Urinary Albumin-to-Creatinine Ratio (uACR) Point-of-Care (POC) Device with Seamless Data Transmission for Monitoring the Progression of Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation and Measurement Platform
2.3. Clinical Application of MyACR
2.3.1. Patients
2.3.2. Albumin and Creatinine Assays
2.3.3. Calibration Curves
2.3.4. Validation of MyACR Performance
- Sensitivity (%) = TP/(TP + FN)
- Specificity (%) = TN/(TN + FP)
- Positive Predictive Value (%) = TP/(TP + FP)
- Negative Predictive Value (%) = TN/(TN + FN)
- Accuracy (%) = (TP + TN)/(TP + TN + FP + FN)
- False-positive rate (%) = Number of renal failure cases misdiagnosed by MyACR/Total number of negative cases by the reference method
- False-negative rate (%) = Number of non-renal failure cases misdiagnosed by MyACR/Total number of positive cases by the reference method
2.3.5. uACR Combined with eGRF as a Prognostic Marker of Severe Nephropathy
2.4. Statistical Analysis
3. Results
3.1. Clinical Application of MyACR
3.1.1. Calibration Curves
3.1.2. MyACR Analysis Performance
3.1.3. Test Agreement Analysis
3.1.4. Correlation Analysis
3.1.5. uACR Combined with eGRF as a Prognostic Marker of Severe Nephropathy
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Francis, A.; Harhay, M.N.; Ong, A.C.M.; Tummalapalli, S.L.; Ortiz, A.; Fogo, A.B.; Fliser, D.; Roy-Chaudhury, P.; Fontana, M.; Nangaku, M.; et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024, 20, 473–485. [Google Scholar] [CrossRef]
- Neuen, B.L.; Chadban, S.J.; Demaio, A.R.; Johnson, D.W.; Perkovic, V. Chronic kidney disease and the global NCDs agenda. BMJ Glob. Health 2017, 2, e000380. [Google Scholar] [CrossRef] [PubMed]
- Monhart, V. Hypertension and chronic kidney diseases. Cor Vasa 2013, 55, e397–e402. [Google Scholar] [CrossRef]
- Feher, M. Diabetes: Chronic Complications; Shaw, K.M., Cummings, M.H., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA; Wiley Online Library: Hoboken, NJ, USA, 2005; 270p, ISBN 0470865792. [Google Scholar]
- Vaidya, S.R.; Aeddula, N.R. Chronic Kidney Disease. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535404/ (accessed on 20 May 2024).
- Ansar, M.M.; ShahrokhiRad, R.; Lebady, M.K. Risk Factors of Microalbuminuria and Macroalbuminuria in Type 2 Diabetic Patients in North of Iran—Rasht. Nephro-Urol. Mon. 2017, 9, e40031. [Google Scholar] [CrossRef]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B.; Viken, I.; Høgh, F.; Jacobsen, K.K. Quantification of urinary albumin and -creatinine: A comparison study of two analytical methods and their impact on albumin to creatinine ratio. Clin. Biochem. 2022, 108, 5–9. [Google Scholar] [CrossRef]
- Martin, H. Laboratory measurement of urine albumin and urine total protein in screening for proteinuria in chronic kidney disease. Clin. Biochem. Rev. 2011, 32, 97–102. [Google Scholar]
- Küme, T.; Sağlam, B.; Ergon, C.; Sisman, A.R. Evaluation and comparison of Abbott Jaffe and enzymatic creatinine methods: Could the old method meet the new requirements? J. Clin. Lab. Anal. 2018, 32, e22168. [Google Scholar] [CrossRef] [PubMed]
- Narimani, R.; Esmaeili, M.; Rasta, S.H.; Khosroshahi, H.T.; Mobed, A. Trend in creatinine determining methods: Conventional methods to molecular-based methods. Anal. Sci. Adv. 2021, 2, 308–325. [Google Scholar] [CrossRef] [PubMed]
- Muhamad, N.; Youngvises, N.; Plengsuriyakarn, T.; Meesiri, W.; Chaijaroenkul, W.; Na-Bangchang, K. MyACR: A Point-of-Care Medical Device for Determination of Albumin-Creatinine Ratio (uACR) in Random Urine Samples as a Marker of Nephropathy. Diagnostics 2024, 14, 1702. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Teshima, N.; Sakai, T.; Kato, S. Colorimetric and Visual Methods for Urinary Protein Determination with Tetrabromophenol Blue. Bunseki Kagaku 2005, 54, 783–788. [Google Scholar] [CrossRef]
- Syal, K.; Banerjee, D.; Srinivasan, A. Creatinine estimation and interference. Indian J. Clin. Biochem. IJCB 2013, 28, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Committee, A.D.A.P.P. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47 (Suppl. S1), S219–S230. [Google Scholar]
- Keane, W.F.; Eknoyan, G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): A position paper of the National Kidney Foundation. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1999, 33, 1004–1010. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Ratanawimarnwong, N.; Ponhong, K.; Teshima, N.; Nacapricha, D.; Grudpan, K.; Sakai, T.; Motomizu, S. Simultaneous injection effective mixing flow analysis of urinary albumin using dye-binding reaction. Talanta 2012, 96, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Sittiwong, J.; Unob, F. Detection of urinary creatinine using gold nanoparticles after solid phase extraction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 138, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. Jama 2019, 322, 1294–1304. [Google Scholar] [CrossRef]
- Hallan, S.I.; Ritz, E.; Lydersen, S.; Romundstad, S.; Kvenild, K.; Orth, S.R. Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J. Am. Soc. Nephrol. JASN 2009, 20, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, T.; Perkovic, V.; de Galan, B.E.; Zoungas, S.; Pillai, A.; Jardine, M.; Patel, A.; Cass, A.; Neal, B.; Poulter, N.; et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J. Am. Soc. Nephrol. JASN 2009, 20, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Mangili, R.; Deferrari, G.; Di Mario, U.; Giampietro, O.; Navalesi, R.; Nosadini, R.; Rigamonti, G.; Crepaldi, G. Prevalence of Hypertension and Microalbuminuria in Adult Type 1 (Insulin-Dependent) Diabetic Patients Without Renal Failure in Italy—Validation of Screening Techniques to Detect Microalbuminuria. Acta Diabetol. 1992, 29, 156–166. [Google Scholar] [CrossRef]
- Kosack, C.M.; Kieviet, W.; Bayrak, K.; Milovic, A.; Page, A.L. Evaluation of the Nova StatSensor® Xpress(TM) Creatinine point-of-care handheld analyzer. PLoS ONE 2015, 10, e0122433. [Google Scholar] [CrossRef]
- Radley, A.; Beer, L.; Rushdi, D.; Close, H.; McBurney, S.; Mackenzie, A.; Gourlay, A.; Barnett, A.; Grant, A.; Greig, N.; et al. Implementation of point-of-care HbA1C instruments into community pharmacies: Initial development of a pathway for robust community testing. Ann. Clin. Biochem. 1992, 61, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Kateyam, L.; Sae-ung, N.; Anutrakulchai, S.; Cha-on, U.; Daduang, J.; Boonlakron, S.; CKDNET Group. Effectiveness of URiSCAN 2 ACR strip test for albuminuria detection in screening of kidney disease. Arch. Allied Health Sci. 2020, 32, 1–7. [Google Scholar]
Parameter | uACR (Reference Method) | ||
---|---|---|---|
<300 | >300 | ||
Gender (n = 103) | Male (n, %) | 7 (87.50%) | 45 (47.40%) |
Female (n, %) | 1 (12.50%) | 50 (52.60%) | |
Age (year) (n = 103) | Mean (SD) | 68.88 (9.96) | 68.21 (14.61) |
Median (range) | 69.00 (52.00–83.00) | 68.00 (18.00–97.00) | |
Body weight (kg) (n = 103) | Mean (SD) | 67.50 (11.59) | 67.63 (16.86) |
Median (range) | 69.50 (47.00–79.00) | 65.00(34.50–118.00) | |
Height (cm) (n = 103) | Mean (SD) | 166 (8.02) | 161.89 (9.41) |
Median (range) | 166.50 (155.00–178.00) | 163.50 (140.00–182.00) | |
Indication for uACR testing | |||
CKD (n = 44): | |||
CKD only (n = 38) | (n, %) | 1 (2.60%) | 37 (97.40%) |
CKD + CVD (n = 0) | (n, %) | 0 (0.00%) | 0 (0.00%) |
CKD + others (n = 6) | (n, %) | 0 (0.00%) | 6 (100.00%) |
DM (n = 107): | |||
DM only (n = 48) | (n, %) | 4 (8.30%) | 44 (91.70%) |
DM + HT (n = 31) | (n, %) | 3 (9.70%) | 28 (90.30%) |
DM + CKD (n = 17) | (n, %) | 0 (0.00%) | 17 (100.00%) |
DM + CVD (n = 1) | (n, %) | 0 (0.00%) | 1 (100.00%) |
DM + Others (n = 10) | (n, %) | 0 (0.00%) | 10 (100.00%) |
HT (n = 65): | |||
HT only (n = 37) | (n, %) | 3 (8.10%) | 34 (91.90%) |
HT + CKD (n = 19) | (n, %) | 0 (0.00%) | 19 (100.00%) |
HT + CVD (n = 1) | (n, %) | 0 (0.00%) | 1 (100.00%) |
HT + Others (n = 8) | (n, %) | 0 (0.00%) | 8 (100.00%) |
CVD (n = 4): | |||
CVD only (n = 3) | (n, %) | 0 (0.00%) | 3 (100.00%) |
CVD + others (n = 1) | (n, %) | 0 (0.00%) | 1 (100.00%) |
Kidney function parameters | |||
Urinary albumin (g/dL) (n = 103) | Mean (SD) | 449 (263) | 1376 (1267) |
Median (range) | 363 (188.00–921.00) | 815 (207–5709) | |
Urinary creatinine (mg/dL) (n = 103) | Mean (SD) | 188 (95) | 94 (52) |
Median (range) | 154 (91–361) | 82 (12–276) | |
uACR (mg/g creatinine) (n = 103) | Mean (SD) | 232 (32.05) | 1744 (1567.27) |
Median (range) | 220.50 (200–298) | 1141 (301–7602) | |
Serum albumin (mg/dL) (n = 68) | Mean (SD) | 4.40 (0.17) | 3.86 (0.40) |
Median (range) | 4.39 (4.19–4.69) | 3.89 (2.68–4.54) | |
Creatinine in serum (mg/dL) (n = 103) | Mean (SD) | 1.53 (0.69) | 1.84 (1.04) |
Median (range) | 1.50 (0.55–2.91) | 1.52 (0.66–6.10) | |
BUN (mg/dL) (n = 84) | Mean (SD) | 21.50 (5.60) | 29.02 (14.92) |
Median (range) | 20.00 (15.00–31.00) | 24.50 (4.21–83.00) | |
eGFR: | |||
<90 mL/min/1.73 m2 (n = 89) | (n, %) | 7(7.87%) | 82 (92.13%) |
≥90 mL/min/1.73 m2 (n = 5) | (n, %) | 1 (20.00%) | 4 (80.00%) |
MyACR (n, %) | Reference Method (n, %) | |
---|---|---|
ACR < 300 | ACR ≥ 300 | |
ACR < 300 | 7 (6.80%) | 0 (0.00%) |
ACR ≥ 300 | 0 (0.00%) | 96 (93.2%) |
Total | 7 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiengsusuk, A.; Youngvises, N.; Pochairach, R.; Taha, R.O.; Sirisabhabhorn, K.; Muhamad, N.; Meesiri, W.; Chaijaroenkul, W.; Na-Bangchang, K. Urinary Albumin-to-Creatinine Ratio (uACR) Point-of-Care (POC) Device with Seamless Data Transmission for Monitoring the Progression of Chronic Kidney Disease. Biosensors 2025, 15, 145. https://doi.org/10.3390/bios15030145
Thiengsusuk A, Youngvises N, Pochairach R, Taha RO, Sirisabhabhorn K, Muhamad N, Meesiri W, Chaijaroenkul W, Na-Bangchang K. Urinary Albumin-to-Creatinine Ratio (uACR) Point-of-Care (POC) Device with Seamless Data Transmission for Monitoring the Progression of Chronic Kidney Disease. Biosensors. 2025; 15(3):145. https://doi.org/10.3390/bios15030145
Chicago/Turabian StyleThiengsusuk, Artitaya, Napaporn Youngvises, Runtikan Pochairach, Rehab Osman Taha, Kridsada Sirisabhabhorn, Nadda Muhamad, Wanchai Meesiri, Wanna Chaijaroenkul, and Kesara Na-Bangchang. 2025. "Urinary Albumin-to-Creatinine Ratio (uACR) Point-of-Care (POC) Device with Seamless Data Transmission for Monitoring the Progression of Chronic Kidney Disease" Biosensors 15, no. 3: 145. https://doi.org/10.3390/bios15030145
APA StyleThiengsusuk, A., Youngvises, N., Pochairach, R., Taha, R. O., Sirisabhabhorn, K., Muhamad, N., Meesiri, W., Chaijaroenkul, W., & Na-Bangchang, K. (2025). Urinary Albumin-to-Creatinine Ratio (uACR) Point-of-Care (POC) Device with Seamless Data Transmission for Monitoring the Progression of Chronic Kidney Disease. Biosensors, 15(3), 145. https://doi.org/10.3390/bios15030145