Direct Detection and Quantification of Aqueous Proteins via a Fluorescent Probe Through the Use of Fluorophore-Induced Plasmonic Current
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Direct Detection of BSA Analogous to an A280 Assay
3.2. Detection of BSA via Turn-On Fluorescent ANS Probe
3.3. Detection of GFP (Green Fluorescent Protein) via FIPC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, USA, 2006. [Google Scholar]
- Geddes, C.D.; Aslan, K. Metal-Enhanced Fluorescence: Progress Towards a Unified Plasmon-Fluorophore Description; John Wiley and Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Eustis, S.; El-Sayed, M. Aspect Ratio Dependence of the Enhanced Fluorescence Intensity of Gold Nanorods: Experimental and Simulation Study. J. Phys. Chem. B 2005, 109, 16350–16356. [Google Scholar] [CrossRef]
- Pelton, M.; Bryant, G.W. Introduction to Metal-Nanoparticle Plasmonics; John Wiley & Sons: Hoboken, New Jersey, USA, 2013. [Google Scholar]
- Li, J.; Krasavin, A.V.; Webster, L.; Segovia, P.; Zayats, A.V.; Richards, D. Spectral variation of Fluorescence Lifetime Near Single Metal Nanoparticles. Sci. Rep. 2016, 6, 21349. [Google Scholar] [CrossRef]
- Weitz, D.A.; Gersten, S.; Garoff, C.D.; Hanson, T.J.; Gramila, J.I. Fluorescent Lifetimes of Molecules on Silver-Island Films. Opt. Lett. 1982, 7, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Dyer, M.J.; Weimer, W.A. Preparation and Characterization of Surface Plasmon Resonance Tunable Gold and Silver Films. J. Appl. Phys. 2002, 92, 5264–5271. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Based Sensors; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Wei, W.; Zhang, X.; Ren, X. Plasmonic Circular Resonators for Refractive Index Sensors and Filters. Nanoscale Res. Lett. 2015, 10, 211. [Google Scholar] [CrossRef] [PubMed]
- Skoog, D.A.; West, D.M. Principles of Instrumental Analysis; Holt, Rinehart and Winston: New York, NY, USA, 2010. [Google Scholar]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman Spectroelectrochemistry Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Kawata, S.; Inouye, Y.; Verma, P. Plamsonic for Near Field Nano Imaging and Super Lensing. Nat. Photonics 2009, 3, 388–394. [Google Scholar] [CrossRef]
- Gotte, J. Principles of Nano-Optics. Contemp. Phys. 2013, 54, 123–124. [Google Scholar]
- Zhang, Y.; Aslan, K.; Geddes, C.D. Voltage-Gated Metal-Enhanced Fluorescence. J. Fluoresc. 2009, 19, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Dragan, A.I.; Zhang, Y.; Geddes, C.D. Voltage-Gated Metal-Enhanced Fluorescence II: Effects of Fluorophore Concentration on the Magnitude of the Gated Current. J. Fluoresc. 2009, 19, 369–374. [Google Scholar] [CrossRef]
- Moskowitz, J.; Geddes, C.D. Plasmonic Electricity: Fluorophore-Induced Plasmonic Current. J. Phys. Chem. C 2019, 123, 27770–27777. [Google Scholar] [CrossRef]
- Moskowitz, J.; Sindi, R.; Geddes, C.D. Plasmonic Electricity II: The Effect of Particle Size, Solvent Permittivity, Applied Voltage, and Temperature on Fluorophore-Induced Plasmonic Current. J. Phys. Chem. C 2020, 124, 5780–5788. [Google Scholar] [CrossRef]
- Knoblauch, R.; Moskowitz, J.; Hawkins, E.; Geddes, C.D. Fluorophore-Induced Plasmonic Current: Generation-Based Detection of Singlet Oxygen. ACS Sens. 2020, 5, 1223–1229. [Google Scholar] [CrossRef]
- Moskowitz, J.; Geddes, C.D. The Inverse Relationship between Metal-Enhanced Fluorescence and Fluorophore-Induced Plasmonic Current. J. Phys. Chem. Lett. 2020, 11, 8145–8151. [Google Scholar] [CrossRef]
- Pierce, D.R.; Bobbin, M.; Geddes, C.D. Fluorophore-induced plasmonic current generation from aluminum nanoparticle films. J. Phys. Chem. C 2023, 127, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Pierce, D.R.; Saha, L.; Geddes, C.D. Fluorophore-induced plasmonic current generation from copper nanoparticle films. ACS Omega 2024, 9, 25181–25188. [Google Scholar] [CrossRef] [PubMed]
- Pierce, D.R.; Geddes, C.D. Fluorophore-Induced Plasmonic Current based Detection of Aqueous Fe3+ ions using a Turn-On Fluorescence Probe and Copper Nanoparticle Substrates. J. Phys. Chem. C 2024, 128, 15537–15541. [Google Scholar] [CrossRef]
- Pierce, D.R.; Geddes, C.D. Fluorophore-Induced Plasmonic Current-Based Detection of Aqueous Al3+ Ions: A Novel Sensing Strategy. J. Phys. Chem. C 2025, 129, 3653–3658. [Google Scholar] [CrossRef]
- Mackintosh, J.A.; Choi, H.Y.; Bae, S.H.; Veal, D.A.; Bell, P.J.; Ferrari, B.C.; Van Dyk, D.D.; Verrills, N.M.; Paik, Y.K.; Karuso, P. A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 2003, 3, 2273–2288. [Google Scholar] [CrossRef]
- Chevalier, F.; Rofidal, V.; Rossignol, M. Visible and fluorescent staining of two-dimensional gels. Methods Mol. Biol. 2007, 355, 145–156. [Google Scholar] [PubMed]
- Harris, L.R.; Churchward, M.A.; Butt, R.H.; Coorssen, J.R. Assessing detection methods for gel-based proteomic analyses. J. Proteome Res. 2007, 6, 1418–1425. [Google Scholar] [CrossRef]
- Ball, M.S.; Karuso, P. Mass spectral compatibility of four proteomics stains. J. Proteome Res. 2007, 6, 4313–4320. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, J.; Bu, D.; Zhang, L.; Li, S.; Zhou, L.; Wei, H. A fluorescence-based Coomassie Blue protocol for two-dimensional gel-based proteomics. Biotechnol. Lett. 2011, 33, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, P.G. Blue Silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Kazmin, D.; Edwards, R.A.; Turner, R.J.; Larson, E.; Starkey, J. Visualization of proteins in acrylamide gels using ultraviolet illumination. Anal. Biochem. 2002, 301, 91–96. [Google Scholar] [CrossRef]
- Vorobey, A.V.; Chernitsky, E.; Konev, S.V.; Krivitsky, A.; Pinchuk, S.V.; Shukanova, N.A. Chloroform dependent photoproducts of tryptophan. Biophysics 1992, 37, 743–745. [Google Scholar]
- Pinchuk, S.V.; Vorobei, A.V. Spectral characteristics of mechanisms of forming “chloroform-dependent” tryptophan photoproducts. J. Appl. Spectrosc. 1993, 59, 711–715. [Google Scholar] [CrossRef]
- Steinberg, T.H.; Lauber, W.M.; Berggren, K.; Kemper, C.; Yue, S.; Patton, W.F. Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution. Electrophoresis 2000, 21, 497–508. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierce, D.R.; Geddes, C.D. Direct Detection and Quantification of Aqueous Proteins via a Fluorescent Probe Through the Use of Fluorophore-Induced Plasmonic Current. Biosensors 2025, 15, 150. https://doi.org/10.3390/bios15030150
Pierce DR, Geddes CD. Direct Detection and Quantification of Aqueous Proteins via a Fluorescent Probe Through the Use of Fluorophore-Induced Plasmonic Current. Biosensors. 2025; 15(3):150. https://doi.org/10.3390/bios15030150
Chicago/Turabian StylePierce, Daniel R., and Chris D. Geddes. 2025. "Direct Detection and Quantification of Aqueous Proteins via a Fluorescent Probe Through the Use of Fluorophore-Induced Plasmonic Current" Biosensors 15, no. 3: 150. https://doi.org/10.3390/bios15030150
APA StylePierce, D. R., & Geddes, C. D. (2025). Direct Detection and Quantification of Aqueous Proteins via a Fluorescent Probe Through the Use of Fluorophore-Induced Plasmonic Current. Biosensors, 15(3), 150. https://doi.org/10.3390/bios15030150