Challenges and Advances in Biomarker Detection for Rapid and Accurate Sepsis Diagnosis: An Electrochemical Approach
Abstract
:1. Introduction
2. Need for a Rapid Sepsis Sensor
3. Sepsis Blood Sample Handling
4. Sepsis Biomarkers
5. Types of Sepsis Sensor
5.1. Optical Sensors
5.2. Field-Effect Transistor (FET) Sensors
5.3. Electrochemical Sensors
5.4. Microfluidic Sensors
6. Strategies for Electrochemical Sepsis Sensors
Molecular Labels and Functionalization
7. Electrochemical Detection of Sepsis Biomarkers
7.1. Cyclic Voltammetry (CV)
7.2. Amperometry
7.3. Differential Pulse Voltammetry (DPV)
7.4. Square Wave Voltammetry (SWV)
7.5. Electrochemical Impedance Spectroscopy (EIS)
8. Challenges in Electrochemical Sensing
9. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Report on the Epidemiology and Burden of Sepsis: Current Evidence, Identifying Gaps and Future Directions; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/sepsis (accessed on 19 July 2023).
- Chicco, D.; Jurman, G. Survival prediction of patients with sepsis from age, sex, and septic episode number alone. Sci. Rep. 2020, 10, 17156. [Google Scholar] [CrossRef] [PubMed]
- Labib, A. Sepsis Care Pathway 2019. Qatar Med. J. 2019, 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Vergnano, S.; Sharland, M.; Kazembe, P.; Mwansambo, C.; Heath, P.T. Neonatal sepsis: An international perspective. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F220–F224. [Google Scholar] [CrossRef] [PubMed]
- Calsavara, A.J.; Costa, P.A.; Nobre, V.; Teixeira, A.L. Prevalence and risk factors for post-traumatic stress, anxiety, and depression in sepsis survivors after ICU discharge. Braz. J. Psychiatry 2021, 43, 269–276. [Google Scholar] [CrossRef]
- Gawlytta, R.; Brunkhorst, F.; Niemeyer, H.; Boettche, M.; Knaevelsrud, C.; Rosendahl, J. Dyadic post-traumatic stress after intensive care: Case report of a sepsis patient and his wife. Intensive Crit. Care Nur. 2020, 58, 102806. [Google Scholar] [CrossRef] [PubMed]
- Manabe, T.; Heneka, M.T. Cerebral dysfunctions caused by sepsis during ageing. Nat. Rev. Immunol. 2022, 22, 444–458. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Arwyn-Jones, J.; Brent, A.J. Sepsis. Surgery 2019, 37, 1–8. [Google Scholar] [CrossRef]
- Schwartz, A.; Gurman, G.; Cohen, G.; Gilutz, H.; Brill, S.; Schily, M.; Gurevitch, B.; Shoenfeld, Y. Association between hypophosphatemia and cardiac arrhythmias in the early stages of sepsis. Eur. J. Intern. Med. 2002, 13, 434. [Google Scholar] [CrossRef]
- Mayr, F.B.; Yende, S.; Angus, D.C. Epidemiology of severe sepsis. Virulence 2014, 5, 4–11. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.-L. Sepsis and septic shock. Nat. Rev. Dis. Primers 2016, 2, 16045. [Google Scholar] [CrossRef]
- Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001, 29, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.; Asghar, M.; Raulia, G.; Mandal, A.K. Improving multidisciplinary severe sepsis management using the Sepsis Six. Clin. Med. 2016, 16, 503–505. [Google Scholar] [CrossRef]
- Kübler, A.; Adamik, B.; Ciszewicz-Adamiczka, B.; Ostrowska, E. Severe sepsis in intensive care units in Poland--a point prevalence study in 2012 and 2013. Anaesthesiol Intensive Ther. 2015, 47, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E. Don’t miss the diagnosis of sepsis! Critical Care 2014, 18, 529. [Google Scholar] [CrossRef]
- Gupta, E.; Saxena, J.; Kumar, S.; Sharma, U.; Rastogi, S.; Srivastava, V.K.; Kaushik, S.; Jyoti, A. Fast track diagnostic tools for clinical management of sepsis: Paradigm shift from conventional to advanced methods. Diagnostics 2023, 13, 277. [Google Scholar] [CrossRef]
- Hu, B.; Xiang, H.; Dong, Y.; Portner, E.; Peng, Z.; Kashani, K. Timeline of sepsis bundle component completion and its association with septic shock outcomes. J. Crit. Care 2020, 60, 143–151. [Google Scholar] [CrossRef] [PubMed]
- bioMerieux Connection. Diagnosis & Treating Sepsis: The Need for Speed. Online. 2019. Available online: https://www.biomerieuxconnection.com/2019/09/17/diagnosing-treating-sepsis-the-need-for-speed/ (accessed on 2 June 2024).
- Alba-Patiño, A.; Russell, S.M.; Borges, M.; Pazos-Pérez, N.; Álvarez-Puebla, R.A.; de la Rica, R. Nanoparticle-based mobile biosensors for the rapid detection of sepsis biomarkers in whole blood. Nanoscale Adv. 2020, 2, 1253–1260. [Google Scholar] [CrossRef]
- Magrini, L.; Gagliano, G.; Travaglino, F.; Vetrone, F.; Marino, R.; Cardelli, P.; Salerno, G.; Di Somma, S. Comparison between white blood cell count, procalcitonin and C reactive protein as diagnostic and prognostic biomarkers of infection or sepsis in patients presenting to emergency department. Clin. Chem. Lab Med. 2014, 52, 1465–1472. [Google Scholar] [CrossRef]
- Farkas, J.D. The complete blood count to diagnose septic shock. J. Thorac. Dis. 2020, 12, S16–S21. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Giglio, R.V.; Bivona, G.; Scazzone, C.; Gambino, C.M.; Iacona, A.; Ciaccio, A.M.; Lo Sasso, B.; Ciaccio, M. The value of a complete blood count (CBC) for sepsis diagnosis and prognosis. Diagnostics 2021, 11, 1881. [Google Scholar] [CrossRef]
- Piagnerelli, M.; Boudjeltia, K.Z.; Vanhaeverbeek, M.; Vincent, J.L. Red blood cell rheology in sepsis. In Applied Physiology in Intensive Care Medicine; Hedenstierna, G., Mancebo, J., Brochard, L., Pinsky, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 273–282. [Google Scholar]
- Coelho, F.R.; Martins, J.O. Diagnostic methods in sepsis: The need of speed. Rev. Assoc. Méd. Bras. 2012, 58, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Murono, K.; Hirano, Y.; Koyano, S.; Ito, K.; Fujieda, K. Molecular comparison of bacterial isolates from blood with strains colonizing pharynx and intestine in immunocompromised patients with sepsis. J. Med. Microbiol. 2003, 52, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, S.; Gottschalk, C.; Straubinger, R.K.; Schwaiger, K.; Dörfelt, R. Acceleration of the identification of sepsis-inducing bacteria in cultures of dog and cat blood. J. Small Anim. Pract. 2020, 61, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Amornphimoltham, P.; Yuen, P.S.T.; Star, R.A.; Leelahavanichkul, A. Gut leakage of fungal-derived inflammatory mediators: Part of a gut-liver-kidney axis in bacterial sepsis. Dig. Dis. Sci. 2019, 64, 2416–2428. [Google Scholar] [CrossRef] [PubMed]
- Lima-Oliveira, G.; Volanski, W.; Lippi, G.; Picheth, G.; Guidi, G.C. Pre-analytical phase management: A review of the procedures from patient preparation to laboratory analysis. Scand. J. Clin. Lab Investig. 2017, 77, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. 2007 Guideline for isolation precautions: Preventing transmission of infectious agents in health care settings. Am. J. Infect. Control 2007, 35, S65–S164. [Google Scholar] [CrossRef] [PubMed]
- Creedon, J.M.B.; Davis, H. Advanced Monitoring and Procedures for Small Animal Emergency and Critical Care; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar] [CrossRef]
- Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Bernini, P.; Bertini, I.; Luchinat, C.; Nincheri, P.; Staderini, S.; Turano, P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J. Biomol. NMR 2011, 49, 231–243. [Google Scholar] [CrossRef]
- Gong, Y.; Liang, S.; Zeng, L.; Ni, Y.; Zhou, S.; Yuan, X. Effects of blood sample handling procedures on measurable interleukin 6 in plasma and serum. J. Clin. Lab. Anal. 2019, 33, e22924. [Google Scholar] [CrossRef]
- Lim, S.H.; Mix, S.; Xu, Z.; Taba, B.; Budvytiene, I.; Berliner, A.N.; Queralto, N.; Churi, Y.S.; Huang, R.S.; Eiden, M.; et al. Colorimetric sensor array allows fast detection and simultaneous identification of sepsis-causing bacteria in spiked blood culture. J. Clin. Microbiol. 2014, 52, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Feng, Y.; Fu, P. Blood purification for sepsis: An overview. Precis. Clin. Med. 2021, 4, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Girardot, T.; Schneider, A.; Rimmelé, T. Blood purification techniques for sepsis and septic AKI. Semin. Nephrol. 2019, 39, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Biron, B.M.; Ayala, A.; Lomas-Neira, J.L. Biomarkers for sepsis: What is and what might be? Biomark. Insights 2015, 10, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.-L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Barichello, T.; Generoso, J.S.; Singer, M.; Dal-Pizzol, F. Biomarkers for sepsis: More than just fever and leukocytosis-a narrative review. Crit. Care 2022, 26, 14. [Google Scholar] [CrossRef] [PubMed]
- Balayan, S.; Chauhan, N.; Chandra, R.; Kuchhal, N.K.; Jain, U. Recent advances in developing biosensing based platforms for neonatal sepsis. Biosens. Bioelectron. 2020, 169, 112552. [Google Scholar] [CrossRef] [PubMed]
- Thangamuthu, M.; Santschi, C.; Martin, J.F.O. Label-free electrochemical immunoassay for C-reactive protein. Biosensors 2018, 8, 34. [Google Scholar] [CrossRef]
- Ali, N. Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J. Med. Virol. 2020, 92, 2409–2411. [Google Scholar] [CrossRef]
- Sonuç Karaboğa, M.N.; Sezgintürk, M.K. A novel silanization agent based single used biosensing system: Detection of C-reactive protein as a potential Alzheimer’s disease blood biomarker. J. Pharmaceut. Biomed. Anal. 2018, 154, 227–235. [Google Scholar] [CrossRef]
- Kim, K.-W.; Kim, B.-M.; Moon, H.-W.; Lee, S.-H.; Kim, H.-R. Role of C-reactive protein in osteoclastogenesis in rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 41. [Google Scholar] [CrossRef]
- Moya, F.; Nieto, A.; R-Candela, J.L. Calcitonin biosynthesis: Evidence for a precursor. Eur. J. Biochem. 1975, 55, 407–413. [Google Scholar] [CrossRef]
- Agarwal, R.; Sharma, K.; Mehndiratta, M.; Mohta, M.; Srivastava, H.; Anthonio, A.E. Role of repeat procalcitonin estimation at 48 hours for outcome in pregnancy associated sepsis: A prospective observational study. Obstet. Gynecol. Sci. 2021, 64, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kiaheyrati, N.; Babaei, A.; Ranji, R.; Bahadoran, E.; Taheri, S.; Farokhpour, Z. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies. Life Sci. 2024, 349, 122734. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.-M. Tumor necrosis factor. Cancer Lett. 2013, 328, 222–225. [Google Scholar] [CrossRef]
- Georgescu, A.M.; Banescu, C.; Azamfirei, R.; Hutanu, A.; Moldovan, V.; Badea, I.; Voidazan, S.; Dobreanu, M.; Chirtes, I.R.; Azamfirei, L. Evaluation of TNF-α genetic polymorphisms as predictors for sepsis susceptibility and progression. BMC Infect. Dis. 2020, 20, 221. [Google Scholar] [CrossRef]
- Han, Z.; Li, J.; Yi, X.; Zhang, T.; Liao, D.; You, J.; Ai, J. Diagnostic accuracy of interleukin-6 in multiple diseases: An umbrella review of meta-analyses. Heliyon 2024, 10, e27769. [Google Scholar] [CrossRef] [PubMed]
- Habanjar, O.; Bingula, R.; Decombat, C.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. Crosstalk of inflammatory cytokines within the breast tumor microenvironment. Int. J. Mol. Sci. 2023, 24, 4002. [Google Scholar] [CrossRef]
- Van Damme, J.; Opdenakker, G.; Van Damme, S.; Struyf, S. Antibodies as tools in cytokine discovery and usage for diagnosis and therapy of inflammatory diseases. Eur. Cytokine Netw. 2023, 34, 1–9. [Google Scholar] [CrossRef]
- Durkin, T.J.; Barua, B.; Savagatrup, S. Rapid detection of sepsis: Recent advances in biomarker sensing platforms. ACS Omega 2021, 6, 31390–31395. [Google Scholar] [CrossRef]
- Ge, Y.; Huang, M.; Yao, Y.-M. The effect and regulatory mechanism of high mobility group box-1 protein on immune cells in inflammatory diseases. Cells 2021, 10, 1044. [Google Scholar] [CrossRef] [PubMed]
- Alba-Patiño, A.; Vaquer, A.; Barón, E.; Russell, S.M.; Borges, M.; de la Rica, R. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Microchim. Acta 2022, 189, 74. [Google Scholar] [CrossRef] [PubMed]
- Bonini, A.; Carota, A.G.; Poma, N.; Vivaldi, F.M.; Biagini, D.; Bottai, D.; Lenzi, A.; Tavanti, A.; Di Francesco, F.; Lomonaco, T. Emerging biosensing technologies towards early sepsis diagnosis and management. Biosensors 2022, 12, 894. [Google Scholar] [CrossRef]
- Browning, L.; Patel, M.R.; Horvath, E.B.; Tawara, K.; Jorcyk, C.L. IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag. Res. 2018, 10, 6685–6693. [Google Scholar] [CrossRef]
- Unver, N.; McAllister, F. IL-6 family cytokines: Key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev. 2018, 41, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tripathy, S.; Jyoti, A.; Singh, S.G. Recent advances in biosensors for diagnosis and detection of sepsis: A comprehensive review. Biosens. Bioelectron. 2019, 124–125, 205–215. [Google Scholar] [CrossRef]
- Sheini, A. A point-of-care testing sensor based on fluorescent nanoclusters for rapid detection of septicemia in children. Sens. Actuators B Chem. 2021, 328, 129029. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, G.; Goldys, E.M. Robust immunosensing system based on biotin-streptavidin coupling for spatially localized femtogram mL−1 level detection of interleukin-6. Biosen. Bioelectron. 2018, 102, 80–86. [Google Scholar] [CrossRef]
- Luo, M.; Xue, X.; Rao, H.; Wang, H.; Liu, X.; Zhou, X.; Xue, Z.; Lu, X. Simply converting color signal readout into thermal signal readout for breaking the color resolution limitation of colorimetric sensor. Sens. Actuators B Chem. 2020, 309, 127707. [Google Scholar] [CrossRef]
- Estevez, M.C.; Alvarez, M.; Lechuga, L.M. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photonics Rev. 2012, 6, 463–487. [Google Scholar] [CrossRef]
- Vu, C.-A.; Chen, W.-Y. Field-effect transistor biosensors for biomedical applications: Recent advances and future prospects. Sensors 2019, 19, 4214. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-O.; So, H.-M.; Jeon, E.-K.; Chang, H.; Won, K.; Kim, Y.H. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem. 2008, 390, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, H.; Zhu, M.; Kuang, Z.; Li, X.; Xu, F.; Miao, S.; Zhang, Z.; Lou, X.; Li, H.; et al. Electrochemical biosensors for whole blood analysis: Recent progress, Challenges, and Future Perspectives. Chem. Rev. 2023, 123, 7953–8039. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.; Mathew, M.; Rout, C.S. Microfluidic sensors based on two-dimensional materials for chemical and biological assessments. Mater. Adv. 2022, 3, 1874–1904. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Wang, M.; Liu, J.; Hai, W.; Liu, Y. Chitosan modified graphene field-effect transistor biosensor for ultrasensitive procalcitonin detection. Talanta 2024, 268, 125308. [Google Scholar] [CrossRef] [PubMed]
- Schuck, A.; Kim, H.E.; Moreira, J.K.; Lora, P.S.; Kim, Y.-S. A Graphene-based enzymatic biosensor using a common-gate field-effect transistor for L-lactic acid detection in blood plasma samples. Sensors 2021, 21, 1852. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.; Ward, A.C.; Vezza, V.; Hoskisson, P.; Alcorn, D.; Steenson, D.P.; Corrigan, D.K. Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosens. Bioelectron. 2019, 126, 806–814. [Google Scholar] [CrossRef]
- Zupančič, U.; Jolly, P.; Estrela, P.; Moschou, D.; Ingber, D.E. Graphene enabled low-noise surface chemistry for multiplexed sepsis biomarker detection in whole blood. Adv. Funct. Mater. 2021, 31, 2010638. [Google Scholar] [CrossRef]
- Timilsina, S.S.; Jolly, P.; Durr, N.; Yafia, M.; Ingber, D.E. Enabling multiplexed electrochemical detection of biomarkers with high sensitivity in complex biological samples. Accounts Chem. Res. 2021, 54, 3529–3539. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 2021, 184, 113252. [Google Scholar] [CrossRef]
- Koyappayil, A.; Lee, M.-H. Ultrasensitive materials for electrochemical biosensor labels. Sensors 2021, 21, 89. [Google Scholar] [CrossRef]
- Yue, Q.; Li, X.; Xu, X.; Huang, X.; Cao, D.; Wei, Q.; Cao, W. Ratiometric electrochemical immunoassay for procalcitonin based on dual signal probes: Ag NPs and Nile blue A. Microchim. Acta 2022, 189, 126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, Y.; Wang, H.; Bai, G.; Zhang, N.; Wang, Y.; Wei, Q. Ultrasensitive photoelectrochemical immunoassay strategy based on Bi2S3/Ag2S for the detection of the inflammation marker procalcitonin. Biosensors 2023, 13, 366. [Google Scholar] [CrossRef]
- Schuck, A.; Kim, H.E.; Kang, M.; Kim, Y.-S. Rapid detection of inflammation-related biomarkers using an electrochemical sensor modified with a PBNC-AuNS-GO-based nanocomposite. ACS Appl. Electron. Mater. 2022, 4, 4831–4839. [Google Scholar] [CrossRef]
- Ghrera, A.S. Quantum dot modified interface for electrochemical immunosensing of procalcitonin for the detection of urinary tract infection. Anal. Chim. Acta 2019, 1056, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Madhu, S.; Han, J.H.; Jeong, C.W.; Choi, J. Sensitive electrochemical sensing platform based on Au nanoflower-integrated carbon fiber for detecting interleukin-6 in human serum. Anal. Chim. Acta 2023, 1238, 340644. [Google Scholar] [CrossRef] [PubMed]
- Zinggeler, M.; Schär, S.; Kurth, F. Printed antifouling electrodes for biosensing applications. ACS Appl. Mater. Interfaces 2022, 14, 56578–56584. [Google Scholar] [CrossRef]
- Lu, T.-C.; Yang, Y.-J.; Zhong, Y.; Qiu, Q.-Z.; Chen, Z.-H.; Chen, Y.-Z.; Lei, Y.; Liu, A.-L. Simultaneous detection of C-reactive protein and lipopolysaccharide based on a dual-channel electrochemical biosensor for rapid Gram-typing of bacterial sepsis. Biosens. Bioelectron. 2024, 243, 115772. [Google Scholar] [CrossRef]
- Zhao, G.; Yan, Q.; Wang, B.; Wang, N.; Duolihong, B.; Xia, X. CoFe-(oxy)hydroxide as a novel electrocatalytic tag in immunosensing for ultra-sensitive detection of procalcitonin based on the oxygen evolution reaction. Bioelectrochemistry 2022, 147, 108217. [Google Scholar] [CrossRef]
- Ge, X.-Y.; Zhang, J.-X.; Feng, Y.-G.; Wang, A.-J.; Mei, L.-P.; Feng, J.-J. Label-free electrochemical biosensor for determination of procalcitonin based on graphene-wrapped Co nanoparticles encapsulated in carbon nanobrushes coupled with AuPtCu nanodendrites. Microchim. Acta 2022, 189, 110. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Fan, B.; Chang, S.; Guo, D.; Wang, F.; Pan, Q. An ultrasensitive photoelectrochemical assay for tumor necrosis factor-alpha based on hollow CdS cubes as a signal generator and NiCo2O4-Au as a signal extinguisher. Analyst 2023, 148, 4746–4752. [Google Scholar] [CrossRef]
- Jiang, C.; Alam, M.T.; Silva, S.M.; Taufik, S.; Fan, S.; Gooding, J.J. Unique sensing interface that allows the development of an electrochemical immunosensor for the detection of tumor necrosis factor α in whole blood. ACS Sens. 2016, 1, 1432–1438. [Google Scholar] [CrossRef]
- Sánchez-Tirado, E.; Salvo, C.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J.M. Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double–walled carbon nanotubes. Anal. Chim. Acta 2017, 959, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Eletxigerra, U.; Martinez-Perdiguero, J.; Merino, S.; Villalonga, R.; Pingarrón, J.M.; Campuzano, S. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum. Anal. Chim. Acta 2014, 838, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Szot-Karpińska, K.; Kudła, P.; Orzeł, U.; Narajczyk, M.; Jönsson-Niedziółka, M.; Pałys, B.; Filipek, S.; Ebner, A.; Niedziółka-Jönsson, J. Investigation of peptides for molecular recognition of C-reactive protein–theoretical and experimental studies. Anal. Chem. 2023, 95, 14475–14483. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xia, X.; Meng, S.; Ma, Y.; Yang, T.; Yang, Y.; Hu, R. An electrochemical immunosensor coupling a bamboo-like carbon nanostructure substrate with toluidine blue-functionalized Cu(ii)-MOFs as signal probes for a C-reactive protein assay. RSC Adv. 2021, 11, 6699–6708. [Google Scholar] [CrossRef]
- Shen, W.-J.; Zhuo, Y.; Chai, Y.-Q.; Yang, Z.-H.; Han, J.; Yuan, R. Enzyme-free electrochemical immunosensor based on host–guest nanonets catalyzing amplification for procalcitonin detection. ACS Appl. Mater. Interfaces 2015, 7, 4127–4134. [Google Scholar] [CrossRef]
- Arya, S.K.; Estrela, P. Electrochemical immunosensor for tumor necrosis factor-alpha detection in undiluted serum. Methods 2017, 116, 125–131. [Google Scholar] [CrossRef]
- Hussain, K.K.; Hopkins, R.; Yeoman, M.S.; Patel, B.A. 3D printed skyscraper electrochemical biosensor for the detection of tumour necrosis factor alpha (TNFα) in faeces. Sens. Actuators B Chem. 2024, 410, 135694. [Google Scholar] [CrossRef]
- Oh, C.; Park, B.; Li, C.; Maldarelli, C.; Schaefer, J.L.; Datta-Chaudhuri, T.; Bohn, P.W. Electrochemical immunosensing of interleukin-6 in human cerebrospinal fluid and human serum as an early biomarker for traumatic brain injury. ACS Meas. Sci. Au 2021, 1, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Vessella, T.; Zhang, H.; Zhou, Z.; Cui, F.; Zhou, H.S. In-situ synthesized V2CTx MXene-based immune tag for the electrochemical detection of Interleukin 6 (IL-6) from breast cancer cells. Biosens. Bioelectron. 2023, 237, 115512. [Google Scholar] [CrossRef]
- Li, Y.; Hua, X.; Wang, J.; Jin, B. cMWCNT/CoHCF/AuNPs nanocomposites aptasensor for electrochemical detection of interleukin-6. Talanta Open 2023, 7, 100188. [Google Scholar] [CrossRef]
- Yang, H.J.; Kim, M.W.; Raju, C.V.; Cho, C.H.; Park, T.J.; Park, J.P. Highly sensitive and label-free electrochemical detection of C-reactive protein on a peptide receptor−gold nanoparticle−black phosphorous nanocomposite modified electrode. Biosens. Bioelectron. 2023, 234, 115382. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Q.; Revzin, A. An aptasensor for electrochemical detection of tumor necrosis factor in human blood. Analyst 2013, 138, 4321–4326. [Google Scholar] [CrossRef] [PubMed]
- Balayan, S.; Chauhan, N.; Kumar, P.; Chandra, R.; Jain, U. Fabrication of a sensing platform for identification of tumor necrosis factor-alpha: A biomarker for neonatal sepsis. 3 Biotech 2022, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Huang, J.; Wei, H.; Cao, C.; Feng, S.; Guo, Q.; Goldys, E.M.; Li, R.; Liu, G. Graphene oxide thin film with dual function integrated into a nanosandwich device for in vivo monitoring of interleukin-6. ACS Appl. Mater. Interfaces 2017, 9, 41659–41668. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, J.-A.; Yim, G.; Jang, H.; Kim, T.-H.; Sohn, H.; Lee, T. Fabrication of an electrochemical biosensor composed of multi-functional Ag ion intercalated DNA four-way junctions/rhodium nanoplate heterolayer on a micro-gap for C-reactive protein detection in human serum. Analyst 2021, 146, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xu, Q.; James, T.; Davis, J.J. Redox and label-free array detection of protein markers in human serum. Anal. Chem. 2014, 86, 5553–5558. [Google Scholar] [CrossRef]
- Roberto de Oliveira, P.; Crapnell, R.D.; Garcia-Miranda Ferrari, A.; Wuamprakhon, P.; Hurst, N.J.; Dempsey-Hibbert, N.C.; Sawangphruk, M.; Janegitz, B.C.; Banks, C.E. Low-cost, facile droplet modification of screen-printed arrays for internally validated electrochemical detection of serum procalcitonin. Biosens. Bioelectron. 2023, 228, 115220. [Google Scholar] [CrossRef]
- Lim, J.M.; Ryu, M.Y.; Kim, J.H.; Cho, C.H.; Park, T.J.; Park, J.P. An electrochemical biosensor for detection of the sepsis-related biomarker procalcitonin. RSC Adv. 2017, 7, 36562–36565. [Google Scholar] [CrossRef]
- Amouzadeh Tabrizi, M.; Acedo, P. An electrochemical immunosensor for the determination of procalcitonin using the gold-graphene interdigitated electrode. Biosensors 2022, 12, 771. [Google Scholar] [CrossRef]
- Selimoğlu, F.; Gür, B.; Ayhan, M.E.; Gür, F.; Kalita, G.; Tanemura, M.; Alma, M.H. Silver nanoparticle doped graphene-based impedimetric biosensor towards sensitive detection of procalcitonin. Mater. Chem. Phys. 2023, 297, 127339. [Google Scholar] [CrossRef]
- Sri, S.; Chauhan, D.; Lakshmi, G.B.V.S.; Thakar, A.; Solanki, P.R. MoS2 nanoflower based electrochemical biosensor for TNF alpha detection in cancer patients. Electrochim. Acta 2022, 405, 139736. [Google Scholar] [CrossRef]
- Ondevilla, N.A.P.; Liu, P.-W.; Huang, W.-T.; Weng, T.-P.; Lee, N.-Y.; Ma, S.-C.; Huang, J.-J.; Wong, T.-W.; Chang, H.-C. A point-of-care electrochemical biosensor for the rapid and sensitive detection of biomarkers in murine models with LPS-induced sepsis. Biosens. Bioelectron. 2024, 254, 116202. [Google Scholar] [CrossRef] [PubMed]
- Yagati, A.K.; Lee, M.-H.; Min, J. Electrochemical immunosensor for highly sensitive and quantitative detection of tumor necrosis factor-α in human serum. Bioelectrochemistry 2018, 122, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Longo, A.; Baraket, A.; Vatteroni, M.; Zine, N.; Baussells, J.; Fuoco, R.; Di Francesco, F.; Karanasiou, G.S.; Fotiadis, D.I.; Menciassi, A.; et al. Highly sensitive electrochemical BioMEMS for TNF-α detection in human saliva: Heart failure. Procedia Eng. 2016, 168, 97–100. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, R.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Corrigan, D.K. Comparing nanobody and aptamer-based capacitive sensing for detection of interleukin-6 (IL-6) at physiologically relevant levels. Anal. Bioanal. Chem. 2023, 415, 7035–7045. [Google Scholar] [CrossRef] [PubMed]
- Gupta, Y.; Pandey, C.M.; Ghrera, A.S. Reduced graphene oxide-gold nanoparticle nanohybrid modified cost-effective paper-based biosensor for procalcitonin detection. ChemistrySelect 2022, 7, e202202642. [Google Scholar] [CrossRef]
- Gupta, Y.; Pandey, C.M.; Ghrera, A.S. Development of conducting cellulose paper for electrochemical sensing of procalcitonin. Microchim. Acta 2022, 190, 32. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Jesadabundit, W.; García-Miranda Ferrari, A.; Dempsey-Hibbert, N.C.; Peeters, M.; Tridente, A.; Chailapakul, O.; Banks, C.E. Toward the rapid diagnosis of sepsis: Detecting interleukin-6 in blood plasma using functionalized screen-printed electrodes with a thermal detection methodology. Anal. Chem. 2021, 93, 5931–5938. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Mu, W.; Huang, M.; Yu, Z.; Lai, Q. Interdigitated conductometric immunosensor for determination of interleukin-6 in humans based on dendrimer G4 and colloidal gold modified composite film. Electroanalysis 2006, 18, 1505–1510. [Google Scholar] [CrossRef]
- Wang, C.; Xin, D.; Yue, Q.; Wan, H.; Li, Q.; Wang, Y.; Wu, J. A novel electrochemical IL-6 sensor based on Au nanoparticles-modified platinum carbon electrode. Front. Bioeng. Biotechnol. 2023, 11, 1128934. [Google Scholar] [CrossRef] [PubMed]
- de Matos Morawski, F.; Dias, G.B.M.; Sousa, K.A.P.; Formiga, R.; Spiller, F.; Parize, A.L.; Báfica, A.; Jost, C.L. Chitosan/genipin modified electrode for voltammetric determination of interleukin-6 as a biomarker of sepsis. Int. J. Biol. Macromol. 2023, 224, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Huang, H.; Zhang, G.; Zhang, X.; Fang, B.; Wang, L. Dual amplification strategy for the fabrication of highly sensitive interleukin-6 amperometric immunosensor based on poly-dopamine. Langmuir 2011, 27, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Feng, L.-N.; Ren, Z.-J.; Jiang, L.-P.; Zhu, J.-J. Synthesis of silver nanoparticle–hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human Interleukin-6. Small 2011, 7, 2921–2928. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, S.; Jin, H.; Bao, W.; Huang, S.; Wang, J. An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen. Sen. Actuators B Chem. 2013, 178, 310–315. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Zhou, X.; Zhang, L. C60 carboxyfullerene-based functionalised nanohybrids as signal-amplifying tags for the ultrasensitive electrochemical detection of procalcitonin. Clin. Biochem. 2015, 48, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Sabaté del Río, J.; Henry, O.Y.F.; Jolly, P.; Ingber, D.E. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 2019, 14, 1143–1149. [Google Scholar] [CrossRef]
- Zha, X.-J.; Zhao, X.; Pu, J.-H.; Tang, L.-S.; Ke, K.; Bao, R.-Y.; Bai, L.; Liu, Z.-Y.; Yang, M.-B.; Yang, W. Flexible anti-biofouling MXene/Cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 2019, 11, 36589–36597. [Google Scholar] [CrossRef]
- Wang, J.; Hui, N. A nonfouling voltammetric immunosensor for the carcinoembryonic antigen based on the use of polyaniline nanowires wrapped with hyaluronic acid. Microchim. Acta 2018, 185, 329. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Nathani, A. Electrochemical sensing at nanoporous film-coated electrodes. Electrochem. Sci. Adv. 2022, 2, e2100126. [Google Scholar] [CrossRef]
- Sun, Q.; Yan, F.; Yao, L.; Su, B. Anti-biofouling isoporous silica-micelle membrane enabling drug detection in human whole blood. Anal. Chem. 2016, 88, 8364–8368. [Google Scholar] [CrossRef] [PubMed]
- Harandizadeh, Z.; Ito, T. Block copolymer-derived recessed nanodisk-array electrodes as platforms for folding-based electrochemical DNA sensors. ChemElectroChem 2019, 6, 5627–5632. [Google Scholar] [CrossRef]
- Białobrzeska, W.; Ficek, M.; Dec, B.; Osella, S.; Trzaskowski, B.; Jaramillo-Botero, A.; Pierpaoli, M.; Rycewicz, M.; Dashkevich, Y.; Łęga, T.; et al. Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosens. Bioelectron. 2022, 209, 114222. [Google Scholar] [CrossRef]
- Siuzdak, K.; Niedziałkowski, P.; Sobaszek, M.; Łęga, T.; Sawczak, M.; Czaczyk, E.; Dziąbowska, K.; Ossowski, T.; Nidzworski, D.; Bogdanowicz, R. Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies. Sens. Actuators B Chem. 2019, 280, 263–271. [Google Scholar] [CrossRef]
Type of Sensor | Working Principle | Pros | Cons | Ref. |
---|---|---|---|---|
Optical sensors | The bioreceptor is grafted on the surface, and interaction of the analyte with the receptor changes optical properties (resonant momentum, phase, polarization, etc.). |
|
| [65,66,67] |
FET sensors | Biomarker binding on the bioreceptor-modified surface changes its potential. Variation in the electrostatic gating effect correlates with the concentration of the biomarker. |
|
| [68,69] |
Electrochemical sensor | Biochemical signal gives an electrical signal output. Biomarker binds to the bioreceptor-modified surface and changes electrode conductivity, which is measured as current, potential, or impedance. |
|
| [70] |
Microfluidic sensors | The microscale sample passes through micropumps, microchannels, microfluidic mixers, and valves. Analyte concentration is detected by various methods such as optical, electrochemical, mass spectrometry detection, nuclear magnetic resonance, magneto-resistive, and acoustical methods. |
|
| [71] |
S. No | Electrode Material | Electrode Fabrication Method | Sensing Method/Technique | Linear Concentration Range | LOD | Sensing Time | Volume of The Sample | Sample Type | Ref. |
---|---|---|---|---|---|---|---|---|---|
C-reactive protein | |||||||||
1 | Gold electrode | CRP antibody drop casting method and antifouling reagent biotin-labeled BSA | Amperometry | 0.1–20 μg mL−1 | 0.05 μg mL−1 | 75 min | 3 μL | Plasma sample | [84] |
2 | Poly(N,N-dimethylacrylamide-stat-methacryloyloxy-benzophenone)/multiwallled carbon nanotube-COOH | Drop casting and photo crosslinker | Amperometry | 10–10,000 ng mL−1 | 3.1 ng mL−1 | 10 min | Serum sample | [85] | |
3 | Triethoxysilylpropyl succinic anhydride-modified indium tin oxide-coated glass electrodes | Silanization surface amide bond formation | DPV | 1.0−100 μg mL−1 | 0.34 μg mL−1 | 30 min | - | - | [92] |
4 | Au@CoFe/N-doped graphene-carbon nanotube | EDC/NHS reagent for antibody grafting | DPV | 0.5–200 ng mL−1 | 0.167 ng mL−1 | Serum sample | [93] | ||
5 | CRP-Peptide-Au@black phosphorous/polydopamine | Drop casting | SWV | 1−0.036 μg mL−1 | 0.7 ng mL−1 | Crohn’s disease patient serum and plasma samples | [100] | ||
6 | Multifunctional DNA four-way junction-porous rhodium nanoparticle | CRP-DNA-4WJ self-assembly on electrode surface | EIS | 1 pM–100 nM | 0.349 pM (0.08 ng L−1) | 5 μL | Serum sample | [104] | |
7 | Poly(ethylene glycol) | Hydrophilic polyethylene glycol amine surface-grafted CRP antibody using EDC/NHS | EIS | 500–50,000 pM | 150 ± 10 pM | 10 min | 50 μL | Serum sample | [105] |
Procalcitonin | |||||||||
8 | Ag-g-C3N4/GC UiO-67/NBA/Ab2 |
| DPV | 0.005–50 ng mL−1 | 1.67 pg mL−1 | - | - | Serum sample | [79] |
9 | Bi2S3 and Ag2S quantum dot | ITO/Bi2S3/Ag2S-PCT-Ab/BSA | Photocurrent amperometry | 0.0005–50 ng mL–1 | 0.18 ng mL–1 | - | - | Serum sample | [80] |
10 | CdSeZnS quantum dot | CdSeZnS quantum dot-glutaraldehyde-ITO | CV | 10–10,000 ng mL−1 | 0.21 ng mL−1 | - | - | Serum sample | [82] |
11 | Au nanoparticles/CoFe-oxyhydroxcide | CoFe-(oxy)hydroxide-Ab2/PCT/BSA/Ab1/Au NPs/GC drop casting approach | Amperometry (OER method) | 0.0005−100 ng mL–1 | 0.33 pg mL–1 | ~2 h | - | Serum sample | [86] |
12 | AuPtCu and Graphene-Co | Dendrite-like AuPtCu/G-Co/NCNBs/GC H2O2 reduction catalyst applied for PCT sensor | Amperometry | 0.0001 to 100 ng mL−1 | 0.011 pg mL−1 | 50 min | - | - | [87] |
13 | Gold nanoparticles | Chemical and drop casting method | DPV | 1.8–500 ng mL−1 | 0.36 pg mL−1 | 110 min | Serum sample | [94] | |
14 | 4-Aminobenzoic acid | 4-Aminobenzoic acid surface graft with EDC/NHS reagent | EIS | 1–10 ng mL−1 | 0.7 ng mL−1 | - | - | Serum sample | [106] |
15 | Gold electrode | HS-Peptide (PCT T BP3) for PCT capture probe | EIS | 0.0125–0.25 μg mL−1 | 12.5 ng mL−1 | 1 h | - | Serum sample | [107] |
16 | Laser-engraved graphene/Au | EDC/NHS reagent for PCT antibody graft | EIS | 2.5–800 pg mL–1 | 0.36 pg mL–1 | 1 h | - | - | [108] |
17 | Ag@single layer graphene | Drop casting method for PCT Ab on Ag@SLG/ITO | EIS | 4–25 ng mL | 0.55 ng mL−1 | 1 h | - | - | [109] |
18 | Au@rGO | PCT-Ab/Au-RGO@Cellulose fiber | Amperometry | 10–15,000 pg mL−1 | 10 pg mL−1 | - | - | - | [115] |
19 | Au-rGO-cellulose fiber | CF/PEDOT:PSS-Au-rGO/PCT-Ab/BSA drop cast method | Amperometry | 1000–6 × 106 fg mL−1 | 280 fg mL−1 | - | - | - | [116] |
Tumor necrosis factor-alpha | |||||||||
20 | Apt1-CdS/ITONiCo2O4/Au@Apt2 | Immersion and drop casting methods of Apt | Photocurrent (amperometry) | 1 fg mL−1 to 1 ng mL−1 | 0.63 fg mL−1 | 50 min for TNF-α 100 min in the signal extinguisher | - | Serum sample | [88] |
21 | Phenyl phosphorylcholine/phenyl butyric acid | Zwitterionic species grafted by electro-diazotization, Ab1 grafted on ITO by classical EDC/NHS | Amperometry | 0.01–500 ng mL−1 | 10 pg mL−1 | 1 h | 40 μL | Whole blood sample | [89] |
22 | DWCNT | Drop casting and commercial Mix&Go, signal amplifier HRP with hydroquinone EC’ reaction | Amperometry | 1–200 pg mL−1 | 0.85 pg mL−1 | 60 min | Serum sample | [90] | |
23 | Microbead-COOH | Drop cast/EDC/NHS, HRP with hydroquinone EC’ reaction | Amperometry | 15–405 pg mL−1 | 5.8 pg mL−1 | 1–3 h | - | Serum sample | [91] |
24 | Au microarray | Dithiobis(succinimidyl propionate) base self-assembly moiety for the antibody binding and blocking reagent engineering | DPV | 0.5–100 ng mL−1 | 0.06 ng mL−1 | 20 min | 50 μL | Undiluted serum | [95] |
25 | Gold/polythiophene-2-carboxylicacid | EDC/NHS coupling, ferrocenemethanol redox standard | DPV | 60–1820 pg mL−1 | 44.5 pg mL−1 | - | - | Fecal pellet sample | [96] |
26 | TNF-α-[HO(CH2)6-S-S-(CH2)6−] | Methylene blue grafted on TNF-α aptamer | SWV | 0–100 ng mL−1 | 10 ng mL−1 | 15 min | Whole human blood | [101] | |
27 | MoS2, Fe3O4@SiO2, and MIP polymer | Molecular imprinted method | SWV | 0.01 pM–100 nM | 0.01 pM | 3 min | 50 μL | - | [102] |
28 | MoS2 | Drop casting method | EIS | 0.01–200 pg mL−1 | 0.202pg mL−1 | 30 min | - | Cancer patient sample | [110] |
29 | Pt Microelectrode | Pt-S (Pt-bond with aptamer S group) | EIS | 1–100,000 pg mL−1 | - | 5 min | - | Mice | [111] |
30 | Au/rGO/ITO composite electrode by photolithography | 3-mercaptopropionic acid self-assembled layer surface antibody graft using NHS/EDC reagent | EIS | 1−1000 pg mL−1 | 0.78 pg mL−1 | 3 h | Serum sample | [112] | |
31 | Au microarray | Diazo grafting, EDC/NHS linkage | EIS | 1–15 pg mL−1 | - | - | -- | Saliva | [113] |
Interleukin-6 | |||||||||
32 | PBNC(Prussian blue nanocubes)/AuNS/GO | Drop casting method | DPV | 5−150 pg mL−1 | 0.141 pg mL−1 | - | 5 μL | Human serum | [81] |
33 | Au/CF(carbon fiber) | Electrodeposition | CV/DPV | 1 fg mL−1 to 1 μg mL−1 | 0.056 fg mL−1 | 15 min | 20 μL | Human serum | [83] |
34 | 3-MPA/Au IDEA (gold interdigitated electrode arrays) | Self-assembly | DPV | 1 pg mL−11 μg mL−1 | 11.83 pg mL−1 | 30 min | - | Human cerebrospinal fluid and serum | [97] |
35 | V2CTx/PB/Au SSNPs-Ab | Drop casting | DPV | 0.005–0.5 ng mL−1 | 0.5 pg/mL−1 | 24 h | - | Breast cancer cells | [98] |
36 | cMWCNTs(carboxylated multi-walled carbon nanotubes)/CoHCF (cobalt hexacyanoferrate)/AuNPs/GCE | Drop casting and self-assembly | DPV | 0.5 pg mL−1–1000 pg mL−1 | 0.17 pg mL−1 | - | - | Serum sample | [99] |
37 | Diazonium salt/SPEs | Electrodeposition | “Heat-transfer” method | 5−1000 pg mL−1 | 3.37 pg mL−1 | 15 min | 110 μL | Human plasma sample | [117] |
38 | HRP-anti-IL-6/nanogold/dendrimer/Au | Self-assembly | Conductometry | 30 to 300 pg mL−1 | 10 pg mL−1 | - | - | - | [118] |
39 | PC/AuNPs/4-MBA/IL-6 Ab | Performing the reaction in an incubator with EDC/NHS and modifying with antibodies | CV/DPV | 100 pg mL−1–700 pg mL−1 | 3 pg mL−1 | - | - | Serum sample | [119] |
40 | BSA/anti-IL-6/CSG/FTO (chitosan/genipin modified fluorine tin oxide electrode) | Drop casting | CV | 0.05–1000 pg mL−1 | 0.03 pg mL−1 | 45 min | 5 μL | Murine blood | [120] |
41 | HRP-Ab2-AuNP-PDOP@CNT | Self-assembly | Amperometry | 4.0–8.0 × 102 pg mL−1 | 1.0 pg mL−1 | - | - | Serum sample | [121] |
42 | Ab2 –AgNP–TiP | Magnetic | Magnetic electrochemical | 0.0005–10 ng mL−1 | 0.0001 ng mL−1 | ~45 min | - | Serum sample | [122] |
43 | SWCNT(single walled carbon nanotubes)/Au electrode | Electrodeposition and self-assembly | EIS | 0.01–100 fg mL−1 | of 0.01 fg mL−1 | - | - | Serum sample | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.R.; Banaś, A.; Krukiewicz, K. Challenges and Advances in Biomarker Detection for Rapid and Accurate Sepsis Diagnosis: An Electrochemical Approach. Biosensors 2024, 14, 309. https://doi.org/10.3390/bios14060309
Kumar DR, Banaś A, Krukiewicz K. Challenges and Advances in Biomarker Detection for Rapid and Accurate Sepsis Diagnosis: An Electrochemical Approach. Biosensors. 2024; 14(6):309. https://doi.org/10.3390/bios14060309
Chicago/Turabian StyleKumar, Deivasigamani Ranjith, Angelika Banaś, and Katarzyna Krukiewicz. 2024. "Challenges and Advances in Biomarker Detection for Rapid and Accurate Sepsis Diagnosis: An Electrochemical Approach" Biosensors 14, no. 6: 309. https://doi.org/10.3390/bios14060309
APA StyleKumar, D. R., Banaś, A., & Krukiewicz, K. (2024). Challenges and Advances in Biomarker Detection for Rapid and Accurate Sepsis Diagnosis: An Electrochemical Approach. Biosensors, 14(6), 309. https://doi.org/10.3390/bios14060309