. [Google Scholar] [CrossRef]
- Urbanova, V.; Magro, M.; Gedanken, A.; Baratella, D.; Vianello, F.; Zboril, R. Nanocrystalline Iron Oxides, Composites, and Related Materials as a Platform for Electrochemical, Magnetic, and Chemical Biosensors. Chem. Mater. 2014, 26, 6653–6673. [Google Scholar] [CrossRef]
- Adampourezare, M.; Hasanzadeh, M.; Hoseinpourefeizi, M.A.; Seidi, F. Iron/Iron Oxide-Based Magneto-Electrochemical Sensors/Biosensors for Ensuring Food Safety: Recent Progress and Challenges in Environmental Protection. RSC Adv. 2023, 13, 12760–12780. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Xu, B. MicroRNA-21 Identified as Predictor of Cancer Outcome: A Meta-Analysis. PLoS ONE 2014, 9, e103373. [Google Scholar] [CrossRef] [PubMed]
- Sekar, D.; Krishnan, R.; Thirugnanasambantham, K.; Rajasekaran, B.; Islam, V.I.H.; Sekar, P. Significance of MicroRNA 21 in Gastric Cancer. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Li, L.; Li, S. Circulating MicroRNA-21 as a Biomarker for the Detection of Various Carcinomas: An Updated Meta-Analysis Based on 36 Studies. Tumor Biol. 2015, 36, 1973–1981. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, Z.; Chang, Y.; Chai, Y.; Yuan, R. An Enzyme-Free Electrochemical Biosensor Combining Target Recycling with Fe3O4/CeO2@Au Nanocatalysts for MicroRNA-21 Detection. Biosens. Bioelectron. 2018, 119, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.H.; Barry, M.J. Screening for Prostate Cancer with the Prostate-Specific Antigen Test: A Review of Current Evidence. JAMA 2014, 311, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Lilja, H.; Ulmert, D.; Vickers, A.J. Prostate-Specific Antigen and Prostate Cancer: Prediction, Detection and Monitoring. Nat. Rev. Cancer 2008, 8, 268–278. [Google Scholar] [CrossRef]
- Shamsazar, A.; Asadi, A.; Seifzadeh, D.; Mahdavi, M. A Novel and Highly Sensitive Sandwich-Type Immunosensor for Prostate-Specific Antigen Detection Based on MWCNTs-Fe3O4 Nanocomposite. Sens. Actuators B Chem. 2021, 346, 130459. [Google Scholar] [CrossRef]
- Cornberg, M.; Wong, V.W.S.; Locarnini, S.; Brunetto, M.; Janssen, H.L.A.; Chan, H.L.Y. The Role of Quantitative Hepatitis B Surface Antigen Revisited. J. Hepatol. 2017, 66, 398–411. [Google Scholar] [CrossRef]
- Amini, A.; Varsaneux, O.; Kelly, H.; Tang, W.; Chen, W.; Boeras, D.I.; Falconer, J.; Tucker, J.D.; Chou, R.; Ishizaki, A.; et al. Diagnostic Accuracy of Tests to Detect Hepatitis B Surface Antigen: A Systematic Review of the Literature and Meta-Analysis. BMC Infect. Dis. 2017, 17, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Xiao, H.; Cao, L.; Chen, Z. A Label-Free Immunosensor Based on Graphene Oxide/Fe3O4/Prussian Blue Nanocomposites for the Electrochemical Determination of HBsAg. Biosensors 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, E.; Basirun, W.J.; Johan, M.R.; Rezayi, M.; Mahmoudian, M.R.; Poenar, D.P. Electrochemical DNA-Nano Biosensor for the Detection of Cervical Cancer-Causing HPV-16 Using Ultrasmall Fe3O4-Au Core-Shell Nanoparticles. Sens. Bio-Sens. Res. 2023, 40, 100562. [Google Scholar] [CrossRef]
- Ren, Z.; Guo, W.; Sun, S.; Liu, X.; Fan, Z.; Wang, F.; Ibrahim, A.A.; Umar, A.; Alkhanjaf, A.A.M.; Baskoutas, S. Dual-Mode Transfer Response Based on Electrochemical and Fluorescence Signals for the Detection of Amyloid-Beta Oligomers (AβO). Microchim. Acta 2023, 190, 438. [Google Scholar] [CrossRef] [PubMed]
- Arvand, M.; Sanayeei, M.; Hemmati, S. Label-Free Electrochemical DNA Biosensor for Guanine and Adenine by Ds-DNA/Poly(L-Cysteine)/Fe3O4 Nanoparticles-Graphene Oxide Nanocomposite Modified Electrode. Biosens. Bioelectron. 2018, 102, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Wang, H.; Xi, J.; Liu, Q.; Meng, X.; Duan, D.; Gao, L.; Yan, X. Optimization of Fe3O4 Nanozyme Activity via Single Amino Acid Modification Mimicking an Enzyme Active Site. Chem. Commun. 2017, 53, 424. [Google Scholar] [CrossRef]
- Ju, J.; Chen, Y.; Liu, Z.; Huang, C.; Li, Y.; Kong, D.; Shen, W.; Tang, S. Modification and Application of Fe3O4 Nanozymes in Analytical Chemistry: A Review. Chin. Chem. Lett. 2023, 34, 107820. [Google Scholar] [CrossRef]
- Alexandra, L.; Mihaela, A.; Geana, E.; Parvulescu, C.; Stoian, M.C.; Brincoveanu, O.; Pachiu, C.; Kurbanoglu, S. Applied Surface Science Advances Integrated Nanozyme Electrochemical Sensor for the Detection of Tannic Acid: An Advanced Approach to Rapid and Efficient Environmental Monitoring. Appl. Surf. Sci. Adv. 2024, 21, 100602. [Google Scholar] [CrossRef]
- Poimenidis, I.A.; Tsanakas, M.D.; Papakosta, N.; Klini, A.; Farsari, M.; Moustaizis, S.D.; Loukakos, P.A. Enhanced Hydrogen Production through Alkaline Electrolysis Using Laser-Nanostructured Nickel Electrodes. Int. J. Hydrogen Energy 2021, 46, 37162–37173. [Google Scholar] [CrossRef]
- Giovanni, M.; Ambrosi, A.; Pumera, M. The Inherent Electrochemistry of Nickel/Nickel-Oxide Nanoparticles. Chem. Asian J. 2012, 7, 702–706. [Google Scholar] [CrossRef]
- Wang, K.; Shen, P.; Li, M.; Chen, S.; Lin, M.; Chen, P.; Guo, T. Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 11851–11858. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.A.; Fadillah, G. Recent Trends in the Design of Chemical Sensors Based on Graphene–Metal Oxide Nanocomposites for the Analysis of Toxic Species and Biomolecules. TrAC Trends Anal. Chem. 2019, 120, 115660. [Google Scholar] [CrossRef]
- Xiao, X.; Peng, S.; Wang, C.; Cheng, D.; Li, N.; Dong, Y.; Li, Q.; Wei, D.; Liu, P.; Xie, Z.; et al. Metal/Metal Oxide@carbon Composites Derived from Bimetallic Cu/Ni-Based MOF and Their Electrocatalytic Performance for Glucose Sensing. J. Electroanal. Chem. 2019, 841, 94–100. [Google Scholar] [CrossRef]
- Dutta, J.C.; Sharma, P.K. Fabrication, Characterization and Electrochemical Modeling of CNT Based Enzyme Field Effect Acetylcholine Biosensor. IEEE Sens. J. 2018, 18, 3090–3097. [Google Scholar] [CrossRef]
- Kucherenko, I.S.; Topolnikova, Y.V.; Soldatkin, O.O. Advances in the Biosensors for Lactate and Pyruvate Detection for Medical Applications: A Review. TrAC Trends Anal. Chem. 2019, 110, 160–172. [Google Scholar] [CrossRef]
- Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors Based on Electrochemical Lactate Detection: A Comprehensive Review. Biochem. Biophys. Rep. 2016, 5, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Rattu, G.; Khansili, N.; Maurya, V.K.; Krishna, P.M. Lactate Detection Sensors for Food, Clinical and Biological Applications: A Review. Environ. Chem. Lett. 2020, 19, 1135–1152. [Google Scholar] [CrossRef]
- Alam, F.; RoyChoudhury, S.; Jalal, A.H.; Umasankar, Y.; Forouzanfar, S.; Akter, N.; Bhansali, S.; Pala, N. Lactate Biosensing: The Emerging Point-of-Care and Personal Health Monitoring. Biosens. Bioelectron. 2018, 117, 818–829. [Google Scholar] [CrossRef]
- Arivazhagan, M.; Maduraiveeran, G. Hierarchical Gold Dispersed Nickel Oxide Nanodendrites Microarrays as a Potential Platform for the Sensitive Electrochemical Detection of Glucose and Lactate in Human Serum and Urine. Mater. Chem. Phys. 2023, 295, 127084. [Google Scholar] [CrossRef]
- Lineberry, T.W.; Bostwick, J.M. Methamphetamine Abuse: A Perfect Storm of Complications. Mayo Clin. Proc. 2006, 81, 77–84. [Google Scholar] [CrossRef]
- Huestis, M.A.; Cone, E.J. Methamphetamine Disposition in Oral Fluid, Plasma, and Urine. Ann. N. Y. Acad. Sci. 2007, 1098, 104–121. [Google Scholar] [CrossRef]
- Khorablou, Z.; Shahdost-Fard, F.; Razmi, H. High Sensitive Detection of Methamphetamine by High-Performance Aptasensing Platform Based on Nickel Oxide Nanoparticles Anchored on Mxene. Microchem. J. 2023, 193, 109216. [Google Scholar] [CrossRef]
- Li, D.; Liu, B.; Huang, P.J.J.; Zhang, Z.; Liu, J. Highly Active Fluorogenic Oxidase-Mimicking NiO Nanozymes. Chem. Commun. 2018, 54, 12519–12522. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, G.A.; Awan, T.; Salim, H.; Arshad, F.; Hassan, I.U.; Zamani Pedram, M.; Ahmed, W.; Faruck, H.L.; Aljabali, A.A.A.; Mishra, V.; et al. Fourth-Generation Glucose Sensors Composed of Copper Nanostructures for Diabetes Management: A Critical Review. Bioeng. Transl. Med. 2022, 7, e10248. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Bano, M.; BaOmar, F.; Hassan, I.U. Non-Enzymatic Glucose Sensors Composed of NFS-CuO/Ag/SiNPs Based Composite Material with High Performance. Microchem. J. 2023, 192, 108959. [Google Scholar] [CrossRef]
- Tian, L.; Qi, J.; Qian, K.; Oderinde, O.; Liu, Q.; Yao, C.; Song, W.; Wang, Y. Copper (II) Oxide Nanozyme Based Electrochemical Cytosensor for High Sensitive Detection of Circulating Tumor Cells in Breast Cancer. J. Electroanal. Chem. 2018, 812, 1–9. [Google Scholar] [CrossRef]
- Ahmad, R.; Khan, M.; Mishra, P.; Jahan, N.; Ahsan, M.A.; Ahmad, I.; Khan, M.R.; Watanabe, Y.; Syed, M.A.; Furukawa, H.; et al. Engineered Hierarchical CuO Nanoleaves Based Electrochemical Nonenzymatic Biosensor for Glucose Detection. J. Electrochem. Soc. 2021, 168, 017501. [Google Scholar] [CrossRef]
- Khan, S.; Akrema; Qazi, S.; Ahmad, R.; Raza, K.; Rahisuddin. In Silico and Electrochemical Studies for a ZnO-CuO-Based Immunosensor for Sensitive and Selective Detection of E. coli. ACS Omega 2021, 6, 16076–16085. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, N.; Salimi, A.; Hallaj, R.; Fathi, F.; Soleimani, F. CuO/WO3 Nanoparticles Decorated Graphene Oxide Nanosheets with Enhanced Peroxidase-like Activity for Electrochemical Cancer Cell Detection and Targeted Therapeutics. Mater. Sci. Eng. C 2019, 99, 1374–1383. [Google Scholar] [CrossRef]
- Paramparambath, S.; Shafath, S.; Maurya, M.R.; Cabibihan, J.J.; Al-Ali, A.; Malik, R.A.; Sadasivuni, K.K. Nonenzymatic Electrochemical Sensor Based on CuO-MgO Composite for Dopamine Detection. IEEE Sens. J. 2021, 21, 25597–25605. [Google Scholar] [CrossRef]
- Choi, S.; Choi, E.Y.; Kim, D.J.; Kim, J.H.; Kim, T.S.; Oh, S.W. A Rapid, Simple Measurement of Human Albumin in Whole Blood Using a Fluorescence Immunoassay (I). Clin. Chim. Acta 2004, 339, 147–156. [Google Scholar] [CrossRef]
- Wang, R.E.; Tian, L.; Chang, Y.H. A Homogeneous Fluorescent Sensor for Human Serum Albumin. J. Pharm. Biomed. Anal. 2012, 63, 165. [Google Scholar] [CrossRef]
- Feyzi-barnaji, B.; Darbasizadeh, B.; Arkan, E.; Salehzadeh, H.; Salimi, A.; Nili, F.; Dinarvand, R.; Mohammadi, A. Immunoreaction-Triggered Diagnostic Device Using Reduced Graphene Oxide/CuO NPs/Chitosan Ternary Nanocomposite, toward Enhanced Electrochemical Detection of Albumin. J. Electroanal. Chem. 2020, 877, 114642. [Google Scholar] [CrossRef]
- Schultz, J.; Uddin, Z.; Singh, G.; Howlader, M.M.R. Glutamate Sensing in Biofluids: Recent Advances and Research Challenges of Electrochemical Sensors. Analyst 2020, 145, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Mohabbati-Kalejahi, E.; Azimirad, V.; Bahrami, M.; Ganbari, A. A Review on Creatinine Measurement Techniques. Talanta 2012, 97, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rakesh Kumar, R.K.; Shaikh, M.O.; Kumar, A.; Liu, C.H.; Chuang, C.H. Zwitterion-Functionalized Cuprous Oxide Nanoparticles for Highly Specific and Enzymeless Electrochemical Creatinine Biosensing in Human Serum. ACS Appl. Nano Mater. 2023, 6, 2083–2094. [Google Scholar] [CrossRef]
- Bozdoğan, B. Electrochemical Testosterone Biosensor Based on Pencil Graphite Electrode Electrodeposited with Copper Oxide Nanoparticles. Meas. Sci. Technol. 2023, 34, 105106. [Google Scholar] [CrossRef]
- Narasimhappa, P.; Ramamurthy, P.C. Bio-Mimicking the Melanogenesis Pathway Using Tyrosinase for Dopamine Sensing. Electrochim. Acta 2023, 469, 143187. [Google Scholar] [CrossRef]
- Li, M.; Dong, J.; Deng, D.; Ouyang, X.; Yan, X.; Liu, S.; Luo, L. Mn3O4/NiO Nanoparticles Decorated on Carbon Nanofibers as an Enzyme-Free Electrochemical Sensor for Glucose Detection. Biosensors 2023, 13, 264. [Google Scholar] [CrossRef]
- Nguyet, N.T.; Yen, L.T.H.; Doan, V.Y.; Hoang, N.L.; Van Thu, V.; Lan, H.; Trung, T.; Pham, V.H.; Tam, P.D. A Label-Free and Highly Sensitive DNA Biosensor Based on the Core-Shell Structured CeO2-NR@Ppy Nanocomposite for Salmonella Detection. Mater. Sci. Eng. C 2019, 96, 790–797. [Google Scholar] [CrossRef]
- Kumar, Y.; Nirbhaya, V.; Chauhan, D.; Shankar, S.; Chandra, R.; Kumar, S. Nanostructured Zirconia Embedded Porous Carbon Based Ultrasensitive Electrochemical Biosensor for SAA Biomarker Detection. Mater. Chem. Phys. 2023, 294, 126983. [Google Scholar] [CrossRef]
- Choudhari, U.; Jagtap, S. Electrochemical Studies on Doped SnO2 Nanocomposite for Selective Detection of Lung Cancer Biomarkers. AIP Adv. 2021, 11, 125327. [Google Scholar] [CrossRef]
- Sandil, D.; Sharma, S.C.; Puri, N.K. Protein-Functionalized WO3 Nanorods-Based Impedimetric Platform for Sensitive and Label-Free Detection of a Cardiac Biomarker. J. Mater. Res. 2019, 34, 1331–1340. [Google Scholar] [CrossRef]
- Yang, P.H.; Huang, J.M.; Chang, Y.S.; Chan, C.T.; Hu, H.J. Fabrication and Characterization of MgO-Based Enzymatic Glucose Biosensors. IEEE Sens. J. 2023, 23, 28587–28596. [Google Scholar] [CrossRef]
- Ali, M.; Shah, I.; Kim, S.W.; Sajid, M.; Lim, J.H.; Choi, K.H. Quantitative Detection of Uric Acid through ZnO Quantum Dots Based Highly Sensitive Electrochemical Biosensor. Sens. Actuators A Phys. 2018, 283, 282–290. [Google Scholar] [CrossRef]
- Ridhuan, N.S.; Abdul Razak, K.; Lockman, Z. Fabrication and Characterization of Glucose Biosensors by Using Hydrothermally Grown ZnO Nanorods. Sci. Rep. 2018, 8, 13722. [Google Scholar] [CrossRef] [PubMed]
- Gallay, P.; Tosi, E.; Madrid, R.; Tirado, M.; Comedi, D. Glucose Biosensor Based on Functionalized ZnO Nanowire/Graphite Films Dispersed on a Pt Electrode. Nanotechnology 2016, 27, 425501. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, R.; Mozaffari, S.A.; Abedi, M. Disposable Urea Biosensor Based on Nanoporous ZnO Film Fabricated from Omissible Polymeric Substrate. Mater. Sci. Eng. C 2015, 57, 387–396. [Google Scholar] [CrossRef]
- Uzunoglu, A. The Use of CeO2-TiO2 Nanocomposites as Enzyme Immobilization Platforms in Electrochemical Sensors. J. Turk. Chem. Soc. Sect. A Chem. 2017, 4, 855–868. [Google Scholar] [CrossRef]
- Sadique, M.A.; Yadav, S.; Khare, V.; Khan, R.; Tripathi, G.K.; Khare, P.S. Functionalized Titanium Dioxide Nanoparticle-Based Electrochemical Immunosensor for Detection of SARS-CoV-2 Antibody. Diagnostics 2022, 12, 2612. [Google Scholar] [CrossRef]
- Nycz, M.; Arkusz, K.; Pijanowska, D.G. Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection. Materials 2021, 14, 3767. [Google Scholar] [CrossRef] [PubMed]
- Jalil, O.; Pandey, C.M.; Kumar, D. Electrochemical Biosensor for the Epithelial Cancer Biomarker EpCAM Based on Reduced Graphene Oxide Modified with Nanostructured Titanium Dioxide. Microchim. Acta 2020, 187, 275. [Google Scholar] [CrossRef] [PubMed]
- Al Fatease, A.; Haque, M.; Umar, A.; Ansari, S.G.; Alhamhoom, Y.; Bin Muhsinah, A.; Mahnashi, M.H.; Guo, W.; Ansari, Z.A. Label-Free Electrochemical Sensor Based on Manganese Doped Titanium Dioxide Nanoparticles for Myoglobin Detection: Biomarker for Acute Myocardial Infarction. Molecules 2021, 26, 4252. [Google Scholar] [CrossRef]
- Dau, T.N.N.; Vu, V.H.; Cao, T.T.; Nguyen, V.C.; Ly, C.T.; Tran, D.L.; Pham, T.T.N.; Loc, N.T.; Piro, B.; Vu, T.T. In-Situ Electrochemically Deposited Fe3O4 Nanoparticles onto Graphene Nanosheets as Amperometric Amplifier for Electrochemical Biosensing Applications. Sens. Actuators B Chem. 2019, 283, 52–60. [Google Scholar] [CrossRef]
- Sundar, S.; Kwon, S.J.; Venkatachalam, G. Magneto-Biosensor for the Detection of Uric Acid Using Citric Acid-Capped Iron Oxide Nanoparticles. J. Nanosci. Nanotechnol. 2019, 20, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Sanaeifar, N.; Rabiee, M.; Abdolrahim, M.; Tahriri, M.; Vashaee, D.; Tayebi, L. A Novel Electrochemical Biosensor Based on Fe3O4 Nanoparticles-Polyvinyl Alcohol Composite for Sensitive Detection of Glucose. Anal. Biochem. 2017, 519, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ding, S.; Chen, Y.; Hao, W.; Lai, X.; Peng, J.; Tu, J.; Cao, Y.; Li, X. 3D NiO Hollow Sphere/Reduced Graphene Oxide Composite for High-Performance Glucose Biosensor. Sci. Rep. 2017, 7, 5220. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, J.; Luo, L.; Zhang, J.; Wang, Y.; Qin, Y.; Zhang, Y.; Shu, X.; Lv, J.; Wu, Y. One-Pot Synthesis of NiO/Mn2O3 Nanoflake Arrays and Their Application in Electrochemical Biosensing. Appl. Surf. Sci. 2017, 423, 1182–1187. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Q.; Zhao, H.; Wei, F.; Li, T. Porous-Pt-CuO-Driven Electrochemical Biosensor for Tracking of Endogenous H2S Biomessenger Molecules. Ceram. Int. 2023, 49, 16849–16856. [Google Scholar] [CrossRef]
- Veeralingam, S.; Badhulika, S. Surface Functionalized β-Bi2O3 Nanofibers Based Flexible, Field-Effect Transistor-Biosensor (BioFET) for Rapid, Label-Free Detection of Serotonin in Biological Fluids. Sens. Actuators B Chem. 2020, 321, 128540. [Google Scholar] [CrossRef]
- Song, D.; Xu, X.; Huang, X.; Li, G.; Zhao, Y.; Gao, F. Oriented Design of Transition-Metal-Oxide Hollow Multishelled Micropolyhedron Derived from Bimetal—Organic Frameworks for the Electrochemical Detection of Multipesticide Residues. J. Agric. Food Chem. 2023, 71, 2600–2609. [Google Scholar] [CrossRef] [PubMed]
Morphology of NMO | Technique | Transducer | Analyte | Sensitivity | LOD | Linear Range | Ref. |
---|---|---|---|---|---|---|---|
Zinc Oxide-Based Electrochemical Biosensors | |||||||
Nanoflower | DPV | TPIPs/ZnO/Au | Hemoglobin | NS | 3.1 × 10−14 mg·L−1 | 10−13–10−1 mg·L−1 | [66] |
Nanoparticle | DPV | ZnO@Au/Tyr/SPCE | Dopamine | NS | 86 nM | 0.1–500 μM | [67] |
Nanowire | CV | ZnO AT+PT/ITO | Ascorbic acid | 92 μA·mM−1·cm | NS | NS | [71] |
Quantum dot | CV | Nf/ZnO QDs/Urs/SPE | Uric acid | 4.0 μA·mM−1·cm−2 | 22.97 μM | 1 mM–10 mM | [142] |
Nanorod | AMP | Nf/GOx/ZnO NRs/ITO | Glucose | 48.75 μA·mM−1·cm−2 | 0.06 mM | 0.05–1 mM | [143] |
Nanowire | AMP | GOx/ZnO-NWs/Gr | Glucose | 13–17 μA·mM−1·cm−2 | 3–13 μM | NS | [144] |
Nanoporous | EIS | FTO/ZnO/Urs | Urea | 0.0506 kΩ·mg ·dL−1 | 5.0 mg·dL−1 | 8.0–110 mg·dL−1 | [145] |
Titanium Dioxide-Based Electrochemical Biosensors | |||||||
Nanoparticle | CV | NiO-TiO2/GCE | Glucose | 24.85 µA·mM−1·cm−2 | 0.7 µM | 2 µM–2 mM | [80] |
Nanotube | AMP | Co-TNT/GCE | SARS-CoV-2 | NS | 0.7 nM | 14–1400 nM | [81] |
Nanoparticle | CV | CeO2–TiO2/ITO | Uric acid | 0.9016 μA·cm−2·mM−1 | 0.165 mM | 10–700 mg·dL−1 | [82] |
Nanotube | CV | Cu2ONPs/TNT | Cholesterol | 6034.04 µA·mM−1·cm−2 | 0.05 µM | 24.4–622 µM | [83] |
Nanoparticle | CV | DNA-TiO2/SPGE | H1N1 swine flu virus | 40.32 μA·ng−1·cm−2 | 0.00024 ng·6 µL−1 | 0.0002–20 ng·6 µL−1 | [84] |
Nanoparticle | CV | Pt/CeO2-TiO2/LOx/Nf | Lactate | 0.085 µA·µM−1·cm−2 | 5.9 µM | 0.02–0.6 mM | [146] |
Nanoparticle | CV | TiO2-CH/GCE | SARS-CoV-2 antibody | NS | 3.42 ag·mL−1 | 50 ag mL−1–1 ng mL−1 | [147] |
Nanotube | CV | AgNPs/TiO2/TNT | Heat Shock Protein 70 | NS | 0.48 ng·mL−1 | 0.1–100 ng·mL−1 | [148] |
Nanoparticle | DPV | RGO@TiO2/ITO | Epithelial cell adhesion molecules | 3.24 μA·mL ·ng−1·cm−2 | 6.5 pg·mL−1 | 0.01–60 ng·mL−1 | [149] |
Nanoparticle | CV and EIS | Mn-TiO2/SPE | Myoglobin | 100.40 µA-cm−2.nM−1 | 0.013 nM | 3–15 nM | [150] |
Iron (II, III) Oxide-Based Electrochemical Biosensors | |||||||
Nanoparticle | DPV | Fe3O4/CeO2 @Au/GCE | MicroRNA-21 | NS | 0.33 fM | 1 fM–1 nM | [93] |
Nanoparticle | DPV | MWCNTs/Fe3O4/GCE | PSA | NS | 0.39 pg·mL−1 | 2.5 pg·mL−1–100 ng·mL−1 | [96] |
Nanoparticle | DPV | GO/Fe3O4/PB | HBsAg | 0.5 pg·mL−1 to 200 ng.mL−1 | 0.166 pg·mL−1 | NS | [99] |
Nanoparticle | DPV | Fe3O4-AuNPs-SPCE | HPV | 2.4 μA·nM | 0.1 nM | 10−4 nM–1 μM | [100] |
Nanoparticle | DPV | CS/Fe3O4/PPy/GCE | AβO | NS | 3.4 fM | 10 fM–10 μM | [101] |
Nanoparticle | DPV | ds-DNA/p(L-Cys)/Fe3O4 NPs-GO/CPE | Adenine | NS | 3.90 nM | 0.01–30.0 μM | [102] |
Guanine | 1.58 nM | 0.01–25.0 μM | |||||
Nanoparticle | DPV | Fe2O3–CH-S-Gr/AuE | Tannic acid | 0.2 µA × µM−1 | 3.6 × 10−3 µM | 0.01–1000 µM | [105] |
Nanosheet | CV | GCE/Fe3O4/Gr-INPs/AChE | ATCh | 255.6 μM·mM−1·cm−2 | 8.35 μM | 12.5–112.5 μM | [151] |
GCE/Fe3O4/Gr-INPs/GOx | Glucose | 700 μM·mM−1·cm−2 | 8.2 μM | 12.5–112.5 μM | |||
Nanoparticle | DPV | Mag-Fe3O4/GCE | Uric acid | NS | 7.5 μM | 7.5 μM–0.18 mM | [152] |
Nanoparticle | CV | GOx/PVA-Fe3O4/Sn | Glucose | 9.36 mA·mM−1 | 8 mM | 5 × 10−3–30 mM | [153] |
Nickel (II) Oxide-Based Electrochemical Biosensors | |||||||
Nanoparticle | DMM | CH/NiO/ITO | AChE | 58 mV·decade−1 | NS | 0.01–0.2 mM | [111] |
Nanodentrites | CA | Au@NiO NDMA | Glucose | 11.46 μA·μM−1·cm−2 | 0.1 μM | 10–5000 μM | [116] |
Lactate | 11.89 μA·μM−1·cm−2 | 8.2 μM | 100–10,000 μM | ||||
Nanoparticle | DPV | NiONPs/MXen/GCE | Methamphetamine | NS | 333.3 fM | 10 pM–50 mM | [119] |
Hollow sphere | CV | 3D-NiO hollow sphere/RGO/GCE | Glucose | 2.04 mA·mM−1·cm−2 | 82 nM | 0.009–1.129 mM | [154] |
Nanoflake | CV | NiO/Mn2O3 | Glucose | 167 μA·mM−1·cm−2 | NS | 10–2860 μM | [155] |
Copper (II) Oxide-Based Electrochemical Biosensors | |||||||
Nanoflower | CA | NFS-CuO/Ag/SiNPs/GCE | Glucose | 4877.6 μA·mM−1·cm−2 | 0.1 μM | 0.1 μM–2.5 μM | [122] |
Nanoleaves | CV | CuO/GCE | Glucose | 1467.32 μA·mM−1·cm−2 | 12 nM | 0.005–5.89 mM | [124] |
Nanoparticle | DPV | ZnO-CuO/SPE | E. coli | 11.04 μA·CFU−1 | 2 CFU·mL−1 | 1 × 103–8 × 104 CFU·mL−1 | [125] |
Nanoparticle | DPV | CuO/WO3-GO | Cancer cells | NS | 18 cells·mL−1 | 50–105 cells·mL−1 | [126] |
Nanoparticle | CV | CuO-MgO/GCE | Dopamine | 69 μA·cm−2·mM−1 | 6.4 μM | 10–100 μM | [127] |
Nanoparticle | DPV | CH/CuO NPs/ERGO/GCE | HAS | NS | 10–450 ng·mL−1 | 2.6 ng·mL−1 | [130] |
Nanoparticle | CV | SB3C16@Cu2O/SPCE | Creatinine | NS | 5.0 μM | 10–200 μM | [133] |
Nanoparticle | SWV | CuONPs/PGE | Testosterone | NS | 4.6 nM | 5–200 nM | [134] |
Nanoparticle | DPV | Tyr/Cu2O NPs/GCE | Dopamine | NS | 0.3 μM | 10–70 µM | [135] |
Nanoparticle | CV | Mn3O4/NiO/CNFs/GCE | Glucose | 243.74 µA·mM−1·cm−2 | 0.73 µM | 3000–12,000 µM | [136] |
Nanoparticle | DPV | Pt–CuO/CP | H2S | NS | 0.5 ppm | 0.5–500 ppm | [156] |
Other Nanostructured Metal Oxide-Based Electrochemical Biosensors | |||||||
Nanorod | EIS | CeO2-NR@Ppy/CP | Salmonella | 593.7 Ω·nM −1·cm−2 | 0.084 nM | 0.01–0.4 nM | [137] |
Nanosheet | CV | BSA/anti-SAA/APTES/nZrO2@PC/ITO | Serum Amyloid A | 95.88 μA [log(μg mL−1)]−1 cm−2 | 6.37 μg·mL−1 | 10–100 μg·mL−1 | [138] |
Nanoparticle | CV | Cu/SnO2/ITO | Lung cancer biomarkers | NS | 1 ppb | 20–100 ppb | [139] |
Mn/SnO2/ITO | 0.1 ppb | 1–1000 ppb | |||||
Nanorod | EIS | APTES/WO3 NRs/ITO | Troponin I | 6.81 [KΩ.mL/(ng·cm2)] | 0.01 ng·mL−1 | 0.01–10 ng·mL−1 | [140] |
Nanoparticle | DPV | Nf/GOx/MgO/ENIG/Cu/PI | Glucose | 17.45 mV·mM−1 | 0.11 mM | 2–10 mM | [141] |
Nanofiber | AMP | Al/β-Bi2O3 | Serotonin | 51.64 μA·nM−1 | 0.29 nM | 10 nM–1 μM | [157] |
Nanoparticle | CV | AChE-Nf/MnCo2O4.5HoQS-MPs/GCE | Monocrotophos | NS | 1.82 × 10−14 M | 0.1 pM–100 nM | [158] |
Methamidophos | 1.66 × 10−14 M | 0.1 pM–10 nM | |||||
Carbaryl | 1.58 × 10−14 M | 0.1 pM–10 nM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keles, G.; Sifa Ataman, E.; Taskin, S.B.; Polatoglu, İ.; Kurbanoglu, S. Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis. Biosensors 2024, 14, 238. https://doi.org/10.3390/bios14050238
Keles G, Sifa Ataman E, Taskin SB, Polatoglu İ, Kurbanoglu S. Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis. Biosensors. 2024; 14(5):238. https://doi.org/10.3390/bios14050238
Chicago/Turabian StyleKeles, Gulsu, Elif Sifa Ataman, Sueda Betul Taskin, İlker Polatoglu, and Sevinc Kurbanoglu. 2024. "Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis" Biosensors 14, no. 5: 238. https://doi.org/10.3390/bios14050238
APA StyleKeles, G., Sifa Ataman, E., Taskin, S. B., Polatoglu, İ., & Kurbanoglu, S. (2024). Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis. Biosensors, 14(5), 238. https://doi.org/10.3390/bios14050238