Implantable Biosensors for Vascular Diseases: Directions for the Next Generation of Active Diagnostic and Therapeutic Medical Device Technologies
Abstract
:1. Introduction
1.1. Neointimal Hyperplasia
1.2. Unresolved Challenges in the Treatment of Neointimal Hyperplasia
2. Cardiovascular Disease
2.1. Coronary Artery Disease
2.1.1. Anatomy
2.1.2. Atherosclerosis
2.1.3. In-Stent Restenosis
2.1.4. Risk Factors
2.1.5. Symptoms
2.1.6. Current Diagnosis
2.1.7. Current Treatments
3. Chronic Kidney Disease
3.1. AV Fistula, AVF
3.2. AV Graft, AVG
4. Biosensors in the Field of Healthcare
4.1. Smart Implants for Cardiovascular Disease
4.2. Smart Implantable Devices for Non-CVD Diseases
Developer | Abbott | Medtronic | Synchron | Medtronic | Vectorious |
---|---|---|---|---|---|
Device Type | Implantable sensor. | Subcutaneous implantable senor. | Neuro-stent prosthesis. | Implantable leadless pacemaker. | Intracardiac sensor and external belt. |
Product | CardioMEMS. Commercially available. | Reveal LINQ. Commercially available. | Stentrode. Under development. | MicraTM. Commercially available. | V-LAP |
Indications | HF. | Cardiac arrhythmias. | Neurological disorders. | Cardiac arrhythmias. |
|
Function | Real-time monitoring of pulmonary artery pressure. | Observe heart rhythm continuously. | Stimulation of brain neurons and allows controlling external devices by thoughts. | Sense and record abnormal heart rhythm, and apply electrical pulse to stop unwanted activity in the heart. | Monitor left atrial pressure and send data to secure cloud. Clinicians can access data and adjust treatment accordingly. |
Advantages | Managing HF.
|
|
|
|
|
Disadvantages |
|
|
|
|
|
Clinical trials |
| N/A |
|
|
|
Biocompatibility (BC) |
|
|
|
|
|
References | [111,136,137,138]. | [115,116,139]. | [128,129,130,140]. | [121,122,141]. | [127]. |
4.3. Wireless Power Transfer to Medical Implants
4.3.1. Near-Field WPT
4.3.2. Mid-Field WPT
4.3.3. Far-Field WPT
4.4. Wireless Communication and Data Transfer
4.5. Future Direction—State-of-the-Art for Cardiovascular Smart Stents/Grafts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zain, M.A.; Jamil, R.T.; Siddiqui, W.J. Neointimal Hyperplasia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019; pp. 1–7. [Google Scholar]
- Cornelissen, A.; Vogt, F.J. The Effects of Stenting on Coronary Endothelium from a Molecular Biological View: Time for Improvement? J. Cell. Mol. Med. 2018, 23, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.J.; Silva, P.D.; Yeager, M. Coronary Artery Overexpansion Increases Neointimal Hyperplasia after Stent Placement in a Porcine Model. Heart 2007, 93, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Dinc, R. A Review of the Current State in Neointimal Hyperplasia Development Following Endovascular Intervention and Minor Emphasis on New Horizons in Immunotherapy. Transl. Clin. Pharmacol. 2023, 31, 191–204. [Google Scholar] [CrossRef]
- Kijani, S.; Vázquez, A.M.; Levin, M.; Borén, J.; Fogelstrand, P. Intimal Hyperplasia Induced by Vascular Intervention Causes Lipoprotein Retention and Accelerated Atherosclerosis. Physiol. Rep. 2017, 5, e13334. [Google Scholar] [CrossRef]
- Sahu, R.A.; Nashine, A.; Mudey, A.; Sahu, S.A.; Prasad, R. Cardiovascular Stents: Types and Future Landscape. Cureus 2023, 15, e43438. [Google Scholar] [CrossRef]
- Wang, X.Z.; Xu, K.; Li, Y.; Jing, Q.M.; Liu, H.W.; Zhao, X.; Wang, G.; Wang, B.; Ma, Y.Y.; Chen, S.L.; et al. Comparison of the Efficacy of Drug-Eluting Stents versus Bare-Metal Stents for the Treatment of Left Main Coronary Artery Disease. Chin. Med. J. 2015, 128, 721–726. [Google Scholar] [CrossRef]
- Bønaa, K.H.; Mannsverk, J.; Wiseth, R.; Aaberge, L.; Myreng, Y.; Nygård, O.; Nilsen, D.W.; Kløw, N.-E.; Uchto, M.; Trovik, T.; et al. Drug-Eluting or Bare-Metal Stents for Coronary Artery Disease. N. Engl. J. Med. 2016, 375, 1242–1252. [Google Scholar] [CrossRef]
- Collins, M.J.; Li, X.; Lv, W.; Yang, C.; Protack, C.D.; Muto, A.; Jadlowiec, C.C.; Shu, C.; Dardik, A. Therapeutic Strategies to Combat Neointimal Hyperplasia in Vascular Grafts. Expert Rev. Cardiovasc. Ther. 2012, 10, 635–647. [Google Scholar] [CrossRef]
- Li, L.; Terry, C.M.; Shiu, Y.T.; Cheung, A.K. Neointimal hyperplasia associated with synthetic hemodialysis grafts. Kidney Int. 2008, 74, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Yelamanchili, V.S.; Hajouli, S. Coronary Artery Stents. In StatPearls [Internet]; NCBI Bookshelf; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Buccheri, D.; Piraino, D.; Andolina, G.; Cortese, B. Understanding and Managing In-Stent Restenosis: A Review of Clinical Data, from Pathogenesis to Treatment. J. Thorac. Dis. 2016, 8, E1150–E1162. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Gunn, J.; Serruys, P.W. Coronary Stents: Historical Development, Current Status and Future Directions. Br. Med. Bull. 2013, 106, 193–211. [Google Scholar] [CrossRef]
- Condello, F.; Spaccarotella, C.; Sorrentino, S.; Indolfi, C.; Stefanini, G.G.; Polimeni, A. Stent Thrombosis and Restenosis with Contemporary Drug-Eluting Stents: Predictors and Current Evidence. J. Clin. Med. 2023, 12, 1238. [Google Scholar] [CrossRef] [PubMed]
- Senst, B.; Goyal, A.; Basit, H.; Borger, J. Drug Eluting Stent Compounds. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Omeh, D.J.; Shlofmitz, E. Restenosis of Stented Coronary Arteries. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gallinoro, E.; Almendarez, M.; Alvarez-Velasco, R.; Barbato, E.; Avanzas, P. Bioresorbable Stents: Is the Game Over? Int. J. Cardiol. 2022, 361, 20–28. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cardiovascular Diseases (CVDs) Key Facts; World Health Organization: Geneva, Switzerland, 2021; pp. 1–5. [Google Scholar]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- BHF. UK Factsheet; British Heart Foundation: London, UK, 2024; pp. 1–21. [Google Scholar]
- Thiriet, M. Cardiovascular Disease: An Introduction. Vasculopathies 2019, 8, 1–90. [Google Scholar] [CrossRef]
- Mercer, J.; Guzik, T.J. Atherosclerosis. In Textbook of Vascular Medicine; Springer: Cham, Switzerland, 2019; pp. 215–228. ISBN 9783030164805. [Google Scholar]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [CrossRef]
- Ghodeshwar, G.K.; Dube, A.; Khobragade, D. Impact of Lifestyle Modifications on Cardiovascular Health: A Narrative Review. Cureus 2023, 15, e42616. [Google Scholar] [CrossRef]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics—2023 Update: A Report from the American Heart Association. Circulation 2023, 147, E93–E621. [Google Scholar] [PubMed]
- Clark, A.M.; DesMeules, M.; Luo, W.; Duncan, A.S.; Wielgosz, A. Socioeconomic Status and Cardiovascular Disease: Risks and Implications for Care. Nat. Rev. Cardiol. 2009, 6, 712–723. [Google Scholar] [CrossRef]
- Milutinović, A.; Šuput, D.; Zorc-Pleskovič, R. Pathogenesis of Atherosclerosis in the Tunica Intima, Media, and Adventitia of Coronary Arteries: An Updated Review. Bosn. J. Basic Med. Sci. 2020, 20, 21–30. [Google Scholar] [CrossRef]
- Rehman, I.; Rehman, A. Anatomy, Thorax, Heart. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Alfarisi, H.A.H.; Mohamed, Z.B.H.; Ibrahim, M. Bin Basic Pathogenic Mechanisms of Atherosclerosis. Egypt. J. Basic Appl. Sci. 2020, 7, 116–125. [Google Scholar] [CrossRef]
- Konstantinov, I.E.; Jankovic, G.M. Alexander I. Ignatowski: A Pioneer in the Study of Atherosclerosis. Tex. Heart Inst. J. 2013, 40, 246–249. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3709240/ (accessed on 9 September 2024). [PubMed]
- Keizer, H.G. The Mevalonate Hypothesis: A Cholesterol-Independent Alternative for the Etiology of Atherosclerosis. Lipids Health Dis. 2012, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, M. Adolf Otto Reinhold Windaus. Eur. Heart J. 2019, 40, 2659–2670. [Google Scholar] [CrossRef] [PubMed]
- Konstantinov, I.E.; Mejevoi, N.; Anichkov, N.M.; Nikolai, N. Anichkov and His Theory of Atherosclerosis. Tex. Heart Inst. J. 2006, 33, 417–423. [Google Scholar] [PubMed]
- Libby, P. Russel Ross 1929–1999. Nat. Med. 1999, 5, 475. [Google Scholar] [CrossRef]
- Minelli, S.; Minelli, P.; Montinari, M.R. Reflections on Atherosclerosis: Lesson from the Past and Future Research Directions. J. Multidiscip. Healthc. 2020, 13, 621–633. [Google Scholar] [CrossRef]
- Sayols-Baixeras, S.; Lluís-Ganella, C.; Lucas, G.; Elosua, R. Pathogenesis of Coronary Artery Disease: Focus on Risk Factors and Genetic Variants. Appl. Clin. Genet. 2014, 7, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J. Atheroscler. Thromb. 2018, 25, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Biswas, S.K.; McNulty, P.H.; Kozak, M.; Jun, J.Y.; Segar, L. PDGF-Induced Vascular Smooth Muscle Cell Proliferation Is Associated with Dysregulation of Insulin Receptor Substrates. Am. J. Physiol. Cell Physiol. 2011, 300, C1375. [Google Scholar] [CrossRef]
- Louis, S.F.; Zahradka, P. Vascular Smooth Muscle Cell Motility: From Migration to Invasion. Exp. Clin. Cardiol. 2010, 15, e75–e85. [Google Scholar]
- Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes. Int. J. Prev. Med. 2014, 5, 927–946. [Google Scholar]
- Head, T.; Daunert, S.; Goldschmidt-Clermont, P.J. The Aging Risk and Atherosclerosis: A Fresh Look at Arterial Homeostasis. Front. Genet. 2017, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Vartak, T.; Kumaresan, S.; Brennan, E. Decoding MicroRNA Drivers in Atherosclerosis. Biosci. Rep. 2022, 42, BSR20212355. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, H.; Olschewski, M.; Münzel, T.; Gori, T. Coronary In-Stent-Restenose: Predictors and Treatment. Dtsch. Arztebl. Int. 2021, 118, 637–644. [Google Scholar] [CrossRef]
- Bajeu, I.-T.; Niculescu, A.-G.; Scafa-Udriste, A.; Andronescu, E. Intrastent Restenosis: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 1715. [Google Scholar] [CrossRef]
- Giustino, G.; Colombo, A.; Camaj, A.; Yasumura, K.; Mehran, R.; Stone, G.W.; Kini, A.; Sharma, S.K. Coronary In-Stent Restenosis. J. Am. Coll. Cardiol. 2022, 80, 348–372. [Google Scholar] [CrossRef]
- Hong, Y.M. Atherosclerotic Cardiovascular Disease Beginning in Childhood. Korean Circ. J. 2010, 40, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kloc, M.; Uosef, A.; Kubiak, J.Z.; Ghobrial, R.M. Role of Macrophages and Rhoa Pathway in Atherosclerosis. Int. J. Mol. Sci. 2021, 22, 216. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, D.J.; Goldstein, D.R. Ageing and Atherosclerosis: Vascular Intrinsic and Extrinsic Factors and Potential Role of IL-6. Nat. Rev. Cardiol. 2021, 18, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Corliss, B.J.; Editor, E.; Heart, H. The Heart Disease Gender Gap. Harv. Heart Lett. 2022, 33, 5. [Google Scholar]
- Mathur, P.; Ostadal, B.; Romeo, F.; Mehta, J.L. Gender-Related Differences in Atherosclerosis. Cardiovasc. Drugs Ther. 2015, 29, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Haisum Maqsood, M.; Yahya, T.; Amin, Z.; Acquah, I.; Valero-Elizondo, J.; Andrieni, J.; Dubey, P.; Jackson, R.K.; Daffin, M.A.; et al. Race, Racism, and Cardiovascular Health: Applying a Social Determinants of Health Framework to Racial/Ethnic Disparities in Cardiovascular Disease. Circ. Cardiovasc. Qual. Outcomes 2022, 15, E007917. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.P.; Davidson, M.H. Cholesterol Absorption Blockade with Ezetimibe. Curr. Drug Targets Cardiovasc. Haematol. Disord. 2005, 5, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.E.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Hypertension as a Risk Factor for Atherosclerosis: Cardiovascular Risk Assessment. Front. Cardiovasc. Med. 2022, 9, 959285. [Google Scholar] [CrossRef]
- Naito, R.; Kasai, T. Coronary Artery Disease in Type 2 Diabetes Mellitus: Recent Treatment Strategies and Future Perspectives. World J. Cardiol. 2015, 7, 119. [Google Scholar] [CrossRef]
- Patsouras, A.; Farmaki, P.; Garmpi, A.; Damaskos, C.; Garmpis, N.; Mantas, D.; Diamantis, E. Screening and Risk Assessment of Coronary Artery Disease in Patients with Type 2 Diabetes: An Updated Review. In Vivo 2019, 33, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Salehi, N.; Janjani, P.; Tadbiri, H.; Rozbahani, M.; Jalilian, M. Effect of Cigarette Smoking on Coronary Arteries and Pattern and Severity of Coronary Artery Disease: A Review. J. Int. Med. Res. 2021, 49, 03000605211059893. [Google Scholar] [CrossRef] [PubMed]
- Katta, N.; Loethen, T.; Lavie, C.J.; Alpert, M.A. Obesity and Coronary Heart Disease: Epidemiology, Pathology, and Coronary Artery Imaging. Curr. Probl. Cardiol. 2021, 46, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Ingole, N. Lipoproteins and Their Effects on the Cardiovascular System. Cureus 2023, 15, e48865. [Google Scholar] [CrossRef] [PubMed]
- Lechner, K.; von Schacky, C.; McKenzie, A.L.; Worm, N.; Nixdorff, U.; Lechner, B.; Kränkel, N.; Halle, M.; Krauss, R.M.; Scherr, J. Lifestyle Factors and High-Risk Atherosclerosis: Pathways and Mechanisms beyond Traditional Risk Factors. Eur. J. Prev. Cardiol. 2020, 27, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Gul, Z.; Makaryus, A.N. Silent Myocardial Ischemia. StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK536915/ (accessed on 9 September 2024).
- Caceres, V.; Fogoros, R.N. 6 Classic Heart Attack Warning Symptoms. Available online: https://www.verywellhealth.com/six-signs-of-a-heart-attack-a-month-before-8584975?print (accessed on 9 September 2024).
- Hermiz, C.; Sedhai, Y.R. Angina; National Library of Medicine, National Institutes of Health: Bethesda, MD, USA, 2023.
- Hajouli, S.; Ludhwani, D. Heart Failure And Ejection Fraction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Shahjehan, R.D.; Bhutta, B.S. Coronary Artery Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Scattar, Y.; Chhabra, L. Electrocardiogram. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Omerovic, S.; Jain, A. Echocardiogram. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kossaify, A.; Bassil, E.; Kossaify, M. Stress Echocardiography: Concept and Criteria, Structure and Steps, Obstacles and Outcomes, Focused Update and Review. Cardiol. Res. 2020, 11, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Mayo Clinic. Chest X-Rays. 2022. Available online: https://www.mayoclinic.org/tests-procedures/chest-x-rays/about/pac-20393494 (accessed on 10 September 2024).
- Vilcant, V.; Zeltser, R. Treadmill Stress Testing. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Potter, J.M.; Hickman, P.E.; Cullen, L. Troponins in Myocardial Infarction and Injury. Aust. Prescr. 2022, 45, 53–57. [Google Scholar] [CrossRef]
- Redfors, B.; Généreux, P.; Witzenbichler, B.; McAndrew, T.; Diamond, J.; Huang, X.; Maehara, A.; Weisz, G.; Mehran, R.; Kirtane, A.J.; et al. Percutaneous Coronary Intervention of Saphenous Vein Graft. Circ. Cardiovasc. Interv. 2017, 10, e004953. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Shahabuddin, S.; Hashmi, S.; Sami, S. Comparing Outcomes in Patients Undergoing Coronary Artery Bypass Grafting with and without Using the Internal Mammary Artery in a Tertiary Care Hospital. Cureus 2020, 12, e10427. [Google Scholar] [CrossRef]
- Phan, B.A.P.; Dayspring, T.D.; Toth, P.P. Ezetimibe Therapy: Mechanism of Action and Clinical Update. Vasc. Health Risk Manag. 2012, 8, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Herman, L.L.; Padala, S.A.; Ahmed, I.; Bashir, K. Angiotensin-Converting Enzyme Inhibitors (ACEI) Mechanism of Action. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Hill, R.D.; Vaidya, P.N. Angiotensin II Receptor Blockers; NIH (National Library of Medicine): Bethesda, MD, USA, 2023.
- Cockwell, P.; Fisher, L.A. The Global Burden of Chronic Kidney Disease. Lancet 2020, 395, 662–664. [Google Scholar] [CrossRef] [PubMed]
- Wadei, H.M.; Textor, S.C. The Role of the Kidney in Regulating Arterial Blood Pressure. Nat. Rev. Nephrol. 2012, 8, 602–609. [Google Scholar] [CrossRef]
- Wouk, N. End-Stage Renal Disease: Medical Management. Am. Fam. Physician 2021, 104, 493–499. [Google Scholar] [PubMed]
- Vaidya, S.R.; Aeddula, N.R. Chronic Kidney Disease; National Library of Medicine: Bethesda, MD, USA, 2022.
- Sen, A.; Raghavan, R. What Is Chronic Kidney Disease? 2nd ed.; Arıcı, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; ISBN 978-3-031-42045-0. [Google Scholar] [CrossRef]
- Hoare, D.; Kingsmore, D.; Holsgrove, M.; Russell, E.; Kirimi, M.T.; Czyzewski, J.; Mirzai, N.; Kennedy, S.; Neale, S.L.; Mercer, J.R. Realtime Monitoring of Thrombus Formation in Vivo Using a Self-Reporting Vascular Access Graft. Commun. Med. 2024, 4, 15. [Google Scholar] [CrossRef]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting Life Expectancy, Years of Life Lost, and All-Cause and Cause-Specific Mortality for 250 Causes of Death: Reference and Alternative Scenarios for 2016-40 for 195 Countries and Territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef]
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.C.; Bragg-Gresham, J.; Balkrishnan, R.; Dietrich, X.; Eckard, A.; Eggers, P.W.; Gaipov, A.; et al. US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2018, 71, A7. [Google Scholar] [CrossRef]
- Hirst, J.A.; Ordóñez Mena, J.M.; Taylor, C.J.; Yang, Y.; Richard Hobbs, F.D.; O’Callaghan, C.A.; McManus, R.J.; Ogburn, E.; Vazquez-Montes, M.D.L.A.; Hill, N.; et al. Prevalence of Chronic Kidney Disease in the Community Using Data from OxRen: A UK Population-Based Cohort Study. Br. J. Gen. Pract. 2020, 70, E285–E293. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Cozzolino, M.; Duivenvoorden, R.; Fliser, D.; Fouque, D.; Franssen, C.F.M.; Goumenos, D.; Hemmelder, M.H.; Hilbrands, L.B.; Jager, K.J.; et al. Chronic Kidney Disease Is a Key Risk Factor for Severe COVID-19: A Call to Action by the ERA-Edta. Nephrol. Dial. Transplant. 2021, 36, 87–94. [Google Scholar] [CrossRef]
- Fluoride Action Network. Chronic Kidney Disease in the United States, 2019 CKD-Related Health Problems. Centers for Disease Control and Prevention. 2019. Available online: https://fluoridealert.org/studytracker/chronic-kidney-disease-in-the-united-states-2019/ (accessed on 30 September 2024).
- Gupta, R.; Woo, K.; Yi, J.A. Epidemiology of End-Stage Kidney Disease. Semin. Vasc. Surg. 2021, 34, 71–78. [Google Scholar] [CrossRef]
- Jonathan Himmelfarb, M.; Alp Ikizler, M.T. Hemodialysis Jonathan. Journalism 2010, 363, 1833–1845. [Google Scholar] [CrossRef]
- Stegmayr, B.; Willems, C.; Groth, T.; Martins, A.; Neves, N.M.; Mottaghy, K.; Remuzzi, A.; Walpoth, B. Arteriovenous Access in Hemodialysis: A Multidisciplinary Perspective for Future Solutions. Int. J. Artif. Organs 2021, 44, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Colley, E.; Simmons, A.; Varcoe, R.; Thomas, S.; Barber, T. Arteriovenous Fistula Maturation and the Influence of Fluid Dynamics. Proc. Inst. Mech. Eng. H 2020, 234, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Schild, A.F.; Perez, E.; Gillaspie, E.; Seaver, C.; Livingstone, J.; Thibonnier, A. Arteriovenous Fistulae vs. Arteriovenous Grafts: A Retrospective Review of 1,700 Consecutive Vascular Access Cases. J. Vasc. Access 2008, 9, 231–235. [Google Scholar] [CrossRef] [PubMed]
- MacRae, J.M.; Dipchand, C.; Oliver, M.; Moist, L.; Yilmaz, S.; Lok, C.; Leung, K.; Clark, E.; Hiremath, S.; Kappel, J.; et al. Arteriovenous Access: Infection, Neuropathy, and Other Complications. Can. J. Kidney Health Dis. 2016, 3, 2054358116669127. [Google Scholar] [CrossRef]
- Wish, J.B.; Moe, S.M. Moving beyond the Assumed: Improving Fistula Success Rates. J. Am. Soc. Nephrol. 2017, 28, 2827–2829. [Google Scholar] [CrossRef]
- Li, H.; Jen, S.; Ramayya, T.; Bowers, H.G.; Rotem, E. Unanticipated Late Maturation of an Arteriovenous Fistula after Creation of Separate Graft Access. Quant. Imaging Med. Surg. 2018, 8, 444–446. [Google Scholar] [CrossRef]
- Tordoir, J.H.M.; Zonnebeld, N.; van Loon, M.M.; Gallieni, M.; Hollenbeck, M. Surgical and Endovascular Intervention for Dialysis Access Maturation Failure During and After Arteriovenous Fistula Surgery: Review of the Evidence. Eur. J. Vasc. Endovasc. Surg. 2018, 55, 240. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.D.; Robbin, M.L.; Barker, J.; Allon, M. Comparison of Arteriovenous Grafts in the Thigh and Upper Extremities in Hemodialysis Patients. J. Am. Soc. Nephrol. 2003, 14, 2942–2947. [Google Scholar] [CrossRef] [PubMed]
- Afshar, R.; Sanavi, S.; Afshin-Majd, S.; Davati, A. Outcomes of Two Different Polytetrafluoroethylene Graft Sizes in Patients Undergoing Maintenance Hemodialysis. Indian J. Nephrol. 2009, 19, 149. [Google Scholar] [CrossRef] [PubMed]
- Jennifer, M.M.R.; Oliver, M.; Clark, E.; Dipchand, C.; Hiremath, S.; Kappel, J.; Kiaii, M.; Lok, C.; Luscombe, R.; Miller, L.M.; et al. Arteriovenous Vascular Access Selection and Evaluation. Can. J. Kidney Health Dis. 2016, 3. [Google Scholar] [CrossRef]
- Afshar, R.; Salimi, J.; Sanavi, S.R.; Niazi, F.; Modaghegh, M.H.; Fallah, N. One-Year Efficacy of Expanded Polytetrafluoroethylene Vascular Graft in Eighty-Three Hemodialysis Patients. Urol. J. 2004, 1, 188–190. [Google Scholar] [PubMed]
- Young, E.W.; Dykstra, D.M.; Goodkin, D.A.; Mapes, D.L.; Wolfe, R.A.; Held, P.J. Hemodialysis Vascular Access Preferences and Outcomes in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Kidney Int. 2002, 61, 2266–2271. [Google Scholar] [CrossRef]
- Allon, M. A Patient with Recurrent Arteriovenous Graft Thrombosis. Clin. J. Am. Soc. Nephrol. 2015, 10, 2255–2262. [Google Scholar] [CrossRef] [PubMed]
- MacRae, J.M.; Dipchand, C.; Oliver, M.; Moist, L.; Lok, C.; Clark, E.; Hiremath, S.; Kappel, J.; Kiaii, M.; Luscombe, R.; et al. Arteriovenous Access Failure, Stenosis, and Thrombosis. Can. J. Kidney Health Dis. 2016, 3, 2054358116669126. [Google Scholar] [CrossRef]
- Azura Vascular Care Company. Fistula vs. AV Graft: What’s the Difference? Available online: https://www.azuravascularcare.com/infodialysisaccess/av-fistula-vs-av-graft/ (accessed on 30 September 2024).
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors Applications in Medical Field: A Brief Review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Funtanilla, V.D.; Caliendo, T.; Hilas, O. Continuous Glucose Monitoring: A Review of Available Systems. Pharm. Ther. 2019, 44, 550–553. [Google Scholar]
- Blum, A. Freestyle Libre Glucose Monitoring System. Clin. Diabetes 2018, 36, 203–204. [Google Scholar] [CrossRef]
- Molloy, A.; Beaumont, K.; Alyami, A.; Kirimi, M.; Hoare, D.; Mirzai, N.; Heidari, H.; Mitra, S.; Neale, S.L.; Mercer, J.R. Challenges to the Development of the Next Generation of Self-Reporting Cardiovascular Implantable Medical Devices. IEEE Rev. Biomed. Eng. 2022, 15, 260–272. [Google Scholar] [CrossRef]
- Mumtaz, H.; Riaz, M.H.; Wajid, H.; Saqib, M.; Zeeshan, M.H.; Khan, S.E.; Chauhan, Y.R.; Sohail, H.; Vohra, L.I. Current Challenges and Potential Solutions to the Use of Digital Health Technologies in Evidence Generation: A Narrative Review. Front. Digit. Health 2023, 5, 1203945. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Balestrieri, E.; Lamonaca, F. IoMT-Based Biomedical Measurement Systems for Healthcare Monitoring: A Review. Acta IMEKO 2021, 10, 174–184. [Google Scholar] [CrossRef]
- Reinhardt, A.; Ventura, R. Remote Monitoring of Cardiac Implantable Electronic Devices: What Is the Evidence? Curr. Heart Fail. Rep. 2023, 20, 12–23. [Google Scholar] [CrossRef]
- Brugts, J.J.; Radhoe, S.P.; Aydin, D.; Theuns, D.A.; Veenis, J.F. Clinical Update of the Latest Evidence for CardioMEMS Pulmonary Artery Pressure Monitoring in Patients with Chronic Heart Failure: A Promising System for Remote Heart Failure Care. Sensors 2021, 21, 2335. [Google Scholar] [CrossRef]
- Ciotola, F.; Pyxaras, S.; Rittger, H.; Buia, V. MEMS Technology in Cardiology: Advancements and Applications in Heart Failure Management Focusing on the CardioMEMS Device. Sensors 2024, 24, 2922. [Google Scholar] [CrossRef]
- Joshi, R.; Nair, A. The Utility of CardioMEMS, a Wireless Hemodynamic Monitoring System in Reducing Heart Failure Related Hospital Readmissions. J. Nurse. Pract. 2021, 17, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Viliane, V.; Omar, K.; Ofek, H. Implantable Loop Recorder. In StatPearls; NCBI Bookshelf; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Zhao, L.; Hua, B.; Chen, L.; Pu, L.; Dai, R.; Xu, Y.; Guo, T.; Zhao, L. Application of Insertable Cardiac Monitor in Establishing a Dog Model of Atrial Fibrillation by High-Frequency Right Atrial Pacing. Med. Sci. Monit. 2020, 26, e920071. [Google Scholar] [CrossRef] [PubMed]
- Chokesuwattanaskul, R.; Safadi, A.R.; Ip, R.; Waraich, H.K.; Hudson, O.M.; Ip, J.H. Data Transmission Delay in Medtronic Reveal LINQTM Implantable Cardiac Monitor: Clinical Experience in 520 Patients. J. Biomed. Sci. Eng. 2019, 12, 391–399. [Google Scholar] [CrossRef]
- Bains, P.; Chatur, F.S.; Ignaszewski, M.; Bennett, M.T.; LAdhar, S. John Hopps and the Pacemaker: A History and Detailed Overview of Devices, Indications, and Complications. Br. Columbia Med. J. 2017, 59, 22–28. [Google Scholar]
- Beck, H.; Boden, W.E.; Patibandla, S.; Kireyev, D.; Gupta, V.; Campagna, F.; Cain, M.E.; Marine, J.E. 50th Anniversary of the First Successful Permanent Pacemaker Implantation in the United States: Historical Review and Future Directions. Am. J. Cardiol. 2010, 106, 810–818. [Google Scholar] [CrossRef]
- Ra, S.N.M.I.S.; Robins, K.E. Totally Self-Containe d Intracardiac Pacemaker. J. Electrocardil. 1970, 3, 325–331. [Google Scholar]
- Shen, E.N.; Ishihara, C.H.; Uehara, D.R. Leadless Pacemaker: Report of the First Experience in Hawai’i. Hawaii J. Med. Public Health 2018, 77, 79–82. [Google Scholar] [PubMed]
- Bhatia, N.; El-Chami, M. Leadless Pacemakers: A Contemporary Review. J. Geriatr. Cardiol. 2018, 15, 249–253. [Google Scholar] [CrossRef]
- Sperzel, J.; Hamm, C.; Hain, A. Nanostim—Leadless Pacemaker. Herzschrittmachertherapie Elektrophysiol. 2018, 29, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K. Comparing New Leadless Pacemakers: Micra vs Nanostim. Web: Alliance of Cardiovascular Professionals. Available online: https://www.acp-online.org/comparing-new-leadless-pacemakers-micra-vs-nanostim/ (accessed on 4 October 2024).
- Deng, Y.; Arafa, H.M.; Yang, T.; Albadawi, H.; Fowl, R.J.; Zhang, Z.; Kandula, V.; Ramesh, A.; Correia, C.; Huang, Y.; et al. A Soft Thermal Sensor for the Continuous Assessment of Flow in Vascular Access. Nat. Commun. 2025, 16, 38. [Google Scholar] [CrossRef]
- Stubbs, H.; MacLellan, A.; Lua, S.; Dormand, H.; Church, C. The Right Ventricle under Pressure: Anatomy and Imaging in Sickness and Health. J. Anat. 2022, 242, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Rio-Pertuz, G.D.; Nugent, K.; Argueta-Sosa, E. Review Article Right Heart Catheterization in Clinical Practice: A Review of Basic Physiology and Important Issues Relevant to Interpretation. Am. J. Cardiovasc. Dis. 2023, 13, 122–137. [Google Scholar] [PubMed]
- Perl, L.; Meerkin, D.; D’amario, D.; Avraham, B.B.; Gal, T.B.; Weitsman, T.; Hasin, T.; Ince, H.; Feickert, S.; D’ancona, G.; et al. The V-LAP System for Remote Left Atrial Pressure Monitoring of Patients with Heart Failure: Remote Left Atrial Pressure Monitoring. J. Card. Fail. 2022, 28, 963–972. [Google Scholar] [CrossRef] [PubMed]
- John, S.E.; Grayden, D.B.; Yanagisawa, T. The Future Potential of the Stentrode. Expert Rev. Med. Devices 2019, 16, 841–843. [Google Scholar] [CrossRef]
- Prutchi, D. First Clinical Implant of Synchron’s Stentrode® Minimally-Invasive Neural Interface. Available online: https://www.implantable-device.com/2019/09/20/first-clinical-implant-of-synchrons-stentrode-minimally-invasive-neural-interface/ (accessed on 16 October 2024).
- Spichak, B.S. Meet the Stentrode: Bluetooth Implant to Give You Mind Control Over Computers Synchron Is. Available online: https://www.beingpatient.com/stentrode-synchron-bci/ (accessed on 9 September 2024).
- Luo, J.; Xue, N.; Chen, J. A Review: Research Progress of Neural Probes for Brain Research and Brain–Computer Interface. Biosensors 2022, 12, 1167. [Google Scholar] [CrossRef] [PubMed]
- Ghazizadeh, E.; Naseri, Z.; Deigner, H.-P.; Rahimi, H.; Altintas, Z. Approaches of Wearable and Implantable Biosensor towards of Developing in Precision Medicine. Front. Med. 2024, 11, 1390634. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.D.; Karipott, S.S.; Wang, Y.; Ong, K.G. Wireless Technologies for Implantable Devices. Sensors 2020, 20, 4606. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Park, Y.G.; Cha, E.; Ku, M.; An, H.S.; Lee, K.P.; Huh, M.I.; Kim, J.; Kim, T.S.; et al. A Soft and Transparent Contact Lens for the Wireless Quantitative Monitoring of Intraocular Pressure. Nat. Biomed. Eng. 2021, 5, 772–782. [Google Scholar] [CrossRef]
- Martínez-Sande, J.L.; García-Seara, J.; Rodríguez-Mañero, M.; Fernández-López, X.A.; González-Melchor, L.; Redondo-Diéguez, A.; González-Ferreiro, R.; González-Juanatey, J.R. The Micra Leadless Transcatheter Pacemaker. Implantation and Mid-Term Follow-up Results in a Single Center. Rev. Española Cardiol. (Engl. Ed.) 2017, 70, 275–281. [Google Scholar] [CrossRef]
- Tolu-akinnawo, O.; Akhtar, N.; Zalavadia, N.; Guglin, M. CardioMEMS Heart Failure System: An Up-to- Date Review. Cureus 2025, 17, e77816. [Google Scholar] [CrossRef]
- McKenzie, S.; Pavia, S.; O’Donnell, D.; Gazzola, C.; Adamson, P. Heart Failure Hospitalisation Reduction with Remote Pulmonary Artery Pressure Monitoring in Australia: Results of the CardioMEMS HF System OUS Post-Market Study. Heart Lung Circ. 2024, 33, S266. [Google Scholar] [CrossRef]
- Adamson, P.B.; Abraham, W.T.; Aaron, M.; Aranda, J.M.; Bourge, R.C.; Smith, A.; Stevenson, L.W.; Bauman, J.G.; Yadav, J.S. CHAMPION Trial Rationale and Design: The Long-Term Safety and Clinical Efficacy of a Wireless Pulmonary Artery Pressure Monitoring System. J. Card. Fail. 2011, 17, 3–10. [Google Scholar] [CrossRef]
- Chow, E.Y.; Sanghani, S.P.; Morris, M.M. Wireless MEMS-Based Implantable Medical Devices for Cardiology; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081004500. [Google Scholar]
- Shah, A.M. New Development in Brain-Computer Interface Platforms: 1-Year Results from the SWITCH Trial. Artif. Organs 2023, 47, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Dar, T.; Akella, K.; Murtaza, G.; Sharma, S.; Afzal, M.R.; Gopinathannair, R.; Augostini, R.; Hummel, J.; Lakkireddy, D. Comparison of the Safety and Efficacy of Nanostim and Micra Transcatheter Leadless Pacemaker (LP) Extractions: A Multicenter Experience. J. Interv. Card. Electrophysiol. 2020, 57, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, K.; Jegadeesan, R.; Guo, Y.X.; Thakor, N.V. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Rev. Biomed. Eng. 2017, 10, 136–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Das, R.; Zhao, J.; Mirzai, N.; Mercer, J.; Heidari, H. Battery-Free and Wireless Technologies for Cardiovascular Implantable Medical Devices. Adv. Mater. Technol. 2022, 7, 2101086. [Google Scholar] [CrossRef]
- Pham, T.S.; Nguyen, T.D.; Tung, B.S.; Khuyen, B.X.; Hoang, T.T.; Ngo, Q.M.; Hiep, L.T.H.; Lam, V.D. Optimal Frequency for Magnetic Resonant Wireless Power Transfer in Conducting Medium. Sci. Rep. 2021, 11, 18690. [Google Scholar] [CrossRef] [PubMed]
- Jena, S.; Sahu, P.K.; Mohapatra, S.K. Efficient Wireless Power Transfer System for Biomedical Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2021; ISBN 9780323851725. [Google Scholar]
- Aldaoud, A.; Redoute, J.M.; Ganesan, K.; Rind, G.S.; John, S.E.; Ronayne, S.M.; Opie, N.L.; Garrett, D.J.; Prawer, S. A Stent-Based Power and Data Link for Sensing Intravascular Biological Indicators. IEEE Sens. Lett. 2018, 2, 10–13. [Google Scholar] [CrossRef]
- Aldaoud, A.; Redoute, J.M.; Ganesan, K.; Rind, G.S.; John, S.E.; Ronayne, S.M.; Opie, N.L.; Garrett, D.J.; Prawer, S. Near-Field Wireless Power Transfer to Stent-Based Biomedical Implants. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 193–200. [Google Scholar] [CrossRef]
- Agrawal, D.R.; Tanabe, Y.; Weng, D.; Ma, A.; Hsu, S.; Liao, S.Y.; Zhen, Z.; Zhu, Z.Y.; Sun, C.; Dong, Z.; et al. Conformal Phased Surfaces for Wireless Powering of Bioelectronic Microdevices. Nat. Biomed. Eng. 2017, 1, 43. [Google Scholar] [CrossRef]
- Ho, J.S.; Yeh, A.J.; Neofytou, E.; Kim, S.; Tanabe, Y.; Patlolla, B.; Beygui, R.E.; Poon, A.S.Y. Wireless Power Transfer to Deep-Tissue Microimplants. Proc. Natl. Acad. Sci. USA 2014, 111, 7974–7979. [Google Scholar] [CrossRef] [PubMed]
- Keerthi, K.S.; Ilango, K.; Manjula, G.N. Study of Midfield Wireless Power Transfer for Implantable Medical Devices. In Proceedings of the 2018 2nd International Conference on Biomedical Engineering: Smart Technology for Better Society, IBIOMED 2018, Bali, Indonesia, 24–26 July 2018; pp. 44–47. [Google Scholar] [CrossRef]
- Sumi, F.; Dutta, L.; Sarker, F. Future with Wireless Power Transfer Technology. J. Electr. Electron. Syst. 2018, 7, 1000279. [Google Scholar] [CrossRef]
- Gonçalves, R.; Carvalho, N.B.; Pinho, P. Wireless Energy Transfer: Dielectric Lens Antennas for Beam Shaping in Wireless Power-Transfer Applications. Comptes Rendus Phys. 2017, 18, 78–85. [Google Scholar] [CrossRef]
- Bercich, R.A.; Duffy, D.R.; Irazoqui, P.P. Far-Field RF Powering of Implantable Devices: Safety Considerations. IEEE Trans Biomed. Eng. 2013, 60, 2107–2112. [Google Scholar] [CrossRef]
- Kang, S.G.; Song, M.S.; Kim, J.W.; Lee, J.W.; Kim, J. Near-field Communication in Biomedical Applications. Sensors 2021, 21, 703. [Google Scholar] [CrossRef]
- Haerinia, M.; Shadid, R. Wireless Power Transfer Approaches for Medical Implants: A Review. Signals 2020, 1, 209–229. [Google Scholar] [CrossRef]
- Mandal, S.; Sarpeshkar, R. Power-Efficient Impedance-Modulation Wireless Data Links for Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2008, 2, 301–315. [Google Scholar] [CrossRef]
- Trigui, A.; Ali, M.; Hached, S.; David, J.P.; Ammari, A.C.; Savaria, Y.; Sawan, M. Generic Wireless Power Transfer and Data Communication System Based on a Novel Modulation Technique. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3978–3990. [Google Scholar] [CrossRef]
- Hannan, M.A.; Abbas, S.M.; Samad, S.A.; Hussain, A. Modulation Techniques for Biomedical Implanted Devices and Their Challenges. Sensors 2012, 12, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Wang, H.; Zhu, C.; Mao, Z.H.; Sun, M. Simultaneous Wireless Power Transfer and Data Communication Using Synchronous Pulse-Controlled Load Modulation. Measurement 2017, 109, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Donisan, T.; Madanat, L.; Balanescu, D.V.; Mertens, A.; Dixon, S. Drug-Eluting Stent Restenosis: Modern Approach to a Classic Challenge. Curr. Cardiol. Rev. 2023, 19, e030123212355. [Google Scholar] [CrossRef] [PubMed]
- Musick, K.M.; Coffey, A.C.; Irazoqui, P.P. Sensor to Detect Endothelialization on an Active Coronary Stent. Biomed. Eng. Online 2010, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Holland, I.; McCormick, C.; Connolly, P. Towards Non-Invasive Characterisation of Coronary Stent Re-Endothelialisation—An in-Vitro, Electrical Impedance Study. PLoS ONE 2018, 13, e206758. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Assadsangabi, B.; Hsiang, Y.; Takahata, K. Enabling Angioplasty-Ready “Smart” Stents to Detect In-Stent Restenosis and Occlusion. Adv. Sci. 2018, 5, 1700560. [Google Scholar] [CrossRef]
- Yousefi Darestani, M.R.; Lange, D.; Chew, B.H.; Takahata, K. Electromechanically Functionalized Ureteral Stents for Wireless Obstruction Monitoring. ACS Biomater. Sci. Eng. 2023, 9, 4392–4403. [Google Scholar] [CrossRef] [PubMed]
- Yousefi Darestani, M.R.; Lange, D.; Chew, B.H.; Takahata, K. Intelligent Ureteral Stent Placeable via Standard Procedure for Kidney Pressure Telemetry: An Ex-Vivo Study. Ann. Biomed. Eng. 2024, 53, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Chen, S.-C.; Hsiao, H.-M. A Single-Connector Stent Antenna for Intravascular Monitoring Applications. Sensors 2019, 19, 4616. [Google Scholar] [CrossRef]
- Giaever, I.; Keese, C.K. A Morphological Biosensor for Mammalian Cells. Nature 1993, 366, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Q.; Ahmadi, S.; Kerman, K. Recent Advances in Monitoring Cell Behavior Using Cell-Based Impedance Spectroscopy. Micromachines 2020, 11, 590. [Google Scholar] [CrossRef] [PubMed]
- Shedden, L.; Kennedy, S.; Wadsworth, R.; Connolly, P. Towards a Self-Reporting Coronary Artery Stent-Measuring Neointimal Growth Associated with in-Stent Restenosis Using Electrical Impedance Techniques. Biosens. Bioelectron. 2010, 26, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Kirimi, M.T.; Hoare, D.; Holsgrove, M.; Czyzewski, J.; Mirzai, N.; Mercer, J.R.; Neale, S.L. Detection of Blood Clots Using a Whole Stent as an Active Implantable Biosensor. Adv. Sci. 2024, 11, e2304748. [Google Scholar] [CrossRef] [PubMed]
Risk Factors | Comments | |
---|---|---|
Non-modifiable | Age | Age is associated with a high risk of atherosclerosis in people greater than 65 years old. The functions of mitochondria decrease, and Interlukin-6 increases with ageing; however, these effects accelerate the process of atherosclerosis [48]. |
Sex | Women are less likely to develop CAD, especially perimenopause [49]. This fact may be due to the oestrogen protection of young females [50]. | |
Race | In the US, Black, Hispanic, Asian, and American Indian people are at a higher risk of developing CAD than American whites. This is due to wealth, quality of healthcare and education, safe environment, and community for white people [51]. | |
Familial history | “The multi-ethnic study of atherosclerosis” linked familial history to the development of atherosclerosis [52]. | |
Modifiable | Hypertension (HT) | Epidemiological studies stated that arterial HT accounted for 18% of CAD and 48% of stroke events [53]. |
Diabetes (Type-II) | Atherosclerosis occurs earlier in diabetic than non-diabetic populations. In total, 75% of diabetic patients die due to complications of CAD [54,55]. | |
Smoking cigarettes | There is evidence that smoking can exacerbate CAD severity [56]. | |
Obesity | Obesity is an independent risk factor that contributes to CAD. Epidemiologic studies showed that there is a strong association between CAD and obesity [57]. | |
Hyperlipidaemia (ex, LDL) | Excessive LDLs in the blood enable their adherence to the arterial wall, followed by atherosclerosis [58]. | |
Lifestyle | Lifestyle behaviours are the main cause behind the development of other risk factors. For example, unhealthy diets lead to type II diabetes, obesity, hypertension, or high cholesterol (LDL) [59]. |
Medications | Medicines | Comments |
---|---|---|
Antiplatelets | Acetylsalicylic acid (ASA) | A low dose of ASA is recommended as a blood thinner and to lower the risk of CAD events. Patients with CVD history are advised to use it lifelong. |
Clopidogrel | It prevents platelets from bonding together, especially in patients who are at a high risk of CAD. | |
Cholesterol-lowering drugs | Statins | Statins are widely used to block the pathway by which the liver produces cholesterol via the inhibition of HMG-CoA reductase. (Hydroxymethylglutaryl-coenzyme A) |
Ezetimibe | It inhibits cholesterol absorption in the intestine and biliary tract. This helps reduce LDL cholesterol significantly. Ezetimibe can be prescribed in combination with statins [73]. | |
Antihypertension: beta blockers | Acebutolol, bisoprolol, and metoprolol | Beta blockers inhibit adrenaline and noradrenaline which result in slowing the heart rate and reducing blood pressure. These drugs are convenient for hypertensive patients with CAD as they relieve chest pain (angina). |
Antihypertension: calcium channel blockers or CCB | Amlodipine, diltiazem | CCB causes the heart to relax via blocking cell membrane calcium gates and thus preventing calcium from entering cardiac cells. This pathway causes blood vessels to widen and lower the blood pressure. |
Antihypertension: ACE inhibitor | Benazepril, captopril, and enalapril. | ACE inhibitors stop the conversion of angiotensin I into angiotensin II by blocking the angiotensin-converting enzyme. This action reduces the blood pressure and additionally prevents VSMCs’ remodelling process [74]. |
Antihypertension: angiotensin II receptor blockers (ARBs) | Valsartan | ARBs are recommended for those with ACE inhibitor intolerance. They bind to angiotensin II type I receptors and inhibit the angiotensin II effect on blood pressure. This drug class is used to manage blood pressure and diabetic nephropathy [75]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyami, A.M.; Kirimi, M.T.; Neale, S.L.; Mercer, J.R. Implantable Biosensors for Vascular Diseases: Directions for the Next Generation of Active Diagnostic and Therapeutic Medical Device Technologies. Biosensors 2025, 15, 147. https://doi.org/10.3390/bios15030147
Alyami AM, Kirimi MT, Neale SL, Mercer JR. Implantable Biosensors for Vascular Diseases: Directions for the Next Generation of Active Diagnostic and Therapeutic Medical Device Technologies. Biosensors. 2025; 15(3):147. https://doi.org/10.3390/bios15030147
Chicago/Turabian StyleAlyami, Ali Mana, Mahmut Talha Kirimi, Steven L. Neale, and John R. Mercer. 2025. "Implantable Biosensors for Vascular Diseases: Directions for the Next Generation of Active Diagnostic and Therapeutic Medical Device Technologies" Biosensors 15, no. 3: 147. https://doi.org/10.3390/bios15030147
APA StyleAlyami, A. M., Kirimi, M. T., Neale, S. L., & Mercer, J. R. (2025). Implantable Biosensors for Vascular Diseases: Directions for the Next Generation of Active Diagnostic and Therapeutic Medical Device Technologies. Biosensors, 15(3), 147. https://doi.org/10.3390/bios15030147