Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Photophysical Properties of the Dyes and Their Complexes with Nucleic Acids
2.2.1. Aggregation Studies
2.2.2. Quantum Chemical Calculations
2.2.3. UV/Vis Spectra of Dye-NA Complexes
2.2.4. Fluorescent Properties of Dye-NA Complexes
2.2.5. Docking Studies
2.2.6. CD Spectroscopy
3. Experimental Part
3.1. General
3.2. Synthesis of the Asymmetric Monomethine Cyanine Dye 3a
3.3. Synthesis of the Asymmetric Monomethine Cyanine Dye 3b
3.4. Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, I.; Spence, M.T.Z. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies; Life Technologies: Carlsbad, CA, USA, 2010. [Google Scholar]
- Deligeorgiev, T.; Vasilev, A. Functional Dyes; Kim, S.-H., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Chapter 4; p. 137. [Google Scholar]
- Tatikolov, A.S. Polymethine Dyes as Spectral-Fluorescent Probes for Biomacromolecules. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 55–90. [Google Scholar] [CrossRef]
- Kurutos, A.; Ryzhova, O.; Trusova, V.; Tarabara, U.; Gorbenko, G.; Gadjev, N.; Deligeorgiev, T. Novel Asymmetric Monomethine Cyanine Dyes Derived from Sulfobetaine Benzothiazolium Moiety as Potential Fluorescent Dyes for Non-Covalent Labeling of DNA. Dye. Pigment. 2016, 130, 122–128. [Google Scholar] [CrossRef]
- Tan, X.; Constantin, T.P.; Sloane, K.L.; Waggoner, A.S.; Bruchez, M.P.; Armitage, B.A. Fluoromodules Consisting of a Promiscuous RNA Aptamer and Red or Blue Fluorogenic Cyanine Dyes: Selection, Characterization, and Bioimaging. J. Am. Chem. Soc. 2017, 139, 9001–9009. [Google Scholar] [CrossRef] [PubMed]
- Yagi, S.; Nakazumi, H. Squarylium Dyes and Related Compounds. In Topics in Heterocyclic Chemistry (TOPICS), Heterocyclic Polymethine Dyes; Spinger: Berlin/Heidelberg, Germany, 2008; Volume 14, p. 133. [Google Scholar]
- Ishkitiev, N.; Miteva, M.; Micheva, M.; Stoyanova, T.; Lozanova, V.V.; Lozanov, V.S.; Mihaylova, Z.; Cheshmedzhieva, D.V.; Kandinska, M.; Rangelov, M.; et al. Aggregation Induced Nucleic Acids Recognition by Homodimeric Asymmetric Monomethyne Cyanine Fluorochromes in Mesenchymal Stem Cells. Int. J. Biol. Macromol. 2023, 250, 126094. [Google Scholar] [CrossRef]
- Kandinska, M.I.; Cheshmedzhieva, D.V.; Kostadinov, A.; Rusinov, K.; Rangelov, M.; Todorova, N.; Ilieva, S.; Ivanov, D.P.; Videva, V.; Lozanov, V.S.; et al. Tricationic Asymmetric Monomeric Monomethine Cyanine Dyes with Chlorine and Trifluoromethyl Functionality—Fluorogenic Nucleic Acids Probes. J. Mol. Liq. 2021, 342, 117501. [Google Scholar] [CrossRef]
- Soltzberg, L.J.; Hagar, A.; Kridaratikorn, S.; Mattson, A.; Newman, R. MALDI-TOF Mass Spectrometric Identification of Dyes and Pigments. J. Am. Soc. Mass Spectrom. 2007, 18, 2001–2006. [Google Scholar] [CrossRef]
- West, W.; Pearce, S. The Dimeric State of Cyanine Dyes. J. Phys. Chem. 1965, 69, 1894–1903. [Google Scholar] [CrossRef]
- Biver, T.; Boggioni, A.; Secco, F.; Turriani, E.; Venturini, M.; Yarmoluk, S. Influence of Cyanine Dye Structure on Self-Aggregation and Interaction with Nucleic Acids: A Kinetic Approach to TO and BO Binding. Arch. Biochem. Biophys. 2007, 465, 90–100. [Google Scholar] [CrossRef]
- Ishkitiev, N.; Micheva, M.; Miteva, M.; Gaydarova, S.; Tzachev, C.; Lozanova, V.; Lozanov, V.; Cheshmedzhieva, D.; Kandinska, M.; Ilieva, S.; et al. Nanoconfined Chlorine Substituted Monomethine Cyanine Dye with Propionamide Function Based on Thiazole Orange Scaffold—Fluorogenic Probe for Cells Staining and Nucleic Acids Visualization. Molecules 2024, 29, 6038. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Labanowski, J.K.; Andzelm, J.W. Density Functional Methods in Chemistry; Springer: New York, NY, USA, 1991; ISBN 978-1-4612-7809-2. [Google Scholar]
- Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327–335. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef] [PubMed]
- Ilieva, S.; Kandinska, M.; Vasilev, A.; Cheshmedzhieva, D. Theoretical Modeling of Absorption and Fluorescent Characteristics of Cyanine Dyes. Photochem 2022, 2, 202–216. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Legault, C.Y. CYLview, version 1.0b; Université de Sherbrooke: Sherbrooke, QC, Canada, 2009. [Google Scholar]
- Hirshfeld, F.L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Nygren, J.; Svanvik, N.; Kubista, M. The Interactions Between the Fluorescent Dye Thiazole Orange and DNA. Biopolymers 1998, 46, 39–51. [Google Scholar] [CrossRef]
- Ogul’Chansky, T.; Losytskyy, M.; Kovalska, V.; Yashchuk, V.; Yarmoluk, S. Interactions of Cyanine Dyes with Nucleic Acids. XXIV. Aggregation of Monomethine Cyanine Dyes in Presence of DNA and Its Manifestation in Absorption and Fluorescence Spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 1525–1532. [Google Scholar] [CrossRef]
- Rehman, S.U.; Sarwar, T.; Husain, M.A.; Ishqi, H.M.; Tabish, M. Studying Non-Covalent Drug-DNA Interactions. Arch. Biochem. Biophys. 2015, 576, 49–60. [Google Scholar] [CrossRef]
- Wheelhouse, R.T.; Sun, D.; Han, H.; Han, F.X.; Hurley, L.H. Cationic Porphyrins as Telomerase Inhibitors: The Interaction of Tetra-(N-methyl-4-pyridyl)porphine with Quadruplex DNA. J. Am. Chem. Soc. 1998, 120, 3261–3262. [Google Scholar] [CrossRef]
- Wei, C.Y.; Jia, G.Q.; Yuan, J.L.; Feng, Z.C.; Li, C. A Spectroscopic Study on the Interactions of Porphyrin with G-Quadruplex DNAs. Biochemistry 2006, 45, 6681–6691. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, F.; Liu, R.; Lin, J.; Xu, Q.; Gao, C. Interaction Mechanism of 2-Aminobenzothiazole with Herring sperm DNA. J. Lumin. 2012, 132, 507–512. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Sengupta, P.K.; Bhowmik, S. Exploring the Preferential Interaction of Quercetin with VEGF Promoter G-Quadruplex DNA and Construction of a pH-Dependent DNA-Based Logic Gate. RSC Adv. 2017, 7, 37230–37240. [Google Scholar] [CrossRef]
- Horakova, E.; Vyskocil, V.; Barek, J. Interaction Study of Methyl Violet 2B with DNA and Voltammetric Determination of DNA in Aqueous Solutions. Monatsh. Chem. 2016, 147, 119–126. [Google Scholar] [CrossRef]
- Ilieva, S.; Bozova, N.; Rangelov, M.; Todorova, N.; Vasilev, A.; Cheshmedzhieva, D. Asymmetric Monomethine Cyanine Dyes with Hydrophobic Functionalities for Fluorescent Intercalator Displacement Assay. Molecules 2024, 29, 114. [Google Scholar] [CrossRef]
- Giri, P.; Kumar, G.S. Self-Structure Induction in Single Stranded Poly(A) by Small Molecules: Studies on DNA Intercalators, Partial Intercalators and Groove Binding Molecules. Arch. Biochem. Biophys. 2008, 474, 183–192. [Google Scholar] [CrossRef]
- Jaumot, J.; Gargallo, R.; de Juan, A.; Tauler, R. A Graphical User-Friendly Interface for MCR-ALS: A New Tool for Multivariate Curve Resolution in MATLAB. Chemom. Intell. Lab. Syst. 2005, 76, 101–110. [Google Scholar] [CrossRef]
- Edelsbrunner, H.; Facello, M.; Fu, R.; Liang, J. Measuring Proteins and Voids in Proteins. In Proceedings of the 28th Hawaii International Conference on Systems Science, Wailea, HI, USA, 4–7 January 1995; pp. 256–264. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE), H3A 2R7; Chemical Computing Group ULC: Montreal, QC, Canada, 2021.
- Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; et al. Solvated Interaction Energy (SIE) for Scoring Protein-Ligand Binding Affinities. 1. Exploring the Parameter Space. J. Chem. Inf. Model. 2007, 47, 122–133. [Google Scholar] [CrossRef]
Isomer | ∆H [kcal/mol] | ∆G [kcal/mol] | λ abs [nm] | f |
---|---|---|---|---|
3a s-trans | 0.0 | 0.0 | 496 | 0.8334 |
3a s-cis | 2.5 | 3.4 | 494 | 0.8573 |
3a trans out | 2.5 | 3.1 | 528 | 0.4577 |
3b s-trans | 0.0 | 0.0 | 507 | 0.7145 |
3b s-cis | 1.9 | 3.6 | 502 | 0.7255 |
3b trans out | 3.3 | 4.2 | 557 | 0.4286 |
qNBO | qHirsh | EPN | |||
---|---|---|---|---|---|
3a | s-trans | N1 | −0.3890 | −0.0055 | −18.1593 |
N2 | −0.3353 | 0.0312 | −18.1243 | ||
s-cis | N1 | −0.3969 | −0.0022 | −18.1504 | |
N2 | −0.3390 | 0.0285 | −18.1213 | ||
trans out | N1 | −0.3968 | −0.0109 | −18.1659 | |
N2 | −0.3306 | 0.0349 | −18.1175 | ||
3b | s-trans | N1 | −0.3825 | −0.0012 | −18.1559 |
N2 | −0.3449 | 0.02281 | −18.1316 | ||
s-cis | N1 | −0.3867 | 0.0045 | −18.1435 | |
N2 | −0.3503 | 0.0190 | −18.1303 | ||
trans out | N1 | −0.3879 | −0.0050 | −18.1617 | |
N2 | −0.3411 | 0.0257 | −18.1259 |
Dimer | ΔG [kcal/mol] | Distribution, % |
---|---|---|
H1 | 4.58 | 0.04 |
H2 | 0.00 | 89.75 |
H3 | 2.70 | 0.94 |
H4 | 1.35 | 9.27 |
J1 | 10.56 | 0.00 |
J3 | 5.59 | 0.01 |
J4 | 7.74 | 0.00 |
Dye | Monomer—TE Buffer | Monomer *—DMSO | Dimer TE buffer | ||
---|---|---|---|---|---|
λcalc [nm] | λexp [nm] | λexp [nm] | λcalc [nm] | λexp [nm] | |
3a | 496 (0.8334) | 490 | 498 | 479 (1.343) | 464 |
3b | 507 (0.7145) | 498 | 507 | 484 (1.104) | 478 |
Dye | NA | λex (nm) | (nm) | I0 (a.u.) | Imax (a.u.) | I/I0 | Kb × 106 | Q | n | |
---|---|---|---|---|---|---|---|---|---|---|
3a | DNA | 495 | 531 | 531 | 9.5 | 622.1 | 65.5 | 8.0 | 78.6 | 0.08 |
RNA | 504 | 526 | 525 | 4.9 | 136.7 | 27.9 | 2.8 | 38.0 | 0.22 | |
poly(A) | 490 | 592 | 592 | 3.3 | 35.8 | 10.8 | 9.5 | 11.5 | 0.89 | |
poly(A)·poly(U) | 501 | 531 | 531 | 3.4 | 967.1 | 282.0 | ||||
3b | DNA | 497 | 580 | 536 | 2.3 | 337.3 | 145.4 | 1.5 | 173.6 | 0.41 |
RNA | 476 | 619 | 538 | 2.5 | 217.4 | 87.0 | 2.6 | 111.8 | 0.11 |
Ligand | dsDNA | dsRNA | ||
intercalation | minor groove binding | intercalation | minor groove binding | |
ΔG | ||||
3a | −10.7 | −13.5 | −10.6 | −9.5 |
3b | −8.9 | −14.2 | −9.2 | −9.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilieva, S.; Petkov, N.; Gargallo, R.; Novakov, C.; Rangelov, M.; Todorova, N.; Vasilev, A.; Cheshmedzhieva, D. Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids. Biosensors 2025, 15, 187. https://doi.org/10.3390/bios15030187
Ilieva S, Petkov N, Gargallo R, Novakov C, Rangelov M, Todorova N, Vasilev A, Cheshmedzhieva D. Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids. Biosensors. 2025; 15(3):187. https://doi.org/10.3390/bios15030187
Chicago/Turabian StyleIlieva, Sonia, Nikolay Petkov, Raimundo Gargallo, Christo Novakov, Miroslav Rangelov, Nadezhda Todorova, Aleksey Vasilev, and Diana Cheshmedzhieva. 2025. "Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids" Biosensors 15, no. 3: 187. https://doi.org/10.3390/bios15030187
APA StyleIlieva, S., Petkov, N., Gargallo, R., Novakov, C., Rangelov, M., Todorova, N., Vasilev, A., & Cheshmedzhieva, D. (2025). Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids. Biosensors, 15(3), 187. https://doi.org/10.3390/bios15030187