Utilizing a Disposable Sensor with Polyaniline-Doped Multi-Walled Carbon Nanotubes to Enable Dopamine Detection in Ex Vivo Mouse Brain Tissue Homogenates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation and Measurements
2.3. Synthesis of the PANI-MWCNTs
2.3.1. Synthesis of PANI
2.3.2. Synthesis of PANI-MWCNTs Using an In Situ Polymerization Method
2.4. Fabrication of the PANI-MWCNTs-2/SPCE Sensor
2.5. Preparation of Ex Vivo Brain Tissue Homogenates from PD and Control Models
3. Results and Discussion
3.1. Physicochemical Characterizations
3.2. Electrochemical Characterization of the Sensors Using [Fe(CN)6]3−/4−
3.3. Electrochemical Characterization of the Modified Sensors Using DA
3.4. Effect of Scan Rates on PANI-MWCNTs-2/SPCE
3.5. Optimization of Solution pH
3.6. Chronoamperometry (CA) Experiments
3.7. Interference Study
3.8. Analysis of Ex Vivo Mouse Brain Tissue Homogenates
3.9. Reproducibility and Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, signaling, and association with neurological diseases. Cell Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Rajarathinam, T.; Kang, M.; Hong, S.; Chang, S.-C. Nanocomposite-based electrochemical sensors for neurotransmitters detection in neurodegenerative diseases. Chemosensors 2023, 11, 103. [Google Scholar] [CrossRef]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Wu, X.; Acheampong, K.; Liu, A. Dopamine and dopamine receptors in Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Front. Aging Neurosci. 2019, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Walton, L.R.; Verber, M.; Lee, S.-H.; Chao, T.H.H.; Wightman, R.M.; Shih, Y.Y.I. Simultaneous fMRI and fast-scan cyclic voltammetry bridges evoked oxygen and neurotransmitter dynamics across spatiotemporal scales. Neuroimage 2021, 244, 118634. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Mark Wightman, R. Cyclic voltammetric measurements of neurotransmitters. Electrochem. Soc. Interface 2017, 26, 53. [Google Scholar] [CrossRef]
- Dunham, K.E.; Venton, B.J. Electrochemical and biosensor techniques to monitor neurotransmitter changes with depression. Anal. Bioanal. Chem. 2024, 416, 2301–2318. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Venton, B.J.; DuBay, K.H. Structure and dynamics of adsorbed dopamine on solvated carbon nanotubes and in a CNT groove. Molecules 2022, 27, 3768. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Jill Venton, B. Fast-Scan Cyclic Voltammetry (FSCV) reveals behaviorally evoked dopamine release by sugar feeding in the adult drosophila mushroom body. Angew. Chem. 2022, 61, e202207399. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Chang, Y.; Jill Venton, B. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal. Chim. Acta 2022, 1223, 340165. [Google Scholar] [CrossRef]
- Zou, X.; Chen, Y.; Zheng, Z.; Sun, M.; Song, X.; Lin, P.; Tao, J.; Zhao, P. The sensitive monitoring of living cell-secreted dopamine based on the electrochemical biosensor modified with nitrogen-doped graphene aerogel/Co3O4 nanoparticles. Microchem. J. 2022, 183, 107957. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, S.; Lu, S.; Bao, X.; Sun, J.; Yang, X. An enzyme cascade-triggered fluorogenic and chromogenic reaction applied in enzyme activity assay and immunoassay. Anal. Chem. 2018, 90, 7754–7760. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y. Design and synthesis of fluorescent reagents for selective detection of dopamine. Sens. Actuators B Chem. 2017, 239, 383–389. [Google Scholar] [CrossRef]
- Zan, X.; Bai, H.; Wang, C.; Zhao, F.; Duan, H. Graphene paper decorated with a 2D array of dendritic platinum nanoparticles for ultrasensitive electrochemical detection of dopamine secreted by live cells. Chem. Eur. J. 2016, 22, 5204–5210. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Huang, W.; Tong, Y.; Tian, M. Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Mikrochim. Acta 2019, 186, 686. [Google Scholar] [CrossRef]
- Njagi, J.; Chernov, M.M.; Leiter, J.C.; Andreescu, S. Amperometric detection of dopamine in vivo with an enzyme-based carbon fiber microbiosensor. Anal. Chem. 2010, 82, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 2019, 31, e1806739. [Google Scholar] [CrossRef]
- He, W.; Liu, R.; Zhou, P.; Liu, Q.; Cui, T. Flexible micro-sensors with self-assembled graphene on a polyolefin substrate for dopamine detection. Biosens. Bioelectron. 2020, 167, 112473. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Wang, J. Electrochemical sensors: From the bench to the skin. Sens. Actuators B Chem. 2021, 344, 130178. [Google Scholar] [CrossRef]
- Roy, A.; Ray, A.; Saha, S.; Das, S. Investigation on energy storage and conversion properties of multifunctional PANI-MWCNT composite. Int. J. Hydrogen Energy 2018, 43, 7128–7139. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, S.; Luque, R.; Han, S.; Hu, L.; Xu, G. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem. Soc. Rev. 2016, 45, 715–752. [Google Scholar] [CrossRef]
- Oh, J.-W.; Yoon, Y.W.; Heo, J.; Yu, J.; Kim, H.; Kim, T.H. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation. Talanta 2016, 147, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Hecht, D.S.; Gruner, G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 2010, 110, 5790–5844. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, S.; Rajarathinam, T.; Jang, H.-G.; Thirumalai, D.; Lee, J.; Paik, H.-j.; Chang, S.-C. Ruthenium-anchored carbon sphere-customized sensor for the selective amperometric detection of melatonin. Biosensors 2023, 13, 936. [Google Scholar] [CrossRef] [PubMed]
- Anandhu, T.P.; Mohan, R.R.; Cherusseri, J.; Rohith, R.; Varma, S.J. High areal capacitance and enhanced cycling stability of binder-free, pristine polyaniline supercapacitor using hydroquinone as a redox additive. Electrochim. Acta 2022, 425, 140740. [Google Scholar] [CrossRef]
- Thirumalai, D.; Subramani, D.; Kim, J.; Rajarathinam, T.; Yoon, J.-H.; Paik, H.j.; Lee, J.; Chang, S.-C. Conductive PEDOT:PSS copolymer electrode coatings for selective detection of dopamine in ex vivo mouse brain slices. Talanta 2024, 267, 125252. [Google Scholar] [CrossRef]
- Rajarathinam, T.; Kwon, M.; Thirumalai, D.; Kim, S.; Lee, S.; Yoon, J.H.; Paik, H.J.; Kim, S.; Lee, J.; Ha, H.K.; et al. Polymer-dispersed reduced graphene oxide nanosheets and Prussian blue modified sensor for amperometric detection of sarcosine. Anal. Chim. Acta 2021, 1175, 338749. [Google Scholar] [CrossRef]
- Martin Santos, A.; Wong, A.; Fatibello-Filho, O. Simultaneous determination of salbutamol and propranolol in biological fluid samples using an electrochemical sensor based on functionalized-graphene, ionic liquid and silver nanoparticles. J. Electroanal. Chem. 2018, 824, 1–8. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, X.; Tong, L.; Tong, Q.-X. Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS Sustain. Chem. Eng. 2020, 8, 1644–1650. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, H.; Hu, S.; Li, F.; Weng, W.; Chen, J.; Wang, Q.; He, Y.; Zhang, W.; Bao, X. A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots-chitosan composite film. Biosens. Bioelectron. 2014, 52, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Cai, X.; Wang, X.; Gao, C.; Liu, S.; Gao, F.; Wang, Q. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens. Actuators B Chem. 2013, 186, 380–387. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 2009, 11, 889–892. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.-C.; Ma, L.-X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem. 2016, 227, 488–496. [Google Scholar] [CrossRef]
- Immanuel, S.; Aparna, T.K.; Sivasubramanian, R. A facile preparation of Au-SiO2 nanocomposite for simultaneous electrochemical detection of dopamine and uric acid. Surf. Interfaces 2019, 14, 82–91. [Google Scholar] [CrossRef]
- Xie, Y.-L.; Yuan, J.; Ye, H.-L.; Song, P.; Hu, S.-Q. Facile ultrasonic synthesis of graphene/SnO2 nanocomposite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid, and uric acid. J. Electroanal. Chem. 2015, 749, 26–30. [Google Scholar] [CrossRef]
- Bavatharani, C.; Muthusankar, E.; Alothman, Z.A.; Wabaidur, S.M.; Ponnusamy, V.K.; Ragupathy, D. Ultra-high sensitive, selective, non-enzymatic dopamine sensor based on electrochemically active graphene decorated Polydiphenylamine-SiO2 nanohybrid composite. Ceram. Int. 2020, 46, 23276–23281. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Vittal, R.; Nien, P.-C.; Ho, K.-C. Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion. Biosens. Bioelectron. 2009, 24, 3504–3509. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, J.; Yang, Z.; Li, Y.; Yu, S.; Xu, Q.; Hu, X. Graphene–Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Anal. Methods 2012, 4, 1725–1728. [Google Scholar] [CrossRef]
- Aparna, T.K.; Sivasubramanian, R.; Dar, M.A. One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J. Alloys Compd. 2018, 741, 1130–1141. [Google Scholar] [CrossRef]
- Bao, Y.; Song, J.; Mao, Y.; Han, D.; Yang, F.; Niu, L.; Ivaska, A. Graphene oxide-templated Polyaniline microsheets toward simultaneous electrochemical determination of AA/DA/UA. Electroanalysis 2011, 23, 878–884. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, L.-G.; Chu, X.-F.; Chi, Y.-D.; Yang, X.-T. Rational design of gold nanoparticle/graphene hybrids for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Chin. J. Anal. Chem. 2016, 44, e1617–e1625. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, B.; Fang, T.; Chen, J.; Liang, C. Three-dimensional porous graphene for simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. J. Electroanal. Chem. 2016, 782, 76–83. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lopa, N.S.; Ju, M.J.; Lee, J.-J. Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid. J. Electroanal. Chem. 2017, 792, 54–60. [Google Scholar] [CrossRef]
- Zou, C.E.; Zhong, J.; Li, S.; Wang, H.; Wang, J.; Yan, B.; Du, Y. Fabrication of reduced graphene oxide-bimetallic PdAu nanocomposites for the electrochemical determination of ascorbic acid, dopamine, uric acid and rutin. J. Electroanal. Chem. 2017, 805, 110–119. [Google Scholar] [CrossRef]
Electrochemical Sensor | Linear Range (µM) | LOD (µM) | Detection Method | Tested Real Samples | Reference |
---|---|---|---|---|---|
GO/GCE | 0.1–15.0 | 0.27 | CA | - | [30] |
Graphene/SnO2/GCE | 1.0–20.0 | 3.0 | DPV | - | [34] |
rGO-ZnO/GCE | 1.0–70.0 | 0.33 | DPV | Calf plasma and human urine | [32] |
Au–SiO2/GCE | 10.0–100 | 1.98 | DPV | Human serum | [33] |
MWCNTs/Q/Nafion/GCE | 50.0–500 | 4.72 | CV, LSV | Human serum | [36] |
Graphene-Au/GCE | 5.0–1000 | 1.86 | CV, DPV | Human serum | [37] |
GRNS/PDPA/SiO2/GCE | 1.0–5.0 | 0.10 | CA | - | [35] |
Au–Cu2O/rGO/GCE | 10.0–90.0 | 3.9 | CV, DPV | Human serum and urine | [38] |
GO-PANI/GCE | 1.0–14.0 | 0.50 | DPV | - | [39] |
Au/PDDA/GNS/GCE | 2.0–28.0 | 1.0 | CV, DPV | Human urine | [40] |
PG/GCE | 0.2–8.0 | 0.20 | CV, DPV | - | [41] |
GNP/FTO | 30–100 | 0.22 | CV, DPV | Human serum | [42] |
PdAu/rGO | 1.25–73.75 | 0.75 | CV, DPV | Pharmaceutical samples | [43] |
PANI-MWCNTS-2/SPCE | 1.0–200 | 0.05 | CV, CA | Ex vivo mouse brain tissue homogenates | This work |
Samples | DA Added (µM) | DA Found (µM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Control model | 0.0 | 0.09 | - | 1.7 |
1.0 | 0.99 | 90.8 | 1.0 | |
2.0 | 1.80 | 86.1 | 3.9 | |
3.0 | 2.60 | 84.1 | 2.1 | |
PD induced model | 0.0 | - | - | 0.8 |
1.0 | 0.95 | 95.0 | 0.6 | |
2.0 | 1.74 | 87.0 | 2.1 | |
3.0 | 2.43 | 81.0 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajarathinam, T.; Jayaraman, S.; Seol, J.; Lee, J.; Chang, S.-C. Utilizing a Disposable Sensor with Polyaniline-Doped Multi-Walled Carbon Nanotubes to Enable Dopamine Detection in Ex Vivo Mouse Brain Tissue Homogenates. Biosensors 2024, 14, 262. https://doi.org/10.3390/bios14060262
Rajarathinam T, Jayaraman S, Seol J, Lee J, Chang S-C. Utilizing a Disposable Sensor with Polyaniline-Doped Multi-Walled Carbon Nanotubes to Enable Dopamine Detection in Ex Vivo Mouse Brain Tissue Homogenates. Biosensors. 2024; 14(6):262. https://doi.org/10.3390/bios14060262
Chicago/Turabian StyleRajarathinam, Thenmozhi, Sivaguru Jayaraman, Jaeheon Seol, Jaewon Lee, and Seung-Cheol Chang. 2024. "Utilizing a Disposable Sensor with Polyaniline-Doped Multi-Walled Carbon Nanotubes to Enable Dopamine Detection in Ex Vivo Mouse Brain Tissue Homogenates" Biosensors 14, no. 6: 262. https://doi.org/10.3390/bios14060262
APA StyleRajarathinam, T., Jayaraman, S., Seol, J., Lee, J., & Chang, S. -C. (2024). Utilizing a Disposable Sensor with Polyaniline-Doped Multi-Walled Carbon Nanotubes to Enable Dopamine Detection in Ex Vivo Mouse Brain Tissue Homogenates. Biosensors, 14(6), 262. https://doi.org/10.3390/bios14060262