Design and Fabrication of a Biomimetic Smart Material for Electrochemical Detection of Carbendazim Pesticides in Real Samples with Enhanced Selectivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instruments
2.3. Synthesis of Molecularly Imprinted Polymer (MIP)
2.4. Modification of GCE with MWCNT and MIP
2.5. Adsorption Process
3. Results
3.1. Morphology of MIP
3.2. Construction of HPLC Curve
3.3. Optimization of Concentration
3.4. Electrochemical Behavior of Modified Electrode
3.5. Consistency of the MIP/MWCNT Sensor
3.6. Selectivity
3.7. Application in Real Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandhya; Kumar, S.; Kumar, D.; Dilbaghi, N. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ. Sci. Pollut. Res. 2017, 24, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.P.; Tubino, M.; Elsholz, T.C.R.; Elsholz, O.; Khan, S.; Vila, M.M.D.C. Flow Injection Analysis System for Screening Organophosphorus Pesticides by their Inhibitory Effect on the Enzyme Acethylcholinesterase. J. Braz. Chem. Soc. 2015, 26, 484–489. [Google Scholar] [CrossRef]
- Mogul, M.G.; Akin, H.; Hasirci, N.; Trantolo, D.J.; Gresser, J.D.; Wise, D.L. Controlled release of biologically active agents for purposes of agricultural crop management. Resour. Conserv. Recycl. 1996, 16, 289–320. [Google Scholar] [CrossRef]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef] [PubMed]
- Jepson, P.C.; Murray, K.; Bach, O.; Bonilla, M.A.; Neumeister, L. Selection of pesticides to reduce human and environmental health risks: A global guideline and minimum pesticides list. Lancet Planet. Heal. 2020, 4, e56–e63. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Buszewski, B. Isolation and determination of carbendazim residue from wheat grain by matrix solid-phase dispersion and HPLC. J. Sep. Sci. 2003, 26, 1269–1272. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Rong, Y.; Li, H.; Hu, Y.; Chen, Q. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem. 2021, 349, 129157. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lin, M.; Sun, L.; Xu, T.; Lai, K.; Huang, M.; Lin, H. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Food Chem. 2019, 293, 271–277. [Google Scholar] [CrossRef] [PubMed]
- İlktaç, R.; Aksuner, N.; Henden, E. Selective and sensitive fluorimetric determination of carbendazim in apple and orange after preconcentration with magnetite-molecularly imprinted polymer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 174, 86–93. [Google Scholar] [CrossRef]
- Subhani, Q.; Huang, Z.; Zhu, Z.; Zhu, Y. Simultaneous determination of imidacloprid and carbendazim in water samples by ion chromatography with fluorescence detector and post-column photochemical reactor. Talanta 2013, 116, 127–132. [Google Scholar] [CrossRef]
- Gómez-Ramos, M.d.M.; Nannou, C.; Martínez Bueno, M.J.; Goday, A.; Murcia-Morales, M.; Ferrer, C.; Fernández-Alba, A.R. Pesticide residues evaluation of organic crops. A critical appraisal. Food Chem. X 2020, 5, 100079. [Google Scholar] [CrossRef] [PubMed]
- Regis-Rolle, S.D.; Bauville, G.M. High-performance liquid chromatographic method for the determination of carbendazim residues in crops, grains, and wines with fluorescent detection. Pestic. Sci. 1993, 37, 273–282. [Google Scholar] [CrossRef]
- Chiba, M.; Singh, R.P. High-performance liquid chromatographic method for simultaneous determination of benomyl and carbendazim in aqueous media. J. Agric. Food Chem. 1986, 34, 108–112. [Google Scholar] [CrossRef]
- Khozimy, A.M.; Ramadan, M.F. Method Development and Validation of Carbendazim Fungicide in Cucumber. J. Plant Prot. Pathol. 2019, 10, 397–400. [Google Scholar]
- Donato, F.F.; Martins, M.L.; Munaretto, J.S.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Development of a Multiresidue Method for Pesticide Analysis in Drinking Water by Solid Phase Extraction and Determination by Gas and Liquid Chromatography with Triple Quadrupole Tandem Mass Spectrometry. J. Braz. Chem. Soc. 2015, 26, 2077–2087. [Google Scholar] [CrossRef]
- Yola, M.L. Carbendazim imprinted electrochemical sensor based on CdMoO4/g-C3N4 nanocomposite: Application to fruit juice samples. Chemosphere 2022, 301, 134766. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Ruiyi, L.; Nana, L.; Xiulan, S.; Haiyan, Z.; Guangli, W.; Zaijun, L. Electrochemical detection of carbendazim with mulberry fruit-like gold nanocrystal/multiple graphene aerogel and DNA cycle amplification. Microchim. Acta 2021, 188, 284. [Google Scholar] [CrossRef] [PubMed]
- Santana, P.; Lima, J.; Santana, T.; Santos, L.; Matos, C.; da Costa, L.; Gimenez, I.; Sussuchi, E. Semiconductor Nanocrystals-Reduced Graphene Composites for the Electrochemical Detection of Carbendazim. J. Braz. Chem. Soc. 2019, 30, 1302–1308. [Google Scholar] [CrossRef]
- Wang, L.; Ahmad, W.; Wu, J.; Wang, X.; Chen, Q.; Ouyang, Q. Selective detection of carbendazim using a upconversion fluorescence sensor modified by biomimetic molecularly imprinted polymers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 284, 121457. [Google Scholar] [CrossRef]
- Boysen, R.I. Advances in the development of molecularly imprinted polymers for the separation and analysis of proteins with liquid chromatography. J. Sep. Sci. 2019, 42, 51–71. [Google Scholar] [CrossRef]
- Karami, F.; Ranjbar, S.; Ghasemi, Y.; Negahdaripour, M. Analytical methodologies for determination of methotrexate and its metabolites in pharmaceutical, biological and environmental samples. J. Pharm. Anal. 2019, 9, 373–391. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Wong, A.; Rychlik, M.; Sotomayor, M.d.P.T. A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples. Chemosensors 2022, 10, 473. [Google Scholar] [CrossRef]
- Liu, J.; Wang, G.; Tang, S.; Gao, Q.; Liang, D.; Jin, R. Theoretical and experimental research on self-assembly system of molecularly imprinted polymers formed via chloramphenicol and methacrylic acid. J. Sep. Sci. 2018, jssc.201800997. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cheng, L.; Zhang, L.; Zuo, Y. Graphene oxide based molecularly imprinted polymers modified with β-cyclodextrin for selective extraction of di(2-ethylhexyl) phthalate in environmental waters. J. Sep. Sci. 2019, 42, 1248–1256. [Google Scholar] [CrossRef]
- Ma, W.; Row, K.H. Simultaneous determination of levofloxacin and ciprofloxacin in human urine by ionic-liquid-based, dual-template molecularly imprinted coated graphene oxide monolithic solid-phase extraction. J. Sep. Sci. 2019, 42, 642–649. [Google Scholar] [CrossRef]
- İlktaç, R.; Gumus, Z.P.; Aksuner, N.; Coskunol, H. Highly sensitive and selective method for the rapid determination and preconcentration of haloperidol by using a magnetite-molecularly imprinted polymer. J. Sep. Sci. 2019, 42, 2115–2122. [Google Scholar] [CrossRef]
Sample | CBZ Concentration Added (ppm) | Recovery HPLC (%) | Recovery Electrochemical (%) |
---|---|---|---|
Industrial water | 2.4 | 97.34 | 101.99 |
Industrial water | 4.8 | 95.89 | 98.77 |
River Water | 4.8 | 101.29 | 94.28 |
River water | 2.4 | 101.35 | 103.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia Júnior, F.F.; Sales Junior, R.; Barbosa, G.F.; Hussain, S.; Jara-Cornejo, E.; Khan, S. Design and Fabrication of a Biomimetic Smart Material for Electrochemical Detection of Carbendazim Pesticides in Real Samples with Enhanced Selectivity. Biosensors 2024, 14, 304. https://doi.org/10.3390/bios14060304
Maia Júnior FF, Sales Junior R, Barbosa GF, Hussain S, Jara-Cornejo E, Khan S. Design and Fabrication of a Biomimetic Smart Material for Electrochemical Detection of Carbendazim Pesticides in Real Samples with Enhanced Selectivity. Biosensors. 2024; 14(6):304. https://doi.org/10.3390/bios14060304
Chicago/Turabian StyleMaia Júnior, Francisco Franciné, Rui Sales Junior, Geovani Ferreira Barbosa, Sajjad Hussain, Eduardo Jara-Cornejo, and Sabir Khan. 2024. "Design and Fabrication of a Biomimetic Smart Material for Electrochemical Detection of Carbendazim Pesticides in Real Samples with Enhanced Selectivity" Biosensors 14, no. 6: 304. https://doi.org/10.3390/bios14060304
APA StyleMaia Júnior, F. F., Sales Junior, R., Barbosa, G. F., Hussain, S., Jara-Cornejo, E., & Khan, S. (2024). Design and Fabrication of a Biomimetic Smart Material for Electrochemical Detection of Carbendazim Pesticides in Real Samples with Enhanced Selectivity. Biosensors, 14(6), 304. https://doi.org/10.3390/bios14060304