Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens
Abstract
:1. Introduction
1.1. The Role of Biosensors
- Rapid detection: Biosensors deliver real-time or near-instant results, facilitating faster decision making. They serve as a cost-effective and efficient alternatives to traditionally slow and labor-intensive methods for food and water pathogen detection, making them ideal for large-scale monitoring applications [21].
- High sensitivity and specificity: The incorporation of specific biorecognition elements to biosensors ensure high precision and enhanced sensitivity in the detection of target analytes. For instance, aptamer-based biosensors have proved remarkably efficiency in the identification of pharmaceuticals, heavy metals, endocrine-disrupting chemicals, and agricultural contaminants in environmental samples [22].
- On-site monitoring: The portability of biosensors allows on-site monitoring, which reduces the need to transport samples and allows immediate analysis. For example, enzyme-based electrochemical biosensors have been developed for microfluidic applications, facilitating the in situ detection of contaminants [21].
1.2. Bioreceptor Immobilization: The Critical Step in Biosensor Development
1.3. Types of Biosensors
2. Biorecognition Elements
2.1. Enzyme-Based Biosensors
2.2. Antibody-Based Biosensors
2.3. DNA-Based Biosensors
2.4. Whole-Cell Biosensors
2.5. Aptamer-Based Biosensors
2.6. Antimicrobial Peptide (AMP)-Based Biosensors
2.7. Biosensors Based on Artificial Binding Proteins
3. Transduction Mechanism
3.1. Electrochemical Biosensors
3.1.1. Amperometric Sensors
Target | Working Electrode | Measurement Technique | Biorecognition Element | LOD | Ref. |
---|---|---|---|---|---|
Pathogens | |||||
Salmonella | CoFe2SO4/SWCNT modified with TEOS/APTES | CV/EIS | Functionalized DNA probe | 2.34 × 10−10 µM | [119] |
E. coli | Ag-Carbon | CV | E. coli-aptamer | 34 CFU/mL | [120] |
SARS-CoV-2 | Modified PCB | CV/DPV | DNA-aptamer | 1.7 × 10−9 µM | [121] |
Pharmaceuticals | |||||
Sulfamethoxazole | Au/SPE | DPV | Tyrosinase enzyme | 22.6 µM | [122] |
Bevacizumab | OG | DPV | Anti-bevacizumab | 0.02 µg/mL | [123] |
Lyncomycin Neomycin | Au/CNF/SPE | SWV | DNA-aptamer | 4.92 × 10−8 µM 5.55 × 10−8 µM | [124] |
Pesticides and agrochemicals | |||||
Atrazine | Au 5 Ir@RFBP-GQD | CV/DPV | Hairpin DNA | 3.4 × 10−13 µM | [125] |
Chlorpyrifos | SPCE modified with AChE/CS-GO/GO/CNF | SWV | AChE enzyme | 2.2 × 10−3 µM | [126] |
Chlorpyrifos | SPCE modified with CuNWs/rGO | CV | AChE enzyme | 8.84 × 10−3 µM | [127] |
Methyl parathion Chlornitrofen | GC modified with CRL@MAC-ZIF-8/CS | CV/EIS | CRL enzyme | 0.06 µM 0.03 µM | [128] |
Endocrine disruptors | |||||
4 n-nonylphenol 4-t-octylphenol | SPE modified with [BMIM][PF6] | CV/EIS | Horseradish peroxidase enzyme | 1.1 µM 0.4 µM | [129] |
17β-estradiol | Au/NiHCF NPs | DPV | Aptamer | 0.8 × 10−6 µM | [130] |
Persistent organic compounds | |||||
BDE-100 PBB-1 PCB-1 PCB-28 PCB-101 | Pt/PANI | Amperometry | Horseradish peroxidase enzyme | 2.48 × 10−5 µM 7.72 × 10−5 µM 1.17 × 10−4 µM 6.21 × 10−5 µM 5.82 × 10−5 µM | [131] |
3.1.2. Potentiometric Sensors
3.1.3. Impedimetric Sensors
3.1.4. Conductometric Sensors
3.2. Optical Biosensors
3.3. Piezoelectric Biosensors
4. Environmental Real Water Analysis with Biosensors
5. Integration with Microfluidic Systems
5.1. Materials and Fabrication Techniques
5.2. Applications of Microfluidics: From Lab to Real-World Samples
5.3. Integration of Artificial Intelligence in Microfluidics
6. New Trend in Biosensors: Molecularly Imprinted Polymers
7. Challenges and Future Prospects
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kummu, M.; Guillaume, J.H.A.; De Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The World’s Road to Water Scarcity: Shortage and Stress in the 20th Century and Pathways towards Sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef]
- Mofijur, M.; Hasan, M.M.; Ahmed, S.F.; Djavanroodi, F.; Fattah, I.M.R.; Silitonga, A.S.; Kalam, M.A.; Zhou, J.L.; Khan, T.M.Y. Advances in Identifying and Managing Emerging Contaminants in Aquatic Ecosystems: Analytical Approaches, Toxicity Assessment, Transformation Pathways, Environmental Fate, and Remediation Strategies. Environ. Pollut. 2024, 341, 122889. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.Y.; Lim, F.Y.; Loh, W.H.; Ong, S.L.; Hu, J. Emerging Contaminants: An Overview of Recent Trends for Their Treatment and Management Using Light-Driven Processes. Water 2021, 13, 2340. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging Contaminants: A One Health Perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef] [PubMed]
- Flores-Contreras, E.A.; González-González, R.B.; González-González, E.; Melchor-Martínez, E.M.; Parra-Saldívar, R.; Iqbal, H.M.N. Detection of Emerging Pollutants Using Aptamer-Based Biosensors: Recent Advances, Challenges, and Outlook. Biosensors 2022, 12, 1078. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, D.; Nałęcz-Jawecki, G.; Drzewicz, P.; Skowronek, A.; Mianowicz, K.; Strzelecka, A.; Giebułtowicz, J. The Assessment of Environmental Risk Related to the Occurrence of Pharmaceuticals in Bottom Sediments of the Odra River Estuary (SW Baltic Sea). Sci. Total Environ. 2022, 828, 154446. [Google Scholar] [CrossRef]
- Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. Pharmaceutical Residues in Environmental Waters and Wastewater: Current State of Knowledge and Future Research. Anal. Bioanal. Chem. 2011, 399, 251–275. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions—A Review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Abramova, A.; Berendonk, T.U.; Coelho, L.P.; Forslund, S.K.; Gschwind, R.; Heikinheimo, A.; Jarquín-Díaz, V.H.; Khan, A.A.; Klümper, U.; et al. Towards Monitoring of Antimicrobial Resistance in the Environment: For What Reasons, How to Implement It, and What Are the Data Needs? Environ. Int. 2023, 178, 108089. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Wang, T.; Xu, N.; Lu, T.; Hong, W.; Penuelas, J.; Gillings, M.; Wang, M.; Gao, W.; et al. Assessment of Global Health Risk of Antibiotic Resistance Genes. Nat. Commun. 2022, 13, 1553. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic Resistance in the Environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Dou, Q.; Smalla, K.; Wang, Y.; Johnson, T.A.; Brandt, K.K.; Mei, Z.; Liao, M.; Hashsham, S.A.; Schäffer, A.; et al. Gut Microbiota Research Nexus: One Health Relationship between Human, Animal, and Environmental Resistomes. mLife 2023, 2, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Gupta, A.K.; Ghosal, P.S.; Varma, M. A Review on Hospital Wastewater Treatment: A Special Emphasis on Occurrence and Removal of Pharmaceutically Active Compounds, Resistant Microorganisms, and SARS-CoV-2. J. Environ. Chem. Eng. 2021, 9, 104812. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Engel, B.A.; Reuhs, M.; Simsek, H. Cyanophage Technology in Removal of Cyanobacteria Mediated Harmful Algal Blooms: A Novel and Eco-Friendly Method. Chemosphere 2023, 315, 137769. [Google Scholar] [CrossRef]
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.A.; Johnson, M.V.V.; Morton, S.L.; Perkins, D.A.K.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J.A. In Some Places, in Some Cases, and at Some Times, Harmful Algal Blooms Are the Greatest Threat to Inland Water Quality. Environ. Toxicol. Chem. 2017, 36, 1125–1127. [Google Scholar] [CrossRef]
- Hemdan, M.; Ali, M.A.; Doghish, A.S.; Mageed, S.S.A.; Elazab, I.M.; Khalil, M.M.; Mabrouk, M.; Das, D.B.; Amin, A.S. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. Sensors 2024, 24, 5143. [Google Scholar] [CrossRef]
- Nihemaiti, M.; Icker, M.; Seiwert, B.; Reemtsma, T. Revisiting Disinfection Byproducts with Supercritical Fluid Chromatography-High Resolution-Mass Spectrometry: Identification of Novel Halogenated Sulfonic Acids in Disinfected Drinking Water. Environ. Sci. Technol. 2023, 57, 3527–3537. [Google Scholar] [CrossRef]
- Liu, X.; Verma, G.; Chen, Z.; Hu, B.; Huang, Q.; Yang, H.; Ma, S.; Wang, X. Metal-Organic Framework Nanocrystal-Derived Hollow Porous Materials: Synthetic Strategies and Emerging Applications. Innovation 2022, 3, 100281. [Google Scholar] [CrossRef]
- Sarkar, D.J.; Behera, B.K.; Parida, P.K.; Aralappanavar, V.K.; Mondal, S.; Dei, J.; Das, B.K.; Mukherjee, S.; Pal, S.; Weerathunge, P.; et al. Aptamer-Based NanoBioSensors for Seafood Safety. Biosens. Bioelectron. 2023, 219, 114771. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Smirnov, A.V.; Karavaeva, O.A.; Borodina, I.A. Prospects of Acoustic Sensor Systems for Antibiotic Detection. Biosens. Bioelectron. X 2022, 12, 100274. [Google Scholar] [CrossRef]
- Chen, B.; He, J.; Tian, K.; Qu, J.; Hong, L.; Lin, Q.; Yang, K.; Ma, L.; Xu, X. Research Progress on Detection of Pathogens in Medical Wastewater by Electrochemical Biosensors. Molecules 2024, 29, 3534. [Google Scholar] [CrossRef] [PubMed]
- Materon, E.M.; Ibáñez-Redín, G.; Joshi, N.; Gonçalves, D.; Oliveira, O.N.; Faria, R.C. Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment BT—Nanosensors for Environmental Applications; Kumar Tuteja, S., Arora, D., Dilbaghi, N., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 87–129. ISBN 978-3-030-38101-1. [Google Scholar]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Recent Progress in Biosensors for Environmental Monitoring: A Review. Sensors 2017, 17, 2918. [Google Scholar] [CrossRef] [PubMed]
- Lino, A.; Cardoso, M.A.; Gonçalves, H.M.R.; Martins-Lopes, P. SARS-CoV-2 Detection Methods. Chemosensors 2022, 10, 221. [Google Scholar] [CrossRef]
- Mummareddy, S.; Pradhan, S.; Narasimhan, A.K.; Natarajan, A. On Demand Biosensors for Early Diagnosis of Cancer and Immune Checkpoints Blockade Therapy Monitoring from Liquid Biopsy. Biosensors 2021, 11, 500. [Google Scholar] [CrossRef]
- Polat, E.O.; Cetin, M.M.; Tabak, A.F.; Güven, E.B.; Uysal, B.Ö.; Arsan, T.; Kabbani, A.; Hamed, H.; Gül, S.B. Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors 2022, 12, 385. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Wang, H. Bioreceptors as the Key Components for Electrochemical Biosensing in Medicine. Cell Rep. Phys. Sci. 2024, 5, 101801. [Google Scholar] [CrossRef]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef]
- Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent Advances in Nanomaterial-Based Biosensors for Antibiotics Detection. Biosens. Bioelectron. 2017, 91, 504–514. [Google Scholar] [CrossRef]
- Rahul, P.K.; Kafley, C.; A Sukumaran, R.; Kummari, S.; VVN, P.K.; Kotagiri, Y.G. Electrochemical Strip Sensor Based on a Graphene-Au-PEDOT Nanocomposite for Detection and Continuous Monitoring of Dacarbazine. ACS Appl. Nano Mater. 2023, 6, 16915–16926. [Google Scholar] [CrossRef]
- Khan, M.Q.; Khan, J.; Alvi, M.A.H.; Nawaz, H.; Fahad, M.; Umar, M. Nanomaterial-Based Sensors for Microbe Detection: A Review. Discov. Nano 2024, 19, 120. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, C.W.; Wang, D.; Wei, N. A Whole-Cell Biosensor for Point-of-Care Detection of Waterborne Bacterial Pathogens. ACS Synth. Biol. 2021, 10, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Tanniche, I.; Behkam, B. Engineered Live Bacteria as Disease Detection and Diagnosis Tools. J. Biol. Eng. 2023, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Fu, L.; Yin, C.; Liu, X.; Karimi-Maleh, H. The Role of Electrochemical Biosensors in SARS-CoV-2 Detection: A Bibliometrics-Based Analysis and Review. RSC Adv. 2022, 12, 22592–22607. [Google Scholar] [CrossRef] [PubMed]
- Maryam, S.; Ul Haq, I.; Yahya, G.; Ul Haq, M.; Algammal, A.M.; Saber, S.; Cavalu, S. COVID-19 Surveillance in Wastewater: An Epidemiological Tool for the Monitoring of SARS-CoV-2. Front. Cell Infect. Microbiol. 2023, 12, 978643. [Google Scholar] [CrossRef]
- Valerio, T.L.; Anastácio, R.; da Silva, S.S.; de Oliveira, C.C.; Vidotti, M. An Overview of Electrochemical Biosensors Used for COVID-19 Detection. Anal. Methods 2024, 16, 2164–2176. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Palomares-Albarrán, M.; Toyos-Rodríguez, C.; Mateo-Martí, E.; Pariente, F.; de la Escosura-Muñiz, A.; Gutiérrez-Sánchez, C.; Revenga-Parra, M.; Lorenzo, E. Rapid SARS-CoV-2 Sensing through Oxygen Reduction Reaction Catalysed by Au@Pt/Au Core@shell Nanoparticles. Talanta 2024, 280, 126708. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Zhou, J.; Jia, X.; Li, H.; Wang, X.; Chen, Y.; Sun, Z.; He, X.; Li, H.; et al. Nano-Biosensor for SARS-CoV-2/COVID-19 Detection: Methods, Mechanism and Interface Design. RSC Adv. 2023, 13, 17883–17906. [Google Scholar] [CrossRef]
- Malhotra, B.D.; Ali, M.A. Functionalized Carbon Nanomaterials for Biosensors in Nanomaterials in Biosensors: Fundamentals and Applications Nanomaterials for Biosensors; William Andrew Publishing: Norwich, NY, USA, 2018. [Google Scholar]
- Khaksarinejad, R.; Arabpour, Z.; RezaKhani, L.; Parvizpour, F.; Rasmi, Y. Biomarker Based Biosensors: An Opportunity for Diagnosis of COVID-19. Rev. Med. Virol. 2022, 32, e2356. [Google Scholar] [CrossRef]
- Saxena, K.; Chauhan, N.; Jain, U. Advances in Diagnosis of Helicobacter Pylori through Biosensors: Point of Care Devices. Anal. Biochem. 2021, 630, 114325. [Google Scholar] [CrossRef]
- Liu, X.; Dumitrescu, E.; Andreescu, S. Electrochemical Biosensors for Real-Time Monitoring of Reactive Oxygen and Nitrogen Species. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2015; Volume 1200, pp. 301–327. ISBN 9780841231009. [Google Scholar]
- Prabhakar, T.; Giaretta, J.; Zulli, R.; Rath, R.J.; Farajikhah, S.; Talebian, S.; Dehghani, F. Covalent Immobilization: A Review from an Enzyme Perspective. Chem. Eng. J. 2025, 503, 158054. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization Strategies to Develop Enzymatic Biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Ben Amor, I.; Ahmed, S.; Zeghoud, S.; Hemmami, H. Nanocomposites Derived from Chitosan for Biosensor Applications. In Novel Bio-Nanocomposites for Biomedical Applications; Sharma, K., Tiwari, S.K., Kumar, V., Kalia, S., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 203–225. ISBN 978-3-031-69654-1. [Google Scholar]
- Devnani, H.; Sharma, C.; Jain, P. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrodes for Biosensing. In Nanomaterial-Modified Electrodes: Design and Applications; Khan, A.A.P., Kulkarni, R.M., Omaish Ansari, M., Asiri, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 135–156. ISBN 978-3-031-67176-0. [Google Scholar]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhou, L.; Deng, L.; Feng, Z.; Cao, Z.; Yin, Y. An Electrochemical Impedimetric Sensing Platform Based on a Peptide Aptamer Identified by High-Throughput Molecular Docking for Sensitive L-Arginine Detection. Bioelectrochemistry 2021, 137, 107634. [Google Scholar] [CrossRef] [PubMed]
- Kościelniak, P. Unified Principles of Univariate Analytical Calibration. TrAC—Trends Anal. Chem. 2022, 149, 116547. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Shahat, F.M.; Youssef, D.G.; Sayed, F.E.; Elbadry, A.M.M.; Fouad, F.A.; Mohammed, M.S.; Elsaadani, M. Fundamentals of Biosensors. In Handbook of Nanosensors; Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 265–301. ISBN 978-3-031-47180-3. [Google Scholar]
- Kaushal, J.B.; Raut, P.; Kumar, S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. Biosensors 2023, 13, 976. [Google Scholar] [CrossRef]
- Shanbhag, M.M.; Manasa, G.; Mascarenhas, R.J.; Mondal, K.; Shetti, N.P. Fundamentals of Bio-Electrochemical Sensing. Chem. Eng. J. Adv. 2023, 16, 100516. [Google Scholar] [CrossRef]
- Bucur, B.; Purcarea, C.; Andreescu, S.; Vasilescu, A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors 2021, 21, 3038. [Google Scholar] [CrossRef]
- Fan, Y.F.; Guo, Z.B.; Ge, G.B. Enzyme-Based Biosensors and Their Applications. Biosensors 2023, 13, 476. [Google Scholar] [CrossRef]
- Nigam, V.K.; Shukla, P. Enzyme Based Biosensors for Detection of Environmental Pollutants-A Review. J. Microbiol. Biotechnol. 2015, 25, 1773–1781. [Google Scholar] [CrossRef]
- Fernández-Fernández, M.; Sanromán, M.T.; Moldes, D. Recent Developments and Applications of Immobilized Laccase. Biotechnol. Adv. 2013, 31, 1808–1825. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Gorton, L. Enzyme Based Amperometric Biosensors. Curr. Opin. Electrochem. 2018, 10, 157–173. [Google Scholar] [CrossRef]
- Sivasubramanian, P.D.; Kumar, M.; Chen, C.L.; Kiran-kumar, V.S.; Samuel, M.S.; Chang, J.H. A Review of Metal Nanomaterials-Based Electrochemical Biosensors for Environmental Wastewater Monitoring and Their Remediation. Environ. Nanotechnol. Monit. Manag. 2024, 22, 101023. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Marco, M.P.; Lopez De Alda, M.J.; Barceló, D. Biosensors for Environmental Applications: Future Development Trends. Pure Appl. Chem. 2004, 76, 723–752. [Google Scholar] [CrossRef]
- La Rosa, C.; Pariente, F.; Hernández, L.; Lorenzo, E. Determination of Organophosphorus and Carbamic Pesticides with an Acetylcholinesterase Amperometric Biosensor Using 4-Aminophenyl Acetate as Substrate. Anal. Chim. Acta 1994, 295, 273–282. [Google Scholar] [CrossRef]
- Abad, J.M.; Pariente, F.; Hernández, L.; Abruña, H.D.; Lorenzo, E. Determination of Organophosphorus and Carbamate Pesticides Using a Piezoelectric Biosensor. Anal. Chem. 1998, 70, 2848–2855. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Chen, W.; Ma, B.; Ju, H. Device Integration of Electrochemical Biosensors. Nat. Rev. Bioeng. 2023, 1, 346–360. [Google Scholar] [CrossRef]
- Mool-am-kha, P.; Phetduang, S.; Phongsanam, N.; Surawanitkun, C.; Ngamdee, K.; Ngeontae, W. A Fluorescence Biosensor for Organophosphorus Pesticide Detection with a Portable Fluorescence Device-Based Smartphone. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 327, 125330. [Google Scholar] [CrossRef]
- Miglione, A.; Raucci, A.; Mancini, M.; Gioia, V.; Frugis, A.; Cinti, S. An Electrochemical Biosensor for On-Glove Application: Organophosphorus Pesticide Detection Directly on Fruit Peels. Talanta 2025, 283, 127093. [Google Scholar] [CrossRef]
- Kasuno, M.; Yamagata, Y.; Kawada, T.; Kayano, S.; Furumoto, T. Photoinduced Electron Transfer from Spinach Chloroplasts to Carbon Paste Electrodes through an Exogenous Electron Acceptor. Int. J. Electrochem. Sci. 2023, 18, 100265. [Google Scholar] [CrossRef]
- Koblížek, M.; Malý, J.; Masojídek, J.; Komenda, J.; Kučera, T.; Giardi, M.T.; Mattoo, A.K.; Pilloton, R. A Biosensor for the Detection of Triazine and Phenylurea Herbicides Designed Using Photosystem II Coupled to a Screen-Printed Electrode. Biotechnol. Bioeng. 2002, 78, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.F.; Li, M.G.; Gao, Y.C.; Fang, B. Amperometric Sensor Used for Determination of Thiocyanate with a Silver Nanoparticles Modified Electrode. Sensors 2004, 4, 147–155. [Google Scholar] [CrossRef]
- Malitesta, C.; Guascito, M.R. Heavy Metal Determination by Biosensors Based on Enzyme Immobilised by Electropolymerisation. Biosens. Bioelectron. 2005, 20, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Mir, T.u.G.; Wani, A.K.; Akhtar, N.; Katoch, V.; Shukla, S.; Kadam, U.S.; Hong, J.C. Advancing Biological Investigations Using Portable Sensors for Detection of Sensitive Samples. Heliyon 2023, 9, e22679. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Yang, M.; Guo, M.; Wu, Z.; Shen, G. Inhibitive Determination of Mercury Ion Using a Renewable Urea Biosensor Based on Self-Assembled Gold Nanoparticles. Sens. Actuators B Chem. 2006, 114, 1–8. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, M.; Singh, G. Recent Advancementsin Urea Biosensors for Biomedical Applications. IET Nanobiotechnol. 2021, 15, 358–379. [Google Scholar] [CrossRef]
- Malik, S.; Singh, J.; Goyat, R.; Saharan, Y.; Chaudhry, V.; Umar, A.; Ibrahim, A.A.; Akbar, S.; Ameen, S.; Baskoutas, S. Nanomaterials-Based Biosensor and Their Applications: A Review. Heliyon 2023, 9, e19929. [Google Scholar] [CrossRef]
- Kurup, C.P.; Ahmed, M.U. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. Biosensors 2023, 13, 461. [Google Scholar] [CrossRef]
- Purcarea, C.; Ruginescu, R.; Banciu, R.M.; Vasilescu, A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. Biosensors 2024, 14, 143. [Google Scholar] [CrossRef]
- Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent Advances in Electrochemical Immunosensors. Anal. Chem. 2017, 89, 138–156. [Google Scholar] [CrossRef]
- Junior, B.B.; Rossignatti, B.C.; Mello, H.J.N.P.D.; Guidelli, É.J.; Mulato, M. Gold-Enhanced Aptasensors for Highly Sensitive Dengue Detection: A Cost-Effective Approach. Surf. Interfaces 2024, 55, 105282. [Google Scholar] [CrossRef]
- Sakalauskiene, L.; Popov, A.; Kausaite-Minkstimiene, A.; Ramanavicius, A.; Ramanaviciene, A. The Impact of Glucose Oxidase Immobilization on Dendritic Gold Nanostructures on the Performance of Glucose Biosensors. Biosensors 2022, 12, 320. [Google Scholar] [CrossRef]
- Drobysh, M.; Liustrovaite, V.; Baradoke, A.; Viter, R.; Chen, C.F.; Ramanavicius, A.; Ramanaviciene, A. Determination of RSpike Protein by Specific Antibodies with Screen-Printed Carbon Electrode Modified by Electrodeposited Gold Nanostructures. Biosensors 2022, 12, 593. [Google Scholar] [CrossRef] [PubMed]
- Grzibovskis, R.; Aizstrauts, A.; Pidluzhna, A.; Marcinskas, M.; Magomedov, A.; Karazhanov, S.; Malinauskas, T.; Getautis, V.; Vembris, A. Energy-Level Interpretation of Carbazole Derivatives in Self-Assembling Monolayer. Molecules 2024, 29, 1910. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Tran, H.V.; Lee, T.R. Self-Assembled Monolayer Coatings on Gold and Silica Surfaces for Antifouling Applications: A Review. Coatings 2022, 12, 1462. [Google Scholar] [CrossRef]
- Butterworth, A.; Blues, E.; Williamson, P.; Cardona, M.; Gray, L.; Corrigan, D.K. SAM Composition and Electrode Roughness Affect Performance of a DNA Biosensor for Antibiotic Resistance. Biosensors 2019, 9, 22. [Google Scholar] [CrossRef]
- Sami, A.S.; Barani, S.S.I.; Rashid, R.F.; Zeebaree, S.Y.S.; Zeebaree, A.Y.S.; Zebari, O.I.H.; Ali, A.M.; Ilyas, K.S.; Biso, F.H.; Issa, M.M. Novel Biosensor for Highly Sensitive Detection of Serum Albumin in Artificial Human Urine Using CuNPs@AG. Sens. Biosensing Res. 2024, 43, 100633. [Google Scholar] [CrossRef]
- Lundin, P.M.; Fiser, B.L.; Blackledge, M.S.; Pickett, H.L.; Copeland, A.L. Functionalized Self-Assembled Monolayers: Versatile Strategies to Combat Bacterial Biofilm Formation. Pharmaceutics 2022, 14, 1613. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, Y.; Fan, X.; Zhou, J.; Lv, Y.; Xia, N. Electrochemical Immunosensors Based on the Solubility Difference of Electroactive Probe and the Dual Signal Amplification of Nanocarrier plus Redox Cycling. Bioelectrochemistry 2025, 162, 108858. [Google Scholar] [CrossRef]
- Ben Messaoud, N.; Barreiros dos Santos, M.; Trocado, V.; Nogueira-Silva, C.; Queirós, R. A Novel Label-Free Electrochemical Immunosensor for Detection of Surfactant Protein B in Amniotic Fluid. Talanta 2023, 251, 123744. [Google Scholar] [CrossRef]
- Ferreira, M.D.P.; Yamada-Ogatta, S.F.; Teixeira Tarley, C.R. Electrochemical and Bioelectrochemical Sensing Platforms for Diagnostics of COVID-19. Biosensors 2023, 13, 336. [Google Scholar] [CrossRef] [PubMed]
- Ben Messaoud, N.; dos Santos, M.B.; Vieira, A.; Garrido-Maestu, A.; Espiña, B.; Queirós, R.B. A Novel Portable Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Aeromonas Salmonicida in Aquaculture Seawater. Anal. Bioanal. Chem. 2022, 414, 6591–6600. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Antonacci, A.; Moccia, M.; Frisulli, V.; De Felice, M.; De Falco, M.; Scognamiglio, V. CRISPR-Cas Assisted Diagnostics: A Broad Application Biosensing Approach. TrAC—Trends Anal. Chem. 2023, 162, 117028. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Huang, Y.; Du, Y.; Zhang, Y.; Cui, Y.; Kong, D.M. Development of the DNA-Based Biosensors for High Performance in Detection of Molecular Biomarkers: More Rapid, Sensitive, and Universal. Biosens. Bioelectron. 2022, 197, 113739. [Google Scholar] [CrossRef]
- Gavrilaș, S.; Ursachi, C.Ș.; Perța-Crișan, S.; Munteanu, F.D. Recent Trends in Biosensors for Environmental Quality Monitoring. Sensors 2022, 22, 1513. [Google Scholar] [CrossRef]
- Zhou, W.; Saran, R.; Liu, J. Metal Sensing by DNA. Chem. Rev. 2017, 117, 8272–8325. [Google Scholar] [CrossRef]
- Bi, S.; Yue, S.; Zhang, S. Hybridization Chain Reaction: A Versatile Molecular Tool for Biosensing, Bioimaging, and Biomedicine. Chem. Soc. Rev. 2017, 46, 4281–4298. [Google Scholar] [CrossRef]
- Voon, C.H.; Yusop, N.M.; Khor, S.M. The State-of-the-Art in Bioluminescent Whole-Cell Biosensor Technology for Detecting Various Organic Compounds in Oil and Grease Content in Wastewater: From the Lab to the Field. Talanta 2022, 241, 123271. [Google Scholar] [CrossRef]
- Atkinson, J.T.; Su, L.; Zhang, X.; Bennett, G.N.; Silberg, J.J.; Ajo-Franklin, C.M. Real-Time Bioelectronic Sensing of Environmental Contaminants. Nature 2022, 611, 548–553. [Google Scholar] [CrossRef]
- Gui, Q.; Lawson, T.; Shan, S.; Yan, L.; Liu, Y. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. Sensors 2017, 17, 1623. [Google Scholar] [CrossRef]
- Dey, S.; Baba, S.A.; Bhatt, A.; Dhyani, R.; Navani, N.K. Transcription Factor Based Whole-Cell Biosensor for Specific and Sensitive Detection of Sodium Dodecyl Sulfate. Biosens. Bioelectron. 2020, 170, 112659. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Hu, J.; Lu, F. Aptamers Used for Biosensors and Targeted Therapy. Biomed. Pharmacother. 2020, 132, 110902. [Google Scholar] [CrossRef]
- Léguillier, V.; Heddi, B.; Vidic, J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. Biosensors 2024, 14, 210. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Lu, C.; Lin, X.; Kang, L.; Duan, N.; Wang, Z.; Liu, C.; Wu, S. A Portable Microfluidic Chip-Based Fluorescent and Colorimetric Aptasensor Combining Recombinase Polymerase Amplification for Bovine Pregnancy-Associated Glycoproteins Detection. Biosens. Bioelectron. 2025, 270, 116981. [Google Scholar] [CrossRef]
- Shaukat, A.; Chrouda, A.; Sadaf, S.; Alhamlan, F.; Eissa, S.; Zourob, M. Cell-SELEX for Aptamer Discovery and Its Utilization in Constructing Electrochemical Biosensor for Rapid and Highly Sensitive Detection of Legionella Pneumophila Serogroup 1. Sci. Rep. 2024, 14, 14132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ning, Z.; Zhang, Y.; Lin, X.; Duan, N.; Wang, Z.; Wu, S. Construction of a Microfluidic SELEX Platform for Efficient Screening of Advanced Glycation End Products Aptamer. Biosens. Bioelectron. 2025, 271, 117038. [Google Scholar] [CrossRef]
- Liu, L.; Han, Z.; An, F.; Gong, X.; Zhao, C.; Zheng, W.; Mei, L.; Zhou, Q. Aptamer-Based Biosensors for the Diagnosis of Sepsis. J. Nanobiotechnol. 2021, 19, 216. [Google Scholar] [CrossRef]
- Zandieh, M.; Luo, X.; Zhao, Y.; Feng, C.; Liu, J. Selection of Plastic-Binding DNA Aptamers for Microplastics Detection. Angew. Chem. Int. Ed. 2024, 64, e202421438. [Google Scholar] [CrossRef]
- Feng, T.; Huang, Y.; Liu, X.; Yan, S. Sensitive and Selective Fluorescence Detection of Acetamiprid Using Oxidized Single-Walled Carbon Nanohorns and Cryonase-Assisted Signal Amplification. J. Photochem. Photobiol. A Chem. 2025, 459, 116025. [Google Scholar] [CrossRef]
- Rai, A.; Ferrão, R.; Palma, P.; Patricio, T.; Parreira, P.; Anes, E.; Tonda-Turo, C.; Martins, M.C.L.; Alves, N.; Ferreira, L. Antimicrobial Peptide-Based Materials: Opportunities and Challenges. J. Mater. Chem. B 2022, 10, 2384–2429. [Google Scholar] [CrossRef]
- Gupta, S.; Kakkar, V. DARPin Based GMR Biosensor for the Detection of ESAT-6 Tuberculosis Protein. Tuberculosis 2019, 118, 101852. [Google Scholar] [CrossRef] [PubMed]
- Cieplak, M.; Kutner, W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 2016, 34, 922–941. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C.; Kaplan, S.; Matthews, E.C.; Edwards, P.K.; Helmsworth, J.A. Monitor and Control of Blood Oxygen Tension and Ph During Total Body Perfusion. J. Thorac. Surg. 1958, 36, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C., Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Turner, A.P.F. Biosensors: Fundamentals and Applications—Historic Book Now Open Access. Biosens. Bioelectron. 2015, 65, A1. [Google Scholar] [CrossRef]
- Newman, J.D.; Setford, S.J. Enzymatic Biosensors. Mol. Biotechnol. 2006, 32, 249–268. [Google Scholar] [CrossRef]
- Kizilkurtlu, A.A.; Demirbas, E.; Agel, H.E. Electrochemical Aptasensors for Pathogenic Detection toward Point-of-Care Diagnostics. Biotechnol. Appl. Biochem. 2023, 70, 1460–1479. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Wu, L.; Huang, Y.; Zhang, Y.; Zhu, M.; Wang, Y.; Zhu, Z.; Yang, C. Trends in Miniaturized Biosensors for Point-of-Care Testing. TrAC—Trends Anal. Chem. 2020, 122, 115701. [Google Scholar] [CrossRef]
- Ainla, A.; Mousavi, M.P.S.; Tsaloglou, M.N.; Redston, J.; Bell, J.G.; Fernández-Abedul, M.T.; Whitesides, G.M. Open-Source Potentiostat for Wireless Electrochemical Detection with Smartphones. Anal. Chem. 2018, 90, 6240–6246. [Google Scholar] [CrossRef]
- Schachinger, F.; Chang, H.; Scheiblbrandner, S.; Ludwig, R. Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules 2021, 26, 4525. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A Sensitive Amperometric AChE-Biosensor for Organophosphate Pesticides Detection Based on Conjugated Polymer and Ag-RGO-NH 2 Nanocomposite. Bioelectrochemistry 2019, 127, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lu, X.; Liu, G.; Yang, L.; Gao, F. Core-Shell ZnO@CoO Nitrogen Doped Nano-Composites as Highly Sensitive Electrochemical Sensor for Organophosphate Pesticides Detection. Anal. Biochem. 2024, 686, 115422. [Google Scholar] [CrossRef] [PubMed]
- Kızılkurtlu, A.A.; Agel, E.; Şenocak, A.; Demirbas, E. Development of CoFe2O4/SWCNT Modified Gold Nanoparticle Coated LAMP Incorporated Electrochemical DNA Biosensor for Salmonella in Contaminated Water Filtered Samples. Microchem. J. 2025, 208, 112412. [Google Scholar] [CrossRef]
- Dabhade, A.H.; Paramasivan, B.; Kumawat, A.S.; Saha, B. Miniature Lab-Made Electrochemical Biosensor: A Promising Sensing Kit for Rapid Detection of E. Coli in Water, Urine and Milk. Talanta 2025, 285, 127306. [Google Scholar] [CrossRef]
- Kumar, M.S.; Nandeshwar, R.; Lad, S.B.; Megha, K.; Mangat, M.; Butterworth, A.; Knapp, C.W.; Knapp, M.; Hoskisson, P.A.; Corrigan, D.K.; et al. Electrochemical Sensing of SARS-CoV-2 Amplicons with PCB Electrodes. Sens. Actuators B Chem. 2021, 343, 130169. [Google Scholar] [CrossRef]
- Del Torno-De Román, L.; Asunción Alonso-Lomillo, M.; Domínguez-Renedo, O.; Julia Arcos-Martínez, M. Tyrosinase Based Biosensor for the Electrochemical Determination of Sulfamethoxazole. Sens. Actuators B Chem. 2016, 227, 48–53. [Google Scholar] [CrossRef]
- Wang, X.; Mohammadzadehsaliani, S.; Vafaei, S.; Ahmadi, L.; Iqbal, A.; Alreda, B.A.; Talib Al-Naqeeb, B.Z.; Kheradjoo, H. Synthesis and Electrochemical Study of Enzymatic Graphene Oxide-Based Nanocomposite as Stable Biosensor for Determination of Bevacizumab as a Medicine in Colorectal Cancer in Human Serum and Wastewater Fluids. Chemosphere 2023, 336, 139012. [Google Scholar] [CrossRef]
- Al borhani, W.; Rhouati, A.; Cialla-May, D.; Popp, J.; Zourob, M. Multiplex Electrochemical Aptasensor for the Simultaneous Detection of Linomycin and Neomycin Antibiotics. Talanta 2025, 282, 126922. [Google Scholar] [CrossRef]
- Yue, P.; Ruiyi, L.; Xie, W.; Yirui, S.; Zaijun, L. Electrochemical Biosensor Based on Au5Ir@graphene Quantum Dot Nanocomposite and DNA Walker for Detection of Atrazine in Environmental Water with Extremely High Sensitivity and Selectivity. Sens. Actuators B Chem. 2025, 423, 136873. [Google Scholar] [CrossRef]
- Thet Tun, W.S.; Saenchoopa, A.; Daduang, S.; Daduang, J.; Kulchat, S.; Patramanon, R. Electrochemical Biosensor Based on Cellulose Nanofibers/Graphene Oxide and Acetylcholinesterase for the Detection of Chlorpyrifos Pesticide in Water and Fruit Juice. RSC Adv. 2023, 13, 9603–9614. [Google Scholar] [CrossRef]
- Suwannachat, J.; Saenchoopa, A.; Tun, W.S.T.; Patramanon, R.; Daduang, S.; Daduang, J.; Kulchat, S. An Electrochemical AChE-Based Biosensor for Organophosphate Pesticides Using a Modified CuNWs/RGO Nanocomposite on a Screen-Printed Carbon Electrode. Food Chem. 2024, 434, 137431. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Cheong, L.; Li, Y.; Lou, Y.; Fu, S. Sensitive and Rapid Electrochemical Detection of Nitroaromatic Pesticides by the Ordered Macro-Microporous ZIF-8 Immobilized Lipase-Based Sensor. Microchem. J. 2023, 193, 109007. [Google Scholar] [CrossRef]
- Gurban, A.M.; Rotariu, L.; Baibarac, M.; Baltog, I.; Bala, C. Sensitive Detection of Endocrine Disrupters Using Ionic Liquid—Single Walled Carbon Nanotubes Modified Screen-Printed Based Biosensors. Talanta 2011, 85, 2007–2013. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhao, G.; Shi, H.; Liu, M. A Simple and Label-Free Aptasensor Based on Nickel Hexacyanoferrate Nanoparticles as Signal Probe for Highly Sensitive Detection of 17β-Estradiol. Biosens. Bioelectron. 2015, 68, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Nomngongo, P.N.; Catherine Ngila, J.; Msagati, T.A.M.; Gumbi, B.P.; Iwuoha, E.I. Determination of Selected Persistent Organic Pollutants in Wastewater from Landfill Leachates, Using an Amperometric Biosensor. Phys. Chem. Earth 2012, 50–52, 252–261. [Google Scholar] [CrossRef]
- Sundeep, D.; Varadharaj, E.K.; Umadevi, K.; Jhansi, R. Review—Role of Nanomaterials in Screenprinted Electrochemical Biosensors for Detection of COVID-19 and for Post-Covid Syndromes. ECS Adv. 2023, 2, 016502. [Google Scholar] [CrossRef]
- Razmi, N.; Hasanzadeh, M.; Willander, M.; Nur, O. Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. Biosensors 2020, 10, 54. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Coppedè, N.; Giannetto, M.; Villani, M.; Lucchini, V.; Battista, E.; Careri, M.; Zappettini, A. Ion Selective Textile Organic Electrochemical Transistor for Wearable Sweat Monitoring. Org. Electron. 2020, 78, 105579. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. A Critical Review on the Use of Potentiometric Based Biosensors for Biomarkers Detection. Biosens. Bioelectron. 2021, 184, 113252. [Google Scholar] [CrossRef]
- Shaibani, P.M.; Etayash, H.; Jiang, K.; Sohrabi, A.; Hassanpourfard, M.; Naicker, S.; Sadrzadeh, M.; Thundat, T. Portable Nanofiber-Light Addressable Potentiometric Sensor for Rapid Escherichia coli Detection in Orange Juice. ACS Sens. 2018, 3, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Jiang, T.; Qin, W. Potentiometric Aptasensing of Escherichia coli Based on Electrogenerated Chemiluminescence as a Highly Sensitive Readout. Biosens. Bioelectron. 2022, 200, 113923. [Google Scholar] [CrossRef] [PubMed]
- Antonacci, A.; Arduini, F.; Attaallah, R.; Amine, A.; Giardi, M.T.; Scognamiglio, V. A Proof-of-Concept Electrochemical Cytosensor Based on Chlamydomonas Reinhardtii Functionalized Carbon Black Screen-Printed Electrodes: Detection of Escherichia coli in Wastewater as a Case Study. Biosensors 2022, 12, 401. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fu, Y.; Fang, W.; Li, Y. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin. Sensors 2015, 15, 19212–19224. [Google Scholar] [CrossRef]
- Perumal, V.; Hashim, U. Advances in Biosensors: Principle, Architecture and Applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Barreiros dos Santos, M.; Azevedo, S.; Agusil, J.P.; Prieto-Simón, B.; Sporer, C.; Torrents, E.; Juárez, A.; Teixeira, V.; Samitier, J. Label-Free ITO-Based Immunosensor for the Detection of Very Low Concentrations of Pathogenic Bacteria. Bioelectrochemistry 2015, 101, 146–152. [Google Scholar] [CrossRef]
- Yao, L.; Wang, L.; Huang, F.; Cai, G.; Xi, X.; Lin, J. A Microfluidic Impedance Biosensor Based on Immunomagnetic Separation and Urease Catalysis for Continuous-Flow Detection of E. coli O157:H7. Sens. Actuators B Chem. 2018, 259, 1013–1021. [Google Scholar] [CrossRef]
- Cimafonte, M.; Fulgione, A.; Gaglione, R.; Papaianni, M.; Capparelli, R.; Arciello, A.; Censi, S.B.; Borriello, G.; Velotta, R.; Ventura, B. Della Screen Printed Based Impedimetric Immunosensor for Rapid Detection of Escherichia coli in Drinking Water. Sensors 2020, 20, 274. [Google Scholar] [CrossRef]
- Zare, A.R.; Ensafi, A.A.; Rezaei, B. An Impedimetric Biosensor Based on Poly(l-Lysine)-Decorated Multiwall Carbon Nanotubes for the Determination of Diazinon in Water and Fruits. J. Iran. Chem. Soc. 2019, 16, 2777–2785. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Fallahi Nezhad, F.; Akmal, M.H.; Althomali, R.H.; Sharma, N.; Rahmanian, V.; Azhdari, R.; Gholami, A.; Rahman, M.M.; Chiang, W.H. Recent Advances and Synergistic Effect of Bioactive Zeolite Imidazolate Frameworks (ZIFs) for Biosensing Applications. Talanta 2024, 275, 126097. [Google Scholar] [CrossRef] [PubMed]
- Berketa, K.; Saiapina, O.; Fayura, L.; Sibirny, A.; Dzyadevych, S.; Soldatkin, O. Novel Highly Sensitive Conductometric Biosensor Based on Arginine Deiminase from Mycoplasma Hominis for Determination of Arginine. Sens. Actuators B Chem. 2022, 367, 132023. [Google Scholar] [CrossRef]
- Uda, M.N.A.; Dafhalla, A.K.Y.; Dhahi, T.S.; Adam, T.; Gopinath, S.C.B.; Uda, M.N.A.; Mohammed, M.; Parmin, N.A.; Ibrahim, N.H.; Hashim, U. Conductometric Immunosensor for Specific Escherichia coli O157:H7 Detection on Chemically Funcationalizaed Interdigitated Aptasensor. Heliyon 2024, 10, e26988. [Google Scholar] [CrossRef]
- Hosseini, S.N.; Das, P.S.; Lazarjan, V.K.; Gagnon-Turcotte, G.; Bouzid, K.; Gosselin, B. Recent Advances in CMOS Electrochemical Biosensor Design for Microbial Monitoring: Review and Design Methodology. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 202–228. [Google Scholar] [CrossRef]
- Yoo, J.; Jeong, H.; Park, S.K.; Park, S.; Lee, J.S. Interdigitated Electrode Biosensor Based on Plasma-Deposited Tio2 Nanoparticles for Detecting Dna. Biosensors 2021, 11, 212. [Google Scholar] [CrossRef]
- Chio, W.-I.K.; Xie, H.; Zhang, Y.; Lan, Y.; Lee, T.-C. SERS Biosensors Based on Cucurbituril-Mediated Nanoaggregates for Wastewater-Based Epidemiology. TrAC Trends Anal. Chem. 2022, 146, 116485. [Google Scholar] [CrossRef]
- Mao, K.; Yang, Z.; Zhang, H.; Li, X.; Cooper, J.M. Paper-Based Nanosensors to Evaluate Community-Wide Illicit Drug Use for Wastewater-Based Epidemiology. Water Res. 2021, 189, 116559. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, T.; Qu, Y.; Mills, A.J.; Zhang, G.; He, L. Rapid Capture and SERS Detection of Triclosan Using a Silver Nanoparticle Core—Protein Satellite Substrate. Sci. Total Environ. 2020, 716, 137097. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Wang, Z.; Jiao, T.; Ouyang, Q.; Chen, Q. Polydimethylsiloxane Assisted Surface-Enhanced Raman Spectroscopy for Staphylococcus Aureus Detection Based on Aptamer Recognition. Microchem. J. 2023, 193, 109172. [Google Scholar] [CrossRef]
- Herrera-Domínguez, M.; Lambert, A.S.; Morales-Luna, G.; Pisano, E.; Aguilar-Hernandez, I.; Mahlknecht, J.; Cheng, Q.; Ornelas-Soto, N. Development of a Surface Plasmon Resonance Based Immunosensor for Diclofenac Quantification in Water. Chemosphere 2023, 336, 139156. [Google Scholar] [CrossRef]
- Mazouzi, Y.; Miche, A.; Loiseau, A.; Beito, B.; Méthivier, C.; Knopp, D.; Salmain, M.; Boujday, S. Design and Analytical Performances of a Diclofenac Biosensor for Water Resources Monitoring. ACS Sens. 2021, 6, 3485–3493. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Chen, X.; Chen, J.; Zhang, Y.; Wang, X.; Wu, Z.; Zhou, N. In Vitro Selection and Engineering Azithromycin-Specific Aptamers and Construction of a Ratiometric Fluorescent Aptasensor for Sensitive Detection of Azithromycin. Sens. Actuators B Chem. 2024, 411, 135789. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Jang, C.H. Ultrasensitive Colorimetric Detection of Amoxicillin Based on Tris-HCl-Induced Aggregation of Gold Nanoparticles. Anal. Biochem. 2022, 645, 114634. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, Y.; Wang, X.; Zhou, X.; Qiu, Y.; Qin, W.; ShenTu, X.; Wang, S.; Yu, X.; Ye, Z. Dosage-Sensitive and Simultaneous Detection of Multiple Small-Molecule Pollutants in Environmental Water and Agriproducts Using Portable SERS-Based Lateral Flow Immunosensor. Sci. Total Environ. 2024, 912, 169440. [Google Scholar] [CrossRef]
- Tun, W.S.T.; Talodthaisong, C.; Daduang, S.; Daduang, J.; Rongchai, K.; Patramanon, R.; Kulchat, S. A Machine Learning Colorimetric Biosensor Based on Acetylcholinesterase and Silver Nanoparticles for the Detection of Dichlorvos Pesticides. Mater. Chem. Front. 2022, 6, 1487–1498. [Google Scholar] [CrossRef]
- Sunantha, G.; Vasudevan, N. A Method for Detecting Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Water Samples Using Genetically Engineered Bacterial Biosensor. Sci. Total Environ. 2021, 759, 143544. [Google Scholar] [CrossRef]
- Quintanilla-Villanueva, G.E.; Luna-Moreno, D.; Blanco-Gámez, E.A.; Rodríguez-Delgado, J.M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M.M. A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene. Biosensors 2021, 11, 43. [Google Scholar] [CrossRef]
- Seggio, M.; Arcadio, F.; Cennamo, N.; Zeni, L.; Bossi, A.M. A Plasmonic Gold Nano-Surface Functionalized with the Estrogen Receptor for Fast and Highly Sensitive Detection of Nanoplastics. Talanta 2024, 267, 125211. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, Y.; Hong, S. Quantitatively Sensitive and Resolution-Enhancing Strategies in Optical Signal Conversion of SPR Images Using Extensive Angle-Scanning and Image-Reconstruction. Sens. Actuators B Chem. 2024, 400, 134897. [Google Scholar] [CrossRef]
- Matsunaga, R.; Ujiie, K.; Inagaki, M.; Fernández Pérez, J.; Yasuda, Y.; Mimasu, S.; Soga, S.; Tsumoto, K. High-Throughput Analysis System of Interaction Kinetics for Data-Driven Antibody Design. Sci. Rep. 2023, 13, 19417. [Google Scholar] [CrossRef]
- Herrera-Domínguez, M.; Morales-Luna, G.; Mahlknecht, J.; Cheng, Q.; Aguilar-Hernández, I.; Ornelas-Soto, N. Optical Biosensors and Their Applications for the Detection of Water Pollutants. Biosensors 2023, 13, 370. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Dong, X.; Hamed, E.M.; Jiang, H.; Cao, W.; Yau Li, S.F.; Wang, Z. Ratiometric Fluorescence Aptasensor of Allergen Protein Based on Multivalent Aptamer-Encoded DNA Flowers as Fluorescence Resonance Energy Transfer Platform. Anal. Chem. 2024, 96, 6947–6957. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.A.M.; Chong, K.F.; Makhlouf, A.S.H. Handbook of Nanosensors: Materials and Technological Applications; Springer Nature: Berlin/Heidelberg, Germany, 2024; ISBN 978-303147180-3; 978-303147179-7. [Google Scholar]
- Magar, H.S.; Hassan, R.Y.A. Nanoelectrochemical Biosensors: Principles, Architectures Applications, and Future Directions. In Handbook of Nanosensors: Materials and Technological Applications; Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 1–26. ISBN 978-3-031-16338-8. [Google Scholar]
- Pohanka, M. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials 2018, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Zhang, H.; Pan, Y.; Yang, Z. Biosensors for Wastewater-Based Epidemiology for Monitoring Public Health. Water Res. 2021, 191, 116787. [Google Scholar] [CrossRef]
- Yildirim-Tirgil, N.; Lee, J.; Cho, H.; Lee, H.; Somu, S.; Busnaina, A.; Gu, A.Z. A SWCNT Based Aptasensor System for Antibiotic Oxytetracycline Detection in Water Samples. Anal. Methods 2019, 11, 2692–2699. [Google Scholar] [CrossRef]
- Hamami, M.; Bouaziz, M.; Raouafi, N.; Bendounan, A.; Korri-Youssoufi, H. MoS2/PPy Nanocomposite as a Transducer for Electrochemical Aptasensor of Ampicillin in River Water. Biosensors 2021, 11, 311. [Google Scholar] [CrossRef]
- Wei, X.; Sun, Y.; Luo, Y.; Shu, R.; Lin, H.; Xu, D. Electrochemical Biosensor Bi2O3@Au@Apta Based on Bi2O3 Nanofibers for Sensitive Detection of Ampicillin. Biochem. Eng. J. 2023, 200, 109107. [Google Scholar] [CrossRef]
- Bao, Y.; Cai, K.; Liu, Y.; Li, B. Aptamer-Based Antibiotic Electrochemical Detection Platform Using Portable Plastic Gold Electrode and Multichannel Chip. Chin. J. Chem. 2024, 42, 171–176. [Google Scholar] [CrossRef]
- Reinemann, C.; Freiin von Fritsch, U.; Rudolph, S.; Strehlitz, B. Generation and Characterization of Quinolone-Specific DNA Aptamers Suitable for Water Monitoring. Biosens. Bioelectron. 2016, 77, 1039–1047. [Google Scholar] [CrossRef]
- Asmare, M.M.; Krishnaraj, C.; Radhakrishnan, S.; Kim, B.-S.; Yoon, J.-S.; Yun, S.-I. In Silico Modelling of Ciprofloxacin Specific Aptamer for the Development of High-Performance Biosensor. J. Mol. Graph. Model. 2024, 130, 108787. [Google Scholar] [CrossRef]
- Huang, S.; Gan, N.; Li, T.; Zhou, Y.; Cao, Y.; Dong, Y. Electrochemical Aptasensor for Multi-Antibiotics Detection Based on Endonuclease and Exonuclease Assisted Dual Recycling Amplification Strategy. Talanta 2018, 179, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Bor, G.; Man, E.; Ugurlu, O.; Ceylan, A.E.; Balaban, S.; Durmus, C.; Pinar Gumus, Z.; Evran, S.; Timur, S. In Vitro Selection of Aptamer for Imidacloprid Recognition as Model Analyte and Construction of a Water Analysis Platform. Electroanalysis 2020, 32, 1922–1929. [Google Scholar] [CrossRef]
- Phopin, K.; Ruankham, W.; Dave, J.; Rukkhapiban, P.; Nuttavuttisit, C.; Hongoeb, J.; Zine, N.; Errachid, A.; Tantimongcolwat, T. Portable Label-Free Electrochemical Aptasensor for Sensitive Detection of Paraquat Herbicide Mediated by Oxygen Reduction Reaction. Talanta 2025, 281, 126841. [Google Scholar] [CrossRef] [PubMed]
- Madianos, L.; Tsekenis, G.; Skotadis, E.; Patsiouras, L.; Tsoukalas, D. A Highly Sensitive Impedimetric Aptasensor for the Selective Detection of Acetamiprid and Atrazine Based on Microwires Formed by Platinum Nanoparticles. Biosens. Bioelectron. 2018, 101, 268–274. [Google Scholar] [CrossRef]
- Gaviria-Arroyave, M.I.; Arango, J.P.; Barrientos Urdinola, K.; Cano, J.B.; Peñuela Mesa, G.A. Fluorescent Nanostructured Carbon Dot-Aptasensor for Chlorpyrifos Detection: Elucidating the Interaction Mechanism for an Environmentally Hazardous Pollutant. Anal. Chim. Acta 2023, 1278, 341711. [Google Scholar] [CrossRef]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-Free Optical Biosensors for Food and Biological Sensor Applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Irkham, I.; Ibrahim, A.U.; Pwavodi, P.C.; Al-Turjman, F.; Hartati, Y.W. Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. Sensors 2023, 23, 2240. [Google Scholar] [CrossRef]
- Majdinasab, M.; Mitsubayashi, K.; Marty, J.L. Optical and Electrochemical Sensors and Biosensors for the Detection of Quinolones. Trends Biotechnol. 2019, 37, 898–915. [Google Scholar] [CrossRef]
- Talari, F.F.; Bozorg, A.; Faridbod, F.; Vossoughi, M. A Novel Sensitive Aptamer-Based Nanosensor Using RGQDs and MWCNTs for Rapid Detection of Diazinon Pesticide. J. Environ. Chem. Eng. 2021, 9, 104878. [Google Scholar] [CrossRef]
- Hatamluyi, B.; Sadeghzadeh, S.; Rezayi, M.; Tavakoly Sany, S.B. Diazinon Electrochemical Biosensor Mediated by Aptamer and Nanoscale Porous Carbon Derived from ZIF-8. Sens. Actuators B Chem. 2023, 381, 133424. [Google Scholar] [CrossRef]
- Roushani, M.; Shahdost-fard, F. Applicability of AuNPs@N-GQDs Nanocomposite in the Modeling of the Amplified Electrochemical Ibuprofen Aptasensing Assay by Monitoring of Riboflavin. Bioelectrochemistry 2019, 126, 38–47. [Google Scholar] [CrossRef]
- Gharib, G.; Bütün, İ.; Muganlı, Z.; Kozalak, G.; Namlı, İ.; Sarraf, S.S.; Ahmadi, V.E.; Toyran, E.; van Wijnen, A.J.; Koşar, A. Biomedical Applications of Microfluidic Devices: A Review. Biosensors 2022, 12, 1023. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, G.; Samadi Pakchin, P.; Shamloo, A.; Mota, A.; de la Guardia, M.; Omidian, H.; Omidi, Y. Label-Free Electrochemical Microfluidic Biosensors: Futuristic Point-of-Care Analytical Devices for Monitoring Diseases. Microchim. Acta 2022, 189, 252. [Google Scholar] [CrossRef] [PubMed]
- Lonchamps, P.-L.; He, Y.; Wang, K.; Lu, X. Detection of Pathogens in Foods Using Microfluidic “Lab-on-Chip”: A Mini Review. J. Agric. Food Res. 2022, 10, 100430. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Jiao, S.; Li, Y.; Zhou, Y.; Zhang, X.; Maryam, B.; Liu, X. Microfluidic Sensors for the Detection of Emerging Contaminants in Water: A Review. Sci. Total Environ. 2024, 929, 172734. [Google Scholar] [CrossRef]
- Wang, J.; Pumera, M.; Chatrathi, M.P.; Escarpa, A.; Konrad, R.; Griebel, A.; Drner, W.; Lwe, H. Towards Disposable Lab-on-a-Chip: Poly(Methylmethacrylate) Microchip Electrophoresis Device with Electrochemical Detection. Electrophoresis 2002, 23, 596–601. [Google Scholar] [CrossRef]
- Javanifar, R.; Ghorbanpoor, H.; Avci, H. Improved Bacterial Filtration and DNA Retention by a Novel Microfiltration Process Including Composite Membranes. Sep. Purif. Technol. 2025, 357, 130114. [Google Scholar] [CrossRef]
- Saravanakumar, S.M.; Cicek, P.V. Microfluidic Mixing: A Physics-Oriented Review. Micromachines 2023, 14, 1827. [Google Scholar] [CrossRef]
- Li, N.; Shen, M.; Xu, Y. A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers. Micromachines 2021, 12, 347. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- AlMashrea, B.A.; Almehdi, A.M.; Damiati, S. Simple Microfluidic Devices for in Situ Detection of Water Contamination: A State-of-Art Review. Front. Bioeng. Biotechnol. 2024, 12, 1355768. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Zhao, W.; Neethirajan, S.; Duffield, T. Microfluidic Biosensor for β-Hydroxybutyrate (ΒHBA) Determination of Subclinical Ketosis Diagnosis. J. Nanobiotechnol. 2015, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Tsougeni, K.; Kaprou, G.; Loukas, C.M.; Papadakis, G.; Hamiot, A.; Eck, M.; Rabus, D.; Kokkoris, G.; Chatzandroulis, S.; Papadopoulos, V.; et al. Lab-on-Chip Platform and Protocol for Rapid Foodborne Pathogen Detection Comprising on-Chip Cell Capture, Lysis, DNA Amplification and Surface-Acoustic-Wave Detection. Sens. Actuators B Chem. 2020, 320, 128345. [Google Scholar] [CrossRef]
- Xie, Y.; Zhi, X.; Su, H.; Wang, K.; Yan, Z.; He, N.; Zhang, J.; Chen, D.; Cui, D. A Novel Electrochemical Microfluidic Chip Combined with Multiple Biomarkers for Early Diagnosis of Gastric Cancer. Nanoscale Res. Lett. 2015, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhang, S.; Liu, Q.; Xu, T.; Zhang, X. Microfluidic-Based Plasmonic Microneedle Biosensor for Uric Acid Ultrasensitive Monitoring. Sens. Actuators B Chem. 2024, 398, 134685. [Google Scholar] [CrossRef]
- Ehzari, H.; Amiri, M.; Hallaj, R.; Sadeghi, M. Rapid, Flexible Fabrication of a Microfluidic Electrochemical Chip Nucleic Acid Target for Selective, Label-Free Detection of Influenza Virus DNA Using Catalytic Redox-Recycling. Anal. Biochem. 2025, 700, 115771. [Google Scholar] [CrossRef]
- Aleklett, K.; Kiers, E.T.; Ohlsson, P.; Shimizu, T.S.; Caldas, V.E.A.; Hammer, E.C. Build Your Own Soil: Exploring Microfluidics to Create Microbial Habitat Structures. ISME J. 2018, 12, 312–319. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, X.; Ye, Q.; Zou, J.; Wan, Q.; Jiang, F.; Cai, Z.; Zhang, J.; Qu, X.; Huang, J.; et al. Isothermal Nucleic Acid Amplification-Based Biosensors: The next Generation Analytical Toolkit for Point-of-Care Assay of Foodborne Pathogens. Trends Food Sci. Technol. 2025, 157, 104882. [Google Scholar] [CrossRef]
- Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions 2018, 3, 60. [Google Scholar] [CrossRef]
- Zolti, O.; Suganthan, B.; Ramasamy, R.P. Lab-on-a-Chip Electrochemical Biosensors for Foodborne Pathogen Detection: A Review of Common Standards and Recent Progress. Biosensors 2023, 13, 215. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal. Chem. 2020, 92, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Fabrication and Applications of Microfluidic Devices: A Review. Int. J. Mol. Sci. 2021, 22, 2011. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Islam, M.; Gupta, A. Microfluidic Devices for the Detection of Contamination in Water Samples: A Review. Sens. Actuators A Phys. 2022, 347, 113926. [Google Scholar] [CrossRef]
- Scott, S.M.; Ali, Z. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines 2021, 12, 319. [Google Scholar] [CrossRef]
- Liu, X.; Sun, A.; Brodský, J.; Gablech, I.; Lednický, T.; Vopařilová, P.; Zítka, O.; Zeng, W.; Neužil, P. Microfluidics Chips Fabrication Techniques Comparison. Sci. Rep. 2024, 14, 28793. [Google Scholar] [CrossRef]
- Nissen, M.; Doherty, B.; Hamperl, J.; Kobelke, J.; Weber, K.; Henkel, T.; Schmidt, M.A. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection. Sensors 2018, 18, 478. [Google Scholar] [CrossRef]
- Burtsev, V.; Erzina, M.; Guselnikova, O.; Miliutina, E.; Kalachyova, Y.; Svorcik, V.; Lyutakov, O. Detection of Trace Amounts of Insoluble Pharmaceuticals in Water by Extraction and SERS Measurements in a Microfluidic Flow Regime. Analyst 2021, 146, 3686–3696. [Google Scholar] [CrossRef]
- Man, Y.; Ban, M.; Li, A.; Jin, X.; Du, Y.; Pan, L. A Microfluidic Colorimetric Biosensor for In-Field Detection of Salmonella in Fresh-Cut Vegetables Using Thiolated Polystyrene Microspheres, Hose-Based Microvalve and Smartphone Imaging APP. Food Chem. 2021, 354, 129578. [Google Scholar] [CrossRef]
- Jiang, Y.; Qiu, Z.; Le, T.; Zou, S.; Cao, X. Developing a Dual-RCA Microfluidic Platform for Sensitive E. coli O157:H7 Whole-Cell Detections. Anal. Chim. Acta 2020, 1127, 79–88. [Google Scholar] [CrossRef]
- Zheng, L.; Cai, G.; Wang, S.; Liao, M.; Li, Y.; Lin, J. A Microfluidic Colorimetric Biosensor for Rapid Detection of Escherichia coli O157:H7 Using Gold Nanoparticle Aggregation and Smart Phone Imaging. Biosens. Bioelectron. 2019, 124–125, 143–149. [Google Scholar] [CrossRef]
- Saez, J.; Catalan-Carrio, R.; Owens, R.M.; Basabe-Desmonts, L.; Benito-Lopez, F. Microfluidics and Materials for Smart Water Monitoring: A Review. Anal. Chim. Acta 2021, 1186, 338392. [Google Scholar] [CrossRef] [PubMed]
- Doostmohammadi, A.; Huang, H.; Naushad, S.; Rezai, P. Portable Cell Imprinted Polymer-Based Microfluidic Sensor for Bacteria Detection in Real Water. Microchem. J. 2024, 206, 111611. [Google Scholar] [CrossRef]
- Akhtarian, S.; Kaur Brar, S.; Rezai, P. Electrochemical Impedance Spectroscopy-Based Microfluidic Biosensor Using Cell-Imprinted Polymers for Bacteria Detection. Biosensors 2024, 14, 445. [Google Scholar] [CrossRef] [PubMed]
- Akhtarian, S.; Doostmohammadi, A.; Archonta, D.-E.; Kraft, G.; Brar, S.K.; Rezai, P. Microfluidic Sensor Based on Cell-Imprinted Polymer-Coated Microwires for Conductometric Detection of Bacteria in Water. Biosensors 2023, 13, 943. [Google Scholar] [CrossRef]
- He, X.; Zhou, X.; Liu, Y.; Wang, X. Ultrasensitive, Recyclable and Portable Microfluidic Surface-Enhanced Raman Scattering (SERS) Biosensor for Uranyl Ions Detection. Sens. Actuators B Chem. 2020, 311, 127676. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y.W.; Jeon, H.J. Machine Learning-Driven Innovations in Microfluidics. Biosensors 2024, 14, 613. [Google Scholar] [CrossRef]
- Asadian, E.; Bahramian, F.; Siavashy, S.; Movahedi, S.; Keçili, R.; Hussain, C.M.; Ghorbani-Bidkorpeh, F. A Review on Recent Advances of AI-Integrated Microfluidics for Analytical and Bioanalytical Applications. TrAC Trends Anal. Chem. 2024, 181, 118004. [Google Scholar] [CrossRef]
- Galan, E.A.; Zhao, H.; Wang, X.; Dai, Q.; Huck, W.T.S.; Ma, S. Intelligent Microfluidics: The Convergence of Machine Learning and Microfluidics in Materials Science and Biomedicine. Matter 2020, 3, 1893–1922. [Google Scholar] [CrossRef]
- McIntyre, D.; Lashkaripour, A.; Fordyce, P.; Densmore, D. Machine Learning for Microfluidic Design and Control. Lab. Chip 2022, 22, 2925–2937. [Google Scholar] [CrossRef]
- Praljak, N.; Iram, S.; Goreke, U.; Singh, G.; Hill, A.; Gurkan, U.A.; Hinczewski, M. Integrating Deep Learning with Microfluidics for Biophysical Classification of Sickle Red Blood Cells Adhered to Laminin. PLoS Comput. Biol. 2021, 17, e1008946. [Google Scholar] [CrossRef]
- Antonelli, G.; Filippi, J.; D’Orazio, M.; Curci, G.; Casti, P.; Mencattini, A.; Martinelli, E. Integrating Machine Learning and Biosensors in Microfluidic Devices: A Review. Biosens. Bioelectron. 2024, 263, 116632. [Google Scholar] [CrossRef] [PubMed]
- Masekela, D.; Dlamini, L.N. Molecularly Imprinted and MXene-Based Electrochemical Sensors for Detecting Pharmaceuticals and Toxic Compounds: A Concise Review. J. Environ. Chem. Eng. 2024, 12, 114569. [Google Scholar] [CrossRef]
- Pratiwi, R.; Nur Azizah, P.; Nur Hasanah, A.; Binti Asman, S. Analytical Method for Monitoring Tetracycline Residues in Various Samples: A Focus on Environmental and Health Implications. Microchem. J. 2024, 206, 111408. [Google Scholar] [CrossRef]
- Bahrani, S.; Sadati Behbahani, E.; Ghaedi, M.; Amrollahi Miandeh, Y.; Asfaram, A. Molecular Imprinted Technology Using in Biosensing: A Review. Microchem. J. 2024, 203, 110888. [Google Scholar] [CrossRef]
- Rocha, P.; Rebelo, P.; Pacheco, J.G.; Geraldo, D.; Bento, F.; Leão-Martins, J.M.; Delerue-Matos, C.; Nouws, H.P.A. Electrochemical Molecularly Imprinted Polymer Sensor for Simple and Fast Analysis of Tetrodotoxin in Seafood. Talanta 2025, 282, 127002. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X.; Sun, N.; Wang, Y.; Zhang, Y.; Lv, Y.; Ding, L.; Sun, X. Biowaste-Derived Carbon Dots-Based Molecularly Imprinted Fluorescent Nanosensor for Selective Detection of Rutin. J. Fluoresc. 2024. [Google Scholar] [CrossRef]
- Minhas, M.A.; Shezadi, S.; Andac, M.; Shaikh, H.; Duran, S.; Tarique Moin, S.; Faizi, S.; Bhanger, M.I.; Malik, M.I. Imprinting-Based Smart Syringe: A Fast, Efficient, and Selective Approach for Extraction of Methyl Gallate from Caesalpinia Pulcherrima Extract. J. Ind. Eng. Chem. 2024, 136, 378–390. [Google Scholar] [CrossRef]
- Shalapy, A.E.; Molouk, A.F.S.; Awad, F.S.; Khalifa, M.E.; Abdallah, A.B. Flexible Imprinted Electrochemical Sensing Platform for Ultra-Trace Detection of Indigo Carmine Dye in Coloured Food Additive for Candy and Ice Cream. Inorg. Chem. Commun. 2025, 174, 113951. [Google Scholar] [CrossRef]
- Jolly, P.; Tamboli, V.; Harniman, R.L.; Estrela, P.; Allender, C.J.; Bowen, J.L. Aptamer–MIP Hybrid Receptor for Highly Sensitive Electrochemical Detection of Prostate Specific Antigen. Biosens. Bioelectron. 2016, 75, 188–195. [Google Scholar] [CrossRef]
- Agar, M.; Laabei, M.; Leese, H.S.; Estrela, P. Aptamer-Molecularly Imprinted Polymer Sensors for the Detection of Bacteria in Water. Biosens. Bioelectron. 2025, 272, 117136. [Google Scholar] [CrossRef]
- Li, Y.-T.; Yang, Y.-Y.; Han, S. Surface Molecular Imprinting Technology Integrated SERS Sensing: Emerging Trends and Future Perspectives toward on-Site Hazardous Analysis. TrAC Trends Anal. Chem. 2024, 179, 117866. [Google Scholar] [CrossRef]
Target | Optical Signal | Biorecognition Element | LOD | Reference |
---|---|---|---|---|
Pathogens | ||||
S. aureus | SERS | S. aureus aptamer | 16 CFU/mL | [155] |
Pharmaceuticals and PCPs | ||||
Diclofenac (DCF) | SPR | Anti-DCF | 1.06 × 10−2 µM | [156] |
DCF | QCM with dissipation (QCM-D) and localized surface plasmon resonance (LSPR). | Anti-DCF | 9.49 × 10−3 µM | [157] |
Azithromycin | Ratiometric fluorescence | Azithromycin aptamer | 9.78 × 10−3 µM | [158] |
Amoxicilin | UV-Vis | DNA-Aptamer | 6.70 × 10−5 µM | [159] |
Pesticides and agrochemicals | ||||
Imidacloprid Pyraclostrobin | SERS | Antibody | 3.36 × 10−5 µM 2.51 × 10−4 µM | [160] |
Dichlorvos | UV-Vis | AChE enzyme | 0.65 μM | [161] |
Perfluorinated compounds | ||||
PFOA PFOS | Ratiometric fluorescence | Defluorinase enzyme | 2.42 × 10−5 µM 2.00 × 10−5 µM | [162] |
Antimicrobial and disinfectants | ||||
Chlorophene | SPR | Laccase enzyme | 1.51 µM | [163] |
Triclosan | Raman | BSA-protein | 0.05 µM | [154] |
Nanoplastics | ||||
Polymethyl Methacrylate | SPR | Estrogen receptor | 1.02 × 10−3 µg/mL | [164] |
Mycotoxins | ||||
Aflatoxina B1 | Raman | Antibody | 2.85 × 10−5 µM | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fdez-Sanromán, A.; Bernárdez-Rodas, N.; Rosales, E.; Pazos, M.; González-Romero, E.; Sanromán, M.Á. Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens. Biosensors 2025, 15, 189. https://doi.org/10.3390/bios15030189
Fdez-Sanromán A, Bernárdez-Rodas N, Rosales E, Pazos M, González-Romero E, Sanromán MÁ. Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens. Biosensors. 2025; 15(3):189. https://doi.org/10.3390/bios15030189
Chicago/Turabian StyleFdez-Sanromán, Antía, Nuria Bernárdez-Rodas, Emilio Rosales, Marta Pazos, Elisa González-Romero, and Maria Ángeles Sanromán. 2025. "Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens" Biosensors 15, no. 3: 189. https://doi.org/10.3390/bios15030189
APA StyleFdez-Sanromán, A., Bernárdez-Rodas, N., Rosales, E., Pazos, M., González-Romero, E., & Sanromán, M. Á. (2025). Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens. Biosensors, 15(3), 189. https://doi.org/10.3390/bios15030189