Recent Advances in SAW Sensors for Detection of Cancer Biomarkers
Abstract
:1. Introduction
2. SAW Sensor Devices and Their Key Features
2.1. Types of SAW Devices
2.2. Structural Characteristics of the SAW Devices
2.3. Configurations: Delay Lines versus Resonator
2.4. Sensing Layers in SAW Sensors
3. Biomarkers
3.1. VOCs
3.2. Carcinoembryonic Antigen
3.2.1. CEA Detection in Exhaled Breath Condensate
3.2.2. CEA Detection in Non-Exhaled Breath Condensate
3.3. Alpha-Fetoprotein
3.4. MicroRNAs
3.5. Prostate-Specific Antigen
3.6. Other Protein Biomarkers
3.6.1. Epidermal Growth Factor
3.6.2. C-Reactive Protein, Lipoprotein (a), and Apolipoprotein B
3.6.3. Human Mammaglobin
3.6.4. Cancer Antigen 125
3.6.5. B-Cell Lymphoma 2
3.6.6. Streptavidin
3.6.7. Alfa-Glycosidase
3.7. Cancerous Cells
3.8. Nucleosides
3.9. Circulating Tumor Cells
3.10. Genes
4. Future Trends
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organiation. Cancer Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 23 December 2024).
- Manhas, N.; Kumar, L.S.; Adimule, V. Early-Stage Diagnosis of Breast Cancer: Amelioration in Approaches. In Drug and Therapy Development for Triple Negative Breast Cancer; Kendrekar, P., Adimule, V., Hurst, T., Eds.; Wiley: Hoboken, NJ, USA, 2023; pp. 1–34. ISBN 978-3-527-35175-6. [Google Scholar]
- Kokabi, M.; Tahir, M.N.; Singh, D.; Javanmard, M. Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis. Biosensors 2023, 13, 884. [Google Scholar] [CrossRef]
- Azab, M.Y.; Hameed, M.F.O.; Obayya, S.S.A. Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives. Biology 2023, 12, 232. [Google Scholar] [CrossRef]
- Sarhadi, V.K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Shah, M.R.; Barek, J.; Malik, M.I. Cancer Biomarkers and Their Biosensors: A Comprehensive Review. TrAC Trends Anal. Chem. 2023, 158, 116813. [Google Scholar] [CrossRef]
- Sarkar, S.; Hazra, S.; Patra, S.; Gogoi, M. Biosensors for Cancer Detection: A Review. TrAC Trends Anal. Chem. 2024, 180, 117978. [Google Scholar] [CrossRef]
- Das, S.; Dey, M.K.; Devireddy, R.; Gartia, M.R. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors 2024, 24, 37. [Google Scholar] [CrossRef] [PubMed]
- Abdul Wahab, M.R.; Palaniyandi, T.; Viswanathan, S.; Baskar, G.; Surendran, H.; Gangadharan, S.G.D.; Sugumaran, A.; Sivaji, A.; Kaliamoorthy, S.; Kumarasamy, S. Biomarker-Specific Biosensors Revolutionise Breast Cancer Diagnosis. Clin. Chim. Acta 2024, 555, 117792. [Google Scholar] [CrossRef] [PubMed]
- Rayleigh, L. On Waves Propagated along the Plane Surface of an Elastic Solid. Proc. Lond. Math. Soc. 1885, s1–17, 4–11. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, W.; Yang, P.; Luo, J.; Fu, C.; Han, J.-C.; Zhou, Y.; Wang, L.; Wu, Y.; Huang, Y. A Review of Surface Acoustic Wave Sensors: Mechanisms, Stability and Future Prospects. Sens. Rev. 2024, 44, 249–266. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Wei, X.; Xue, Y.; Wan, H.; Wang, P. Recent Advances in Acoustic Wave Biosensors for the Detection of Disease-Related Biomarkers: A Review. Anal. Chim. Acta 2021, 1164, 338321. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef]
- Zida, S.I.; Lin, Y.; Khung, Y.L. Current Trends on Surface Acoustic Wave Biosensors. Adv. Mater. Technol. 2021, 6, 2001018. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.-Y.; Jia, Z.-R.; Qiao, P.-P.; Pi, X.-T.; Chen, J.; Deng, L.-H. Advances in the Early Detection of Lung Cancer Using Analysis of Volatile Organic Compounds: From Imaging to Sensors. Asian Pac. J. Cancer Prev. 2014, 15, 4377–4384. [Google Scholar] [CrossRef] [PubMed]
- Oyerinde, A.S.; Selvaraju, V.; Babu, J.R.; Geetha, T. Potential Role of Oxidative Stress in the Production of Volatile Organic Compounds in Obesity. Antioxidants 2023, 12, 129. [Google Scholar] [CrossRef]
- Fourati, N.; Attia, G.; Khaoulani, S.; Zerrouki, C. Applications and Recent Trends in Surface Acoustic Wave Biosensors. In Piezoelectric Sensors; Lieberzeit, P., Ed.; Springer International Publishing: Cham, Switzerland, 2024; pp. 225–251. ISBN 978-3-031-53785-1. [Google Scholar]
- Gouda, M.; Ghazzawy, H.S.; Alqahtani, N.; Li, X. The Recent Development of Acoustic Sensors as Effective Chemical Detecting Tools for Biological Cells and Their Bioactivities. Molecules 2023, 28, 4855. [Google Scholar] [CrossRef] [PubMed]
- White, R.M.; Voltmer, F.W. Direct Piezoelectric Coupling to Surface Elastic Waves. Appl. Phys. Lett. 1965, 7, 314–316. [Google Scholar] [CrossRef]
- Yang, Y.; Dejous, C.; Hallil, H. Trends and Applications of Surface and Bulk Acoustic Wave Devices: A Review. Micromachines 2022, 14, 43. [Google Scholar] [CrossRef]
- Mujahid, A.; Afzal, A.; Dickert, F.L. An Overview of High Frequency Acoustic Sensors—QCMs, SAWs and FBARs—Chemical and Biochemical Applications. Sensors 2019, 19, 4395. [Google Scholar] [CrossRef]
- Šetka, M.; Bahos, F.A.; Matatagui, D.; Gràcia, I.; Figueras, E.; Drbohlavová, J.; Vallejos, S. Love Wave Sensors with Silver Modified Polypyrrole Nanoparticles for VOCs Monitoring. Sensors 2020, 20, 1432. [Google Scholar] [CrossRef] [PubMed]
- Hallil, H.; Omar Aouled, N.; Plano, B.; Delépée, R.; Agrofoglio, L.; Dejous, C.; Rebière, D. Love Wave Sensor Based on Thin Film Molecularly Imprinted Polymer: Study of VOCs Adsorption. J. Integr. Circuits Syst. 2020, 9, 118–122. [Google Scholar] [CrossRef]
- Ghayour, R.; Hojjat, Y.; Karafi, M.R.; Sadeghiyan, H. Development of a Hybrid DEP-SAW Device for Trapping/Sensing Target Cells. Appl. Acoust. 2018, 141, 355–361. [Google Scholar] [CrossRef]
- Chang, K.; Pi, Y.; Lu, W.; Wang, F.; Pan, F.; Li, F.; Jia, S.; Shi, J.; Deng, S.; Chen, M. Label-Free and High-Sensitive Detection of Human Breast Cancer Cells by Aptamer-Based Leaky Surface Acoustic Wave Biosensor Array. Biosens. Bioelectron. 2014, 60, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, M.; Agostini, M.; Lunardelli, F.; Miranda, A.; Luminare, A.G.; Cervelli, F.; Gambineri, F.; Cecchini, M. A Surface Acoustic Wave (SAW)-Based Lab-on-Chip for the Detection of Active α-Glycosidase. Biosensors 2022, 12, 1010. [Google Scholar] [CrossRef]
- Han, S.B.; Lee, S.S. Simultaneous Detection of Exosomal microRNAs Isolated from Cancer Cells Using Surface Acoustic Wave Sensor Array with High Sensitivity and Reproducibility. Micromachines 2024, 15, 249. [Google Scholar] [CrossRef]
- Gronewold, T.M.A.; Baumgartner, A.; Quandt, E.; Famulok, M. Discrimination of Single Mutations in Cancer-Related Gene Fragments with a Surface Acoustic Wave Sensor. Anal. Chem. 2006, 78, 4865–4871. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Das, P.K.; Bhethanabotla, V.R. Surface Acoustic Waves in Biosensing Applications. Sens. Actuators Rep. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Li, M.; Qian, L.; Wang, L.; Li, H. Surface Acoustic Wave Immunosensor Based on Au-Nanoparticles-Decorated Graphene Fluidic Channel for CA125 Detection. Sens. Actuators B Chem. 2022, 367, 132063. [Google Scholar] [CrossRef]
- Lo, X.-C.; Li, J.-Y.; Lee, M.-T.; Yao, D.-J. Frequency Shift of a SH-SAW Biosensor with Glutaraldehyde and 3-Aminopropyltriethoxysilane Functionalized Films for Detection of Epidermal Growth Factor. Biosensors 2020, 10, 92. [Google Scholar] [CrossRef]
- Onen, O.; Sisman, A.; Gallant, N.D.; Kruk, P.; Guldiken, R. A Urinary Bcl-2 Surface Acoustic Wave Biosensor for Early Ovarian Cancer Detection. Sensors 2012, 12, 7423–7437. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Yatsuda, H.; Goto, M.; Kondoh, J.; Liu, S.-H.; Wang, R. Application of Shear Horizontal Surface Acoustic Wave (SH-SAW) Immunosensor in Point-of-Care Diagnosis. Biosensors 2023, 13, 605. [Google Scholar] [CrossRef]
- Rauf, S.; Qazi, H.I.A.; Luo, J.; Fu, C.; Tao, R.; Rauf, S.; Yang, L.; Li, H.; Fu, Y. Ultrasensitive Leaky Surface Acoustic Wave Immunosensor for Real-Time Detection of Alpha-Fetoprotein in Biological Fluids. Chemosensors 2021, 9, 311. [Google Scholar] [CrossRef]
- Hadj-Larbi, F.; Serhane, R. Sezawa SAW Devices: Review of Numerical-Experimental Studies and Recent Applications. Sens. Actuators A Phys. 2019, 292, 169–197. [Google Scholar] [CrossRef]
- Jandas, P.J.; Luo, J.; Prabakaran, K.; Chen, F.; Fu, Y.Q. Highly Stable, Love-Mode Surface Acoustic Wave Biosensor Using Au Nanoparticle-MoS2-rGO Nano-Cluster Doped Polyimide Nanocomposite for the Selective Detection of Carcinoembryonic Antigen. Mater. Chem. Phys. 2020, 246, 122800. [Google Scholar] [CrossRef]
- Tang, P.; Wang, Y.; Huo, J.; Lin, X. Love Wave Sensor for Prostate-Specific Membrane Antigen Detection Based on Hydrophilic Molecularly-Imprinted Polymer. Polymers 2018, 10, 563. [Google Scholar] [CrossRef]
- Zhang, F.; Li, S.; Cao, K.; Wang, P.; Su, Y.; Zhu, X.; Wan, Y. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe. Sensors 2015, 15, 13839–13850. [Google Scholar] [CrossRef]
- Tigli, O.; Bivona, L.; Berg, P.; Zaghloul, M.E. Fabrication and Characterization of a Surface-Acoustic-Wave Biosensor in CMOS Technology for Cancer Biomarker Detection. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 62–73. [Google Scholar] [CrossRef]
- Agostini, M.; Greco, G.; Cecchini, M. Full-SAW Microfluidics-Based Lab-on-a-Chip for Biosensing. IEEE Access 2019, 7, 70901–70909. [Google Scholar] [CrossRef]
- Jandas, P.J.; Luo, J.; Quan, A.; Qiu, C.; Cao, W.; Fu, C.; Fu, Y.Q. Highly Selective and Label-Free Love-Mode Surface Acoustic Wave Biosensor for Carcinoembryonic Antigen Detection Using a Self-Assembled Monolayer Bioreceptor. Appl. Surf. Sci. 2020, 518, 146061. [Google Scholar] [CrossRef]
- Jandas, P.J.; Prabakaran, K.; Luo, J.; Fu, C.; Fu, Y.Q.; Holaday, M.G.D. Ti3C2Tx MXene-Au Nanoparticles Doped Polyimide Thin Film as a Transducing Bioreceptor for Real-Time Acoustic Detection of Carcinoembryonic Antigen. Sens. Actuators A Phys. 2021, 331, 112998. [Google Scholar] [CrossRef]
- Wang, X.; Ji, J.; Yang, P.; Li, X.; Pang, Y.; Lu, P. A Love-Mode Surface Acoustic Wave Aptasensor with Dummy Fingers Based on Monolayer MoS2/Au NPs Nanocomposites for Alpha-Fetoprotein Detection. Talanta 2022, 243, 123328. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Xie, H.; Luo, J.; Fu, C.; Tao, R.; Li, H.; Fu, Y. Highly Sensitive Love Mode Acoustic Wave Platform with SiO2 Wave-Guiding Layer and Gold Nanoparticles for Detection of Carcinoembryonic Antigens. Biosensors 2022, 12, 536. [Google Scholar] [CrossRef]
- Zou, Y. Love Wave Based Portable Sensing System for On-Line Detection of Carcinoembryonic Antigen in Exhaled Breath Condensate. Biomed. Microdevices 2020, 22, 78. [Google Scholar] [CrossRef] [PubMed]
- Sisman, A.; Gur, E.; Ozturk, S.; Enez, B.; Okur, B.; Toker, O. A Low-Cost Biomarker-Based SAW-Biosensor Design for Early Detection of Prostate Cancer. Procedia Technol. 2017, 27, 248–249. [Google Scholar] [CrossRef]
- Wang, T.; Green, R.; Nair, R.R.; Howell, M.; Mohapatra, S.; Guldiken, R.; Mohapatra, S.S. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures. Sensors 2015, 15, 32045–32055. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Fu, Y.Q.; Maeng, S.; Du, X.Y.; Tan, S.C.; Luo, J.K.; Flewitt, A.J.; Kim, S.H.; Park, N.M.; Choi, Y.J.; et al. Integrated ZnO Surface Acoustic Wave Microfluidic and Biosensor System. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; IEEE: New York, NY, USA, 2007; pp. 851–854. [Google Scholar]
- Murillo, A.E.; Melo-Máximo, L.; García-Farrera, B.; Salas Martínez, O.; Melo-Máximo, D.V.; Oliva-Ramírez, J.; García, K.; Huerta, L.; Oseguera, J. Development of AlN Thin Films for Breast Cancer Acoustic Biosensors. J. Mater. Res. Technol. 2019, 8, 350–358. [Google Scholar] [CrossRef]
- Agostini, M.; Greco, G.; Cecchini, M. A Rayleigh Surface Acoustic Wave (R-SAW) Resonator Biosensor Based on Positive and Negative Reflectors with Sub-Nanomolar Limit of Detection. Sens. Actuators B Chem. 2018, 254, 1–7. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, X.; An, C.; Ran, C.; Ying, K.; Wang, P. A Point-of-Care Testing System with Love-Wave Sensor and Immunogold Staining Enhancement for Early Detection of Lung Cancer. Biomed. Microdevices 2014, 16, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zou, Y.; An, C.; Ying, K.; Chen, X.; Wang, P. Sensitive Detection of Carcinoembryonic Antigen in Exhaled Breath Condensate Using Surface Acoustic Wave Immunosensor. Sens. Actuators B Chem. 2015, 217, 100–106. [Google Scholar] [CrossRef]
- Hao, H.-C.; Chang, H.-Y.; Wang, T.-P.; Yao, D.-J. Detection of Cells Captured with Antigens on Shear Horizontal Surface-Acoustic-Wave Sensors. SLAS Technol. 2013, 18, 69–76. [Google Scholar] [CrossRef]
- Cai, H.-L.; Yang, Y.; Chen, X.; Mohammad, M.A.; Ye, T.-X.; Guo, C.-R.; Yi, L.-T.; Zhou, C.-J.; Liu, J.; Ren, T.-L. A Third-Order Mode High Frequency Biosensor with Atomic Resolution. Biosens. Bioelectron. 2015, 71, 261–268. [Google Scholar] [CrossRef]
- Dejous, C.; Hallil, H.; Raimbault, V.; Lachaud, J.-L.; Plano, B.; Delépée, R.; Favetta, P.; Agrofoglio, L.; Rebière, D. Love Acoustic Wave-Based Devices and Molecularly-Imprinted Polymers as Versatile Sensors for Electronic Nose or Tongue for Cancer Monitoring. Sensors 2016, 16, 915. [Google Scholar] [CrossRef]
- Lebal, N.; Raimbault, V.; Hallil, H.; Plano, B.; Lachaud, J.L.; Dejous, C.; Rebière, D.; Krstulja, A.; Delepée, R.; Agrofoglio, L. Love Wave-Based Acoustic Components as Versatile Sensors for Electronic Nose or Tongue. Application to Cancer Monitoring. In Proceedings of the IEEE SENSORS 2014, Valencia, Spain, 2–5 November 2014; IEEE: New York, NY, USA, 2014; pp. 1380–1383. [Google Scholar]
- Aouled, N.O.; Hallil, H.; Plano, B.; Rebiere, D.; Dejous, C.; Delepee, R.; Agrofoglio, L. Love Wave Sensor Based on Thin Film Molecularly Imprinted Polymer: MIP Layer Morphology and Nucleosides Analogs Detection. In Proceedings of the 2013 IEEE SENSORS, Baltimore, MD, USA, 3–6 November 2013; IEEE: New York, NY, USA, 2013; pp. 1–4. [Google Scholar]
- Zhang, X.-F.; Zhang, Z.-W.; He, Y.-L.; Liu, Y.-X.; Li, S.; Fang, J.-Y.; Zhang, X.-A.; Peng, G. Sniffing Lung Cancer Related Biomarkers Using an Oxidized Graphene SAW Sensor. Front. Phys. 2016, 11, 116801. [Google Scholar] [CrossRef]
- Wang, D.; Yu, K.; Wang, Y.; Hu, Y.; Zhao, C.; Wang, L.; Ying, K.; Wang, P. A Hybrid Electronic Noses’ System Based on MOS-SAW Detection Units Intended for Lung Cancer Diagnosis. J. Innov. Opt. Health Sci. 2012, 5, 1150006. [Google Scholar] [CrossRef]
- He, S.; Gao, Y.; Shao, J.; Lu, Y. Application of SAW Gas Chromatography in the Early Screening of Lung Cancer. In Proceedings of the 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Jinan, China,, 30 October–2 November 2015; IEEE: New York, NY, USA, 2015; pp. 22–25. [Google Scholar]
- Tsai, M.-C.; Tsai, Y.-C. Adsorption of Glucose Oxidase at Platinum-Multiwalled Carbon Nanotube-Alumina-Coated Silica Nanocomposite for Amperometric Glucose Biosensor. Sens. Actuators B Chem. 2009, 141, 592–598. [Google Scholar] [CrossRef]
- Devnani, H.; Sharma, C.; Jain, P. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrodes for Biosensing. In Nanomaterial-Modified Electrodes; Khan, A.A.P., Kulkarni, R.M., Omaish Ansari, M., Asiri, A.M., Eds.; Nanostructure Science and Technology; Springer International Publishing: Cham, Switzerland, 2024; pp. 135–156. ISBN 978-3-031-67175-3. [Google Scholar]
- Pawar, V.S.; Pawar, S.D. Advancement of Current Immobilization Techniques for Development of Recent Biosensors. In Proceedings of the 2023 6th International Conference on Advances in Science and Technology (ICAST), Mumbai, India, 8 December 2023; IEEE: New York, NY, USA, 2023; pp. 643–648. [Google Scholar]
- Matatagui, D.; Bastida, A.; Horrillo, M.C. Novel SH-SAW Biosensors for Ultra-Fast Recognition of Growth Factors. Biosensors 2024, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Tsou, P.-H.; Lin, Z.-L.; Pan, Y.-C.; Yang, H.-C.; Chang, C.-J.; Liang, S.-K.; Wen, Y.-F.; Chang, C.-H.; Chang, L.-Y.; Yu, K.-L.; et al. Exploring Volatile Organic Compounds in Breath for High-Accuracy Prediction of Lung Cancer. Cancers 2021, 13, 1431. [Google Scholar] [CrossRef]
- Saalberg, Y.; Wolff, M. VOC Breath Biomarkers in Lung Cancer. Clin. Chim. Acta 2016, 459, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Vassilenko, V.; Moura, P.C.; Raposo, M. Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends. Biomedicines 2023, 11, 3029. [Google Scholar] [CrossRef]
- Xiang, L.; Wu, S.; Hua, Q.; Bao, C.; Liu, H. Volatile Organic Compounds in Human Exhaled Breath to Diagnose Gastrointestinal Cancer: A Meta-Analysis. Front. Oncol. 2021, 11, 606915. [Google Scholar] [CrossRef]
- Li, G.; Zhu, X.; Liu, J.; Li, S.; Liu, X. Metal Oxide Semiconductor Gas Sensors for Lung Cancer Diagnosis. Chemosensors 2023, 11, 251. [Google Scholar] [CrossRef]
- Šetka, M.; Bahos, F.A.; Matatagui, D.; Potoček, M.; Kral, Z.; Drbohlavová, J.; Gràcia, I.; Vallejos, S. Love Wave Sensors Based on Gold Nanoparticle-Modified Polypyrrole and Their Properties to Ammonia and Ethylene. Sens. Actuators B Chem. 2020, 304, 127337. [Google Scholar] [CrossRef]
- Alves Martins, B.A.; de Bulhões, G.F.; Cavalcanti, I.N.; Martins, M.M.; de Oliveira, P.G.; Martins, A.M.A. Biomarkers in Colorectal Cancer: The Role of Translational Proteomics Research. Front. Oncol. 2019, 9, 1284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zou, Y.; An, C.; Ying, K.; Chen, X.; Wang, P. A Miniaturized Immunosensor Platform for Automatic Detection of Carcinoembryonic Antigen in EBC. Sens. Actuators B Chem. 2014, 205, 94–101. [Google Scholar] [CrossRef]
- Głowska-Ciemny, J.; Szymański, M.; Kuszerska, A.; Malewski, Z.; von Kaisenberg, C.; Kocyłowski, R. The Role of Alpha-Fetoprotein (AFP) in Contemporary Oncology: The Path from a Diagnostic Biomarker to an Anticancer Drug. Int. J. Mol. Sci. 2023, 24, 2539. [Google Scholar] [CrossRef] [PubMed]
- Holjencin, C.; Jakymiw, A. MicroRNAs and Their Big Therapeutic Impacts: Delivery Strategies for Cancer Intervention. Cells 2022, 11, 2332. [Google Scholar] [CrossRef]
- Hernández, J.; Thompson, I.M. Prostate-Specific Antigen: A Review of the Validation of the Most Commonly Used Cancer Biomarker. Cancer 2004, 101, 894–904. [Google Scholar] [CrossRef]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef]
- Dahmardeh, M.; Sheybanifar, S.; Gharooni, M.; Janmaleki, M.; Abdolahad, M. Acoustic Wave Based Biosensor to Study Electroacoustic Based Detection of Progressive (SW-48) Colon Cancer Cells from Primary (HT-29) Cells. Sens. Actuators A Phys. 2015, 233, 169–175. [Google Scholar] [CrossRef]
- Hao, H.-C.; Yao, D.-J. A Sensitive, Rapid and Specific Technique for the Detection of Antigen-Specific Cells on Shear Horizontal Surface Acoustic Wave (SH-SAW) Sensors. In Proceedings of the 2010 IEEE Sensors, Waikoloa, HI, USA, 1–4 November 2010; IEEE: New York, NY, USA, 2010; pp. 2117–2121. [Google Scholar]
- Yu, Y.; Pan, H.-Y.; Zheng, X.; Yuan, F.; Zhou, Y.-L.; Zhang, X.-X. Ultrasensitive Simultaneous Detection of Multiple Rare Modified Nucleosides as Promising Biomarkers in Low-Put Breast Cancer DNA Samples for Clinical Multi-Dimensional Diagnosis. Molecules 2022, 27, 7041. [Google Scholar] [CrossRef] [PubMed]
- Rapanotti, M.C.; Cenci, T.; Scioli, M.G.; Cugini, E.; Anzillotti, S.; Savino, L.; Coletta, D.; Di Raimondo, C.; Campione, E.; Roselli, M.; et al. Circulating Tumor Cells: Origin, Role, Current Applications, and Future Perspectives for Personalized Medicine. Biomedicines 2024, 12, 2137. [Google Scholar] [CrossRef] [PubMed]
- Gruhl, F.J.; Rapp, M.; Länge, K. Label-Free Detection of Breast Cancer Marker HER-2/Neu with an Acoustic Biosensor. Procedia Eng. 2010, 5, 914–917. [Google Scholar] [CrossRef]
- Rana, L.; Gupta, R.; Tomar, M.; Gupta, V. ZnO/ST-Quartz SAW Resonator: An Efficient NO2 Gas Sensor. Sens. Actuators B Chem. 2017, 252, 840–845. [Google Scholar] [CrossRef]
- Abraham, M.H.; Poole, C.F.; Poole, S.K. Classification of Stationary Phases and Other Materials by Gas Chromatography. J. Chromatogr. A 1999, 842, 79–114. [Google Scholar] [CrossRef]
- Aleixandre, M.; Nakamoto, T. Study of Room Temperature Ionic Liquids as Gas Sensing Materials in Quartz Crystal Microbalances. Sensors 2020, 20, 4026. [Google Scholar] [CrossRef]
- Li, X.; Sun, W.; Fu, W.; Lv, H.; Zu, X.; Guo, Y.; Gibson, D.; Fu, Y.-Q. Advances in Sensing Mechanisms and Micro/Nanostructured Sensing Layers for Surface Acoustic Wave-Based Gas Sensors. J. Mater. Chem. A 2023, 11, 9216–9238. [Google Scholar] [CrossRef]
- Qureshi, S.; Hanif, M.; Jeoti, V.; Stojanović, G.M.; Khan, M.T. Review of Fabrication of SAW Sensors on Flexible Substrates: Challenges and Future. Results Eng. 2024, 22, 102323. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, Y.; Wang, Y.; Ji, Z.; Zhang, Q.; Zhuo, F.; Luo, J.; Tao, R.; Xie, J.; Reboud, J.; et al. Flexible and Wearable Acoustic Wave Technologies. Appl. Phys. Rev. 2023, 10, 021311. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Yang, Z.; Xia, H.; Zhang, C.; Wei, X. Surface Acoustic Wave Based Microfluidic Devices for Biological Applications. Sens. Diagn. 2023, 2, 507–528. [Google Scholar] [CrossRef]
- Jeng, M.-J.; Li, Y.-C.; Sharma, M.; Chen, C.-W.; Tsai, C.-L.; Lin, Y.-H.; Huang, S.-F.; Chang, L.-B.; Lai, C.-S. A Surface Acoustic Wave Sensor with a Microfluidic Channel for Detecting C-Reactive Protein. Chemosensors 2021, 9, 106. [Google Scholar] [CrossRef]
Analyte Type | Technique | Sensitivity | Specificity | Complexity | Speed | Cost | Early Detection Capability | Analyte Range |
---|---|---|---|---|---|---|---|---|
VOCs | GC-MS | High | High | High | Slow | High | Moderate | Broad |
SAW | High | Moderate | Low | Fast | Low | High | Design Limited | |
Proteins | ELISA | High | High | Moderate | Moderate | Moderate | High | Design Limited |
SAW | High | High | Low | Fast | Low | High | Design Limited | |
Genetic Molecules | PCR | High | High | High | Moderate | High | High | Design Limited |
SAW | High | High | Low | Fast | Low | High | Design Limited | |
Cells | Cytology | Moderate | Moderate | High | Slow | Moderate | Low | Limited |
Imaging | Moderate | Moderate | High | Moderate | High | Low | Limited | |
Endoscopy | Moderate | Moderate | High | Moderate | High | Low | Limited | |
SAW | High | High | Low | Fast | Low | High | Design Limited |
Type | Wave Propagation | Sensitivity | Energy Loss | Operating Frequency | Piezoelectric Material | Guiding Layer | Special Requirements | Reference |
---|---|---|---|---|---|---|---|---|
Rayleigh | Surface, elliptical particle motion | High sensitivity to surface changes | Significant in liquids | 150 MHz–1.2 GHz MHz | Quartz, LiTaO3, LiNbO3, ZnO | Not suitable for liquids | [26,30,39,40] | |
Love | Horizontally polarized, surface guided | High sensitivity in liquids, surface-sensitive | Minimal in liquids | 5 MHz–230 MHz | Quartz, ZnO, LiTaO₃, LiNbO₃ | Polyimide, PMMA, Polypyrrole, SiO2, MoS2, ZnO, CMD | Requires waveguide layer | [22,24,27,36,37,41,42,43,44,45] |
SH-SAW | Shear horizontal, surface | Sensitive to liquid samples, surface perturbations | Minimal in liquids | 17 MHz–250 MHz | LiTaO3, LiNbO3, Quartz | SiO2, ZnO | Suitable for liquids due to horizontal displacement | [31,33,46,47] |
Leaky-SAW | Surface, with energy leakage into bulk | Sensitive to liquid samples, moderate sensitivity | Leakage into bulk | 175 MHz–240 MHz | LiTaO3, LiNbO3 | SiO2 | Requires metal film to mitigate leakage | [25,34] |
Sezawa | High order Rayleigh guided wave | High sensitivity to surface changes | Significant in liquids | 130 HMz | ZnO | Si | Guide layer with wave speed lower than the substrate | [48] |
Type of Biomarker | Cancer Associated | Concentration Ranges | Type of Sensors |
---|---|---|---|
Volatile Organic Compounds (VOCs) | Lung, Gastrointestinal | 3 ppb to 0.2 ppm | Love-SAW, Rayleigh SAW |
Carcinoembryonic Antigen (CEA) | Colorectal | 0.1 ng/mL to 16 ng/mL | Love-SAW |
Alpha-fetoprotein (AFP) | Liver | 0.0055 ng/mL to 100 ng/mL | Love-SAW, Leaky-SAW |
MicroRNA (miRNA) | Breast, Lymphoma, Liver, Lung | 0.0021 ng/mL to 0.00012 ng/mL | Love-SAW |
Prostate-Specific Antigen (PSA) | Prostate | 0.013 ng/mL to 20,000 ng/mL | Love-SAW, SH-SAW, Sezawa-SAW |
Other Proteins | Epidermal, Breast, Ovarian, Colorectal, Pancreatic | 0.2 ng/mL to 1.402 ± 106 ng/mL | SH-SAW, Rayleigh-SAW |
Cancer Cells | Lung, Colorectal, Brain, Breast, Immune system | 1000 cells/mL to 5 × 107 cells/mL | SH-SAW, Rayleigh-SAW |
Nucleosides | Colorectal | 5 ppm to 200 ppm | Love-SAW |
Circulating Tumor Cells (CTCs) | Breast | 100 to 107 cells/mL | Leaky-SAW |
Genes | Breast | 10 nM DNA | Love-SAW, SH-Love |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleixandre, M.; Horrillo, M.C. Recent Advances in SAW Sensors for Detection of Cancer Biomarkers. Biosensors 2025, 15, 88. https://doi.org/10.3390/bios15020088
Aleixandre M, Horrillo MC. Recent Advances in SAW Sensors for Detection of Cancer Biomarkers. Biosensors. 2025; 15(2):88. https://doi.org/10.3390/bios15020088
Chicago/Turabian StyleAleixandre, Manuel, and Mari Carmen Horrillo. 2025. "Recent Advances in SAW Sensors for Detection of Cancer Biomarkers" Biosensors 15, no. 2: 88. https://doi.org/10.3390/bios15020088
APA StyleAleixandre, M., & Horrillo, M. C. (2025). Recent Advances in SAW Sensors for Detection of Cancer Biomarkers. Biosensors, 15(2), 88. https://doi.org/10.3390/bios15020088