Electrochemical Biosensors 3D Printed by Fused Deposition Modeling: Actualities, Trends, and Challenges
Abstract
:1. Introduction
1.1. Electrochemical Biosensors: Principles and Applications
1.2. Three-Dimensional Printing
1.3. Fused Deposition Modeling
1.4. Three-Dimensionally Printed Electrochemical Sensors
2. Three-Dimensionally Printed Electrochemical Biosensors
2.1. Glucose 3D-Printed Biosensor
2.2. SARS-CoV-2 3D-Printed Biosensors
2.3. Three-Dimensionally Printed Electrochemical Biosensors for Different Targets
3. Conclusions: Trends and Challenges
Funding
Conflicts of Interest
References
- Madhurantakam, S.; Muthukumar, S.; Prasad, S. Emerging Electrochemical Biosensing Trends for Rapid Diagnosis of COVID-19 Biomarkers as Point-of-Care Platforms: A Critical Review. ACS Omega 2022, 7, 12467–12473. [Google Scholar] [CrossRef]
- Tripathy, S.; Singh, S.G. Label-Free Electrochemical Detection of DNA Hybridization: A Method for COVID-19 Diagnosis. Trans. Indian Natl. Acad. Eng. 2020, 5, 205–209. [Google Scholar] [CrossRef]
- Brazaca, L.C.; dos Santos, P.L.; de Oliveira, P.R.; Rocha, D.P.; Stefano, J.S.; Kalinke, C.; Abarza Muñoz, R.A.; Bonacin, J.A.; Janegitz, B.C.; Carrilho, E. Biosensing Strategies for the Electrochemical Detection of Viruses and Viral Diseases—A Review. Anal. Chim. Acta 2021, 1159, 338384. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.T.S.G.; Souto, D.E.P.; Barragan, J.T.C.; de Fátima Giarola, J.; de Moraes, A.C.M.; Kubota, L.T. Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 2017, 4, 778–794. [Google Scholar] [CrossRef]
- Burcu Bahadir, E.; Kemal Sezgintürk, M. Applications of Electrochemical Immunosensors for Early Clinical Diagnostics. Talanta 2015, 132, 162–174. [Google Scholar] [CrossRef]
- Ribeiro, B.V.; Cordeiro, T.A.R.; Freitas, G.R.O.E.; Ferreira, L.F.; Franco, D.L. Biosensors for the Detection of Respiratory Viruses: A Review. Talanta Open 2020, 2, 100007. [Google Scholar] [CrossRef] [PubMed]
- Stefano, J.S.; Silva, L.R.G.E.; Kalinke, C.; de Oliveira, P.R.; Crapnell, R.D.; Brazaca, L.C.; Bonacin, J.A.; Campuzano, S.; Banks, C.E.; Janegitz, B.C. Human Monkeypox Virus: Detection Methods and Perspectives for Diagnostics. TrAC Trends Anal. Chem. 2023, 167, 117226. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Guo, J. Functionalized Carbon-Based Electrochemical Sensors for Food and Alcoholic Beverage Safety. Appl. Sci. 2022, 12, 9082. [Google Scholar] [CrossRef]
- Pumera, M.; Sánchez, S.; Ichinose, I.; Tang, J. Electrochemical Nanobiosensors. Sensors Actuators B Chem. 2007, 123, 1195–1205. [Google Scholar] [CrossRef]
- Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond Graphene: Electrochemical Sensors and Biosensors for Biomarkers Detection. Biosens. Bioelectron. 2017, 89, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, D.W.; Leblanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical Sensors and Biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef]
- Stefano, J.S.; Orzari, L.O.; Silva-Neto, H.A.; de Ataíde, V.N.; Mendes, L.F.; Coltro, W.K.T.; Longo Cesar Paixão, T.R.; Janegitz, B.C. Different Approaches for Fabrication of Low-Cost Electrochemical Sensors. Curr. Opin. Electrochem. 2022, 32, 100893. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Rauf, S.; Beduk, T.; Durmus, C.; Aljedaibi, A.; Timur, S.; Alshareef, H.N.; Amine, A.; Wolfbeis, O.S.; Salama, K.N. Electrochemical Sensors and Biosensors Using Laser-Derived Graphene: A Comprehensive Review. Biosens. Bioelectron. 2020, 168, 112565. [Google Scholar] [CrossRef]
- Wanjari, V.P.; Reddy, A.S.; Duttagupta, S.P.; Singh, S.P. Laser-Induced Graphene-Based Electrochemical Biosensors for Environmental Applications: A Perspective. Environ. Sci. Pollut. Res. 2023, 30, 42643–42657. [Google Scholar] [CrossRef]
- Komuro, N.; Takaki, S.; Suzuki, K.; Citterio, D. Inkjet Printed (Bio)Chemical Sensing Devices. Anal. Bioanal. Chem. 2013, 405, 5785–5805. [Google Scholar] [CrossRef]
- Tortorich, R.P.; Shamkhalichenar, H.; Choi, J.W. Inkjet-Printed and Paper-Based Electrochemical Sensors. Appl. Sci. 2018, 8, 288. [Google Scholar] [CrossRef]
- Hayat, A.; Marty, J.L. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring. Sensors 2014, 14, 10432–10453. [Google Scholar] [CrossRef]
- Beitollahi, H.; Mohammadi, S.Z.; Safaei, M.; Tajik, S. Applications of Electrochemical Sensors and Biosensors Based on Modified Screen-Printed Electrodes: A Review. Anal. Methods 2020, 12, 1547–1560. [Google Scholar] [CrossRef]
- Sinha, A.; Dhanjai; Stavrakis, A.K.; Stojanović, G.M. Textile-Based Electrochemical Sensors and Their Applications. Talanta 2022, 244, 123425. [Google Scholar] [CrossRef]
- Liu, X.; Yao, Y.; Ying, Y.; Ping, J. Recent Advances in Nanomaterial-Enabled Screen-Printed Electrochemical Sensors for Heavy Metal Detection. TrAC Trends Anal. Chem. 2019, 115, 187–202. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Kalinke, C.; Rocha, R.G.; dos Santos, P.L.; Rocha, D.P.; Oliveira, P.R.; Janegitz, B.C.; Bonacin, J.A.; Richter, E.M.; Munoz, R.A.A. Additive-Manufactured (3D-Printed) Electrochemical Sensors: A Critical Review. Anal. Chim. Acta 2020, 1118, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Stefano, J.S.; Kalinke, C.; Da Rocha, R.G.; Rocha, D.P.; Da Silva, V.A.O.P.; Bonacin, J.A.; Angnes, L.; Richter, E.M.; Janegitz, B.C.; Muñoz, R.A.A. Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Anal. Chem. 2022, 94, 6417–6429. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.; Patel, B.A. 3D-Printed Electrochemical Sensors: A New Horizon for Measurement of Biomolecules. Curr. Opin. Electrochem. 2020, 20, 78–81. [Google Scholar] [CrossRef]
- Rocha, D.P.; Rocha, R.G.; Castro, S.V.F.; Trindade, M.A.G.; Munoz, R.A.A.; Richter, E.M.; Angnes, L. Posttreatment of 3D-printed Surfaces for Electrochemical Applications: A Critical Review on Proposed Protocols. Electrochem. Sci. Adv. 2021, 2, e2100136. [Google Scholar] [CrossRef]
- Agarwal, R. The Personal Protective Equipment Fabricated via 3D Printing Technology during COVID-19. Ann. 3D Print. Med. 2022, 5, 100042. [Google Scholar] [CrossRef]
- Pedraja, J.; Maestre, J.M.; Rabanal, J.M.; Morales, C.; Aparicio, J.; del Moral, I. Role of 3D Printing in the Protection of Surgical and Critical Care Professionals in the COVID-19 Pandemic. Rev. Española Anestesiol. Reanim. 2020, 67, 417–424. [Google Scholar] [CrossRef]
- Longhitano, G.A.; Nunes, G.B.; Candido, G.; da Silva, J.V.L. The Role of 3D Printing during COVID-19 Pandemic: A Review. Prog. Addit. Manuf. 2021, 6, 19–37. [Google Scholar] [CrossRef]
- Siddique, S.H.; Hazell, P.J.; Wang, H.; Escobedo, J.P.; Ameri, A.A.H. Lessons from Nature: 3D Printed Bio-Inspired Porous Structures for Impact Energy Absorption—A Review. Addit. Manuf. 2022, 58, 103051. [Google Scholar] [CrossRef]
- Perales-Rondon, J.V.; Rojas, D.; Gao, W.; Pumera, M. Copper 3D-Printed Electrodes for Ammonia Electrosynthesis via Nitrate Reduction. ACS Sustain. Chem. Eng. 2023, 11, 6923–6931. [Google Scholar] [CrossRef]
- Kumar, A.; Padinjareveetil, K.; Perales-Rondon, J.V.; Pumera, M.; Padinjareveetil, A.K.K.; Perales-Rondon, J.V.; Pumera, M. Engineering 3D Printed Structures Towards Electrochemically Driven Green Ammonia Synthesis: A Perspective. Adv. Mater. Technol. 2023, 8, 2202080. [Google Scholar] [CrossRef]
- Zambiazi, P.J.; de Moraes, A.T.N.; Kogachi, R.R.; Aparecido, G.O.; Formiga, A.L.B.; Bonacin, J.A. Performance of Water Oxidation by 3D Printed Electrodes Modified by Prussian Blue Analogues. J. Braz. Chem. Soc. 2020, 31, 2307–2318. [Google Scholar] [CrossRef]
- Hughes, J.P.; Dos Santos, P.L.; Down, M.P.; Foster, C.W.; Bonacin, J.A.; Keefe, E.M.; Rowley-Neale, S.J.; Banks, C.E. Single Step Additive Manufacturing (3D Printing) of Electrocatalytic Anodes and Cathodes for Efficient Water Splitting. Sustain. Energy Fuels 2019, 4, 302–311. [Google Scholar] [CrossRef]
- Tian, X.; Jin, J.; Yuan, S.; Chua, C.K.; Tor, S.B.; Zhou, K. Emerging 3D-Printed Electrochemical Energy Storage Devices: A Critical Review. Adv. Energy Mater. 2017, 7, 1700127. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef]
- Ambrosi, A.; Pumera, M. 3D-Printing Technologies for Electrochemical Applications. Chem. Soc. Rev. 2016, 45, 2740–2755. [Google Scholar] [CrossRef] [PubMed]
- Crevillen, A.G.; Mayorga-Martinez, C.C.; Vaghasiya, J.V.; Pumera, M. 3D-Printed SARS-CoV-2 RNA Genosensing Microfluidic System. Adv. Mater. Technol. 2022, 7, 2101121. [Google Scholar] [CrossRef]
- Silva, L.R.G.; Stefano, J.S.; Kalinke, C.; Crapnell, R.D.; Brazaca, L.C.; Marcolino-Junior, L.H.; Bergamini, M.F.; Banks, C.E.; Janegitz, B.C. Dual-Target Additively Manufactured Electrochemical Sensor for the Multiplexed Detection of Protein A29 and DNA of Human Monkeypox Virus. ACS Omega 2024, 9, 33099–33110. [Google Scholar] [CrossRef]
- Silva, L.R.G.; Stefano, J.S.; Crapnell, R.D.; Banks, C.E.; Janegitz, B.C. Additive Manufacturing of Carbon Black Immunosensors Based on Covalent Immobilization for Portable Electrochemical Detection of SARS-CoV-2 Spike S1 Protein. Talanta Open 2023, 8, 100250. [Google Scholar] [CrossRef]
- Muñoz, J.; Pumera, M. 3D-Printed COVID-19 Immunosensors with Electronic Readout. Chem. Eng. J. 2021, 425, 131433. [Google Scholar] [CrossRef]
- De Matos Morawski, F.; Martins, G.; Ramos, M.K.; Zarbin, A.J.G.; Blanes, L.; Bergamini, M.F.; Marcolino-Junior, L.H. A Versatile 3D Printed Multi-Electrode Cell for Determination of Three COVID-19 Biomarkers. Anal. Chim. Acta 2023, 1258, 341169. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Sigley, E.; Williams, R.J.; Brine, T.; Garcia-Miranda Ferrari, A.; Kalinke, C.; Janegitz, B.C.; Bonacin, J.A.; Banks, C.E. Circular Economy Electrochemistry: Recycling Old Mixed Material Additively Manufactured Sensors into New Electroanalytical Sensing Platforms. ACS Sustain. Chem. Eng. 2023, 11, 9183–9193. [Google Scholar] [CrossRef] [PubMed]
- Sigley, E.; Kalinke, C.; Crapnell, R.D.; Whittingham, M.J.; Williams, R.J.; Keefe, E.M.; Janegitz, B.C.; Bonacin, J.A.; Banks, C.E. Circular Economy Electrochemistry: Creating Additive Manufacturing Feedstocks for Caffeine Detection from Post-Industrial Coffee Pod Waste. ACS Sustain. Chem. Eng. 2023, 11, 2978–2988. [Google Scholar] [CrossRef]
- Kalinke, C.; Crapnell, R.D.; Sigley, E.; Whittingham, M.J.; de Oliveira, P.R.; Brazaca, L.C.; Janegitz, B.C.; Bonacin, J.A.; Banks, C.E. Recycled Additive Manufacturing Feedstocks with Carboxylated Multi-Walled Carbon Nanotubes toward the Detection of Yellow Fever Virus CDNA. Chem. Eng. J. 2023, 467, 143513. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Kalinke, C.; Silva, L.R.G.; Stefano, J.S.; Williams, R.J.; Abarza Munoz, R.A.; Bonacin, J.A.; Janegitz, B.C.; Banks, C.E. Additive Manufacturing Electrochemistry: An Overview of Producing Bespoke Conductive Additive Manufacturing Filaments. Mater. Today 2023, 71, 73–90. [Google Scholar] [CrossRef]
- Katseli, V.; Economou, A.; Kokkinos, C. Single-Step Fabrication of an Integrated 3D-Printed Device for Electrochemical Sensing Applications. Electrochem. Commun. 2019, 103, 100–103. [Google Scholar] [CrossRef]
- Manzanares-Palenzuela, C.L.; Hermanova, S.; Sofer, Z.; Pumera, M. Proteinase-Sculptured 3D-Printed Graphene/Polylactic Acid Electrodes as Potential Biosensing Platforms: Towards Enzymatic Modeling of 3D-Printed Structures. Nanoscale 2019, 11, 12124–12131. [Google Scholar] [CrossRef]
- López Marzo, A.M.; Mayorga-Martinez, C.C.; Pumera, M. 3D-Printed Graphene Direct Electron Transfer Enzyme Biosensors. Biosens. Bioelectron. 2020, 151, 111980. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Silva, P.R.L.; Lima, A.P.; Rocha, D.P.; Oliveira, T.C.; do Prado, T.M.; Fava, E.L.; Fatibello-Filho, O.; Richter, E.M.; Muñoz, R.A.A. 3D-Printed Graphene/Polylactic Acid Electrode for Bioanalysis: Biosensing of Glucose and Simultaneous Determination of Uric Acid and Nitrite in Biological Fluids. Sens. Actuators B Chem. 2020, 307, 127621. [Google Scholar] [CrossRef]
- Silva, V.A.O.P.; Fernandes-Junior, W.S.; Rocha, D.P.; Stefano, J.S.; Munoz, R.A.A.; Bonacin, J.A.; Janegitz, B.C. 3D-Printed Reduced Graphene Oxide/Polylactic Acid Electrodes: A New Prototyped Platform for Sensing and Biosensing Applications. Biosens. Bioelectron. 2020, 170, 112684. [Google Scholar] [CrossRef]
- Koukouviti, E.; Kokkinos, C. 3D Printed Enzymatic Microchip for Multiplexed Electrochemical Biosensing. Anal. Chim. Acta 2021, 1186, 339114. [Google Scholar] [CrossRef]
- Muñoz, J.; Redondo, E.; Pumera, M. Chiral 3D-Printed Bioelectrodes. Adv. Funct. Mater. 2021, 31, 2010608. [Google Scholar] [CrossRef]
- Wang, L.; Pumera, M. Covalently Modified Enzymatic 3D-Printed Bioelectrode. Microchim. Acta 2021, 188, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Gao, W.; Ng, S.; Pumera, M. Chiral Protein-Covalent Organic Framework 3D-Printed Structures as Chiral Biosensors. Anal. Chem. 2021, 93, 5277–5283. [Google Scholar] [CrossRef] [PubMed]
- Domingo-Roca, R.; Macdonald, A.R.; Hannah, S.; Corrigan, D.K. Integrated Multi-Material Portable 3D-Printed Platform for Electrochemical Detection of Dopamine and Glucose. Analyst 2022, 147, 4598–4606. [Google Scholar] [CrossRef] [PubMed]
- Calabria, D.; Lazzarini, E.; Pace, A.; Trozzi, I.; Zangheri, M.; Cinti, S.; Difonzo, M.; Valenti, G.; Guardigli, M.; Paolucci, F.; et al. Smartphone-Based 3D-Printed Electrochemiluminescence Enzyme Biosensor for Reagentless Glucose Quantification in Real Matrices. Biosens. Bioelectron. 2023, 227, 115146. [Google Scholar] [CrossRef] [PubMed]
- Hussain, K.K.; Hopkins, R.; Yeoman, M.S.; Patel, B.A. 3D Printed Skyscraper Electrochemical Biosensor for the Detection of Tumour Necrosis Factor Alpha (TNFα) in Faeces. Sens. Actuators B Chem. 2024, 410, 135694. [Google Scholar] [CrossRef]
- Martins, G.; Gogola, J.L.; Budni, L.H.; Janegitz, B.C.; Marcolino-Junior, L.H.; Bergamini, M.F. 3D-Printed Electrode as a New Platform for Electrochemical Immunosensors for Virus Detection. Anal. Chim. Acta 2021, 1147, 30–37. [Google Scholar] [CrossRef]
- Stefano, J.S.; Guterres e Silva, L.R.; Rocha, R.G.; Brazaca, L.C.; Richter, E.M.; Abarza Muñoz, R.A.; Janegitz, B.C. New Conductive Filament Ready-to-Use for 3D-Printing Electrochemical (Bio)Sensors: Towards the Detection of SARS-CoV-2. Anal. Chim. Acta 2021, 1191, 339372. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.G.; Stefano, J.S.; Orzari, L.O.; Brazaca, L.C.; Carrilho, E.; Marcolino-Junior, L.H.; Bergamini, M.F.; Munoz, R.A.A.; Janegitz, B.C. Electrochemical Biosensor for SARS-CoV-2 CDNA Detection Using AuPs-Modified 3D-Printed Graphene Electrodes. Biosensors 2022, 12, 622. [Google Scholar] [CrossRef]
- Jyoti; Fojta, M.; Hermanová, M.; Pivoňková, H.; Alduhaish, O.; Pumera, M. Genosensing on a 3D-Printed Nanocarbon Electrode. Electrochem. Commun. 2023, 151, 107508. [Google Scholar] [CrossRef]
- Kalinke, C.; De Oliveira, P.R.; Banks, C.E.; Janegitz, B.C.; Bonacin, J.A. 3D-Printed Immunosensor for the Diagnosis of Parkinson’s Disease. Sens. Actuators B Chem. 2023, 381, 133353. [Google Scholar] [CrossRef]
- Kalinke, C.; de Oliveira, P.R.; Neumsteir, N.V.; Henriques, B.F.; de Oliveira Aparecido, G.; Loureiro, H.C.; Janegitz, B.C.; Bonacin, J.A. Influence of Filament Aging and Conductive Additive in 3D Printed Sensors. Anal. Chim. Acta 2022, 1191, 339228. [Google Scholar] [CrossRef] [PubMed]
Biosensor | Conductive Material | Biorecognition Agent | Analyte | Sample | LOD | Ref |
---|---|---|---|---|---|---|
3D-printed biosensor | Graphene | Glucose oxidase | Glucose | - | - | [45] |
3D-printed biosensor | Graphene | Alkaline phosphatase | 1-naphthol | - | - | [46] |
DMF-EC/AuNPs/ HRP | Graphene | Horseradish peroxidase | H2O2 | Human serum | 9.1 μmol L−1 | [47] |
G-PLA | Graphene | Glucose oxidase | Glucose | Blood plasma | 15.0 μmol L−1 | [48] |
Tyr-DHP/rGOPLA | Graphene | Tyrosinase | Catechol | Water | 0.26 μmol L−1 | [49] |
3D printed e-transferable microchip | CB | Cholesterol oxidase Choline oxidase | Cholesterol Choline | Blood | 3.36 μmol L−1 0.08 μmol L−1 | [50] |
L-AAO@3D-nCEs | Graphene | L-amino acid oxidase | L-alanine | - | 1.0 μmol L−1 | [51] |
GOx/3DE | CB | Glucose oxidase | H2O2 Glucose | Apple cider | 2.97 μmol L−1 158.0 μmol L−1 | [52] |
Fe3O4@COF@BSA/ 3DE | Graphene | Magnetic covalent organic framework and bovine serum albumin | Tryptophan enantiomer | - | - | [53] |
3D-printed platform | CB | Glucose oxidase | Glucose | - | - | [54] |
3D-printed miniaturized ECL biosensor | CB | Glucose oxidase | Glucose | Artificial serum and glucose saline solutions | 60.0 μmol L−1 | [55] |
SS electrode | CB | Anti-TNFα | Tumor necrosis factor alpha protein | Fecal pellets | 44.6 pg mL−1 | [56] |
3D printed biosensor | CB | IgG2B antibody | Hantavirus Araucaria nucleoprotein | Synthetic saliva | 22 μg mL−1 | [57] |
3D-printed immunosensor | Graphene | Recombinant protein | COVID-19 protein | Human serum | 0.5 μg mL−1 | [39] |
3D-PP genosensor | Graphene | RNA | RNA COVID-19 | - | 0.015 μmol L−1 | [36] |
Gpt-PLA | Graphite | Antibody | Protein spike S1 COVID-19 | Synthetic saliva | 1.3 nmol L−1 | [58] |
3D genosensor | Graphene | cDNA | cDNA COVID-19 | Synthetic saliva and synthetic saliva | [59] | |
3D-printed cell | CB | Anti-N Anti-SRBD proteins SRBD | N SRBD proteins anti-SRBD | Saliva | 5 pg mL−1 1 pg mL−1 0.1 pg mL−1 | [40] |
3D printed biosensor | CB | Antibody | Protein spike S1 | Human serum Synthetic saliva | 2.7 μmol L−1 | [38] |
3DnCes | Nanocarbon | DNA | 1-naphthol | - | - | [60] |
3D-printed biodevice | CB | Anti-A29 DNA MKPV | Protein A29 DNA MKPV | Human serum | 2.7 nmol L−1 0.029 μmol L−1 | [37] |
3D PLA-GDMF-EC | Graphene | Anti-Park7/DJ-1 | Park7/DJ-1 Parkinson’s disease | Blood serum and cerebrospinal fluid | 1.01 µg L−1 | [61] |
3D r-PLA | CB and CNTs | cDNA | YFV cDNA | Human serum | 0.138 μmol L−1 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.R.G.; Lopes, C.E.C.; Tanaka, A.A.; Dantas, L.M.F.; Silva, I.S.; Stefano, J.S. Electrochemical Biosensors 3D Printed by Fused Deposition Modeling: Actualities, Trends, and Challenges. Biosensors 2025, 15, 57. https://doi.org/10.3390/bios15010057
Silva LRG, Lopes CEC, Tanaka AA, Dantas LMF, Silva IS, Stefano JS. Electrochemical Biosensors 3D Printed by Fused Deposition Modeling: Actualities, Trends, and Challenges. Biosensors. 2025; 15(1):57. https://doi.org/10.3390/bios15010057
Chicago/Turabian StyleSilva, Luiz Ricardo Guterres, Carlos Eduardo Costa Lopes, Auro Atsushi Tanaka, Luiza Maria Ferreira Dantas, Iranaldo Santos Silva, and Jéssica Santos Stefano. 2025. "Electrochemical Biosensors 3D Printed by Fused Deposition Modeling: Actualities, Trends, and Challenges" Biosensors 15, no. 1: 57. https://doi.org/10.3390/bios15010057
APA StyleSilva, L. R. G., Lopes, C. E. C., Tanaka, A. A., Dantas, L. M. F., Silva, I. S., & Stefano, J. S. (2025). Electrochemical Biosensors 3D Printed by Fused Deposition Modeling: Actualities, Trends, and Challenges. Biosensors, 15(1), 57. https://doi.org/10.3390/bios15010057