Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of Cu-Cys-GSH Nanoparticles
2.3. Preparation of Cu-Cys-GSH Nanoparticle–Functionalized Gold IDE Sensor
2.4. Sample Preparation
2.5. Capacitance Measurement
3. Sensing Mechanism
3.1. Interfacial Capacitance Sensing
3.2. ACEK Effects
4. Results and Discussion
4.1. Sensor Characterization
4.2. Optimization of Measurement Conditions
4.3. Dose Response of Cu-Cys-GSH Nanoparticle–Functionalized Sensor
4.4. Influence of Chirality on Cu-Cys-GSH Nanoparticle–Functionalized Sensor Response
4.5. Selectivity
4.6. Sample Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrés, C.M.C.; Pérez De La Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Chemistry of Hydrogen Peroxide Formation and Elimination in Mammalian Cells, and Its Role in Various Pathologies. Stresses 2022, 2, 256–274. [Google Scholar] [CrossRef]
- Pravda, J. Hydrogen Peroxide and Disease: Towards a Unified System of Pathogenesis and Therapeutics. Mol. Med. 2020, 26, 41. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Vaish, S.; Dhiman, M. Hydrogen Peroxide-Induced Oxidative Stress and Its Impact on Innate Immune Responses in Lung Carcinoma A549 Cells. Mol. Cell. Biochem. 2019, 450, 135–147. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Houldsworth, A. Role of Oxidative Stress in Neurodegenerative Disorders: A Review of Reactive Oxygen Species and Prevention by Antioxidants. Brain Commun. 2023, 6, fcad356. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Anik, M.I.; Mahmud, N.; Masud, A.A.; Khan, M.I.; Islam, M.N.; Uddin, S.; Hossain, M.K. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS Appl. Bio Mater. 2022, 5, 4028–4054. [Google Scholar] [CrossRef]
- Rauf, A.; Khalil, A.A.; Awadallah, S.; Khan, S.A.; Abu-Izneid, T.; Kamran, M.; Hemeg, H.A.; Mubarak, M.S.; Khalid, A.; Wilairatana, P. Reactive Oxygen Species in Biological Systems: Pathways, Associated Diseases, and Potential Inhibitors—A Review. Food Sci. Nutr. 2024, 12, 675–693. [Google Scholar] [CrossRef]
- Robby, A.I.; Park, S.Y. Recyclable Metal Nanoparticle-Immobilized Polymer Dot on Montmorillonite for Alkaline Phosphatase-Based Colorimetric Sensor with Photothermal Ablation of Bacteria. Anal. Chim. Acta 2019, 1082, 152–164. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, N.; Gao, W.; Hu, F.; Zhang, C.; Wei, X. ZnS and Reduced Graphene Oxide Nanocomposite-Based Non-Enzymatic Biosensor for the Photoelectrochemical Detection of Uric Acid. Biosensors 2024, 14, 488. [Google Scholar] [CrossRef]
- Fang, Y.; Li, C.; Bo, J.; Henzie, J.; Yamauchi, Y.; Asahi, T. Chiral Sensing with Mesoporous Pd@Pt Nanoparticles. ChemElectroChem 2017, 4, 1832–1835. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, C.; Zhong, Y.; Luo, Z.; Wu, L. A Review of Current Developments in Functionalized Mesoporous Silica Nanoparticles: From Synthesis to Biosensing Applications. Biosensors 2024, 14, 575. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Jiang, H.; Wang, X. Biosensors Based on Advanced Sulfur-Containing Nanomaterials. Sensors 2020, 20, 3488. [Google Scholar] [CrossRef] [PubMed]
- Purohit, B.; Vernekar, P.R.; Shetti, N.P.; Chandra, P. Biosensor Nanoengineering: Design, Operation, and Implementation for Biomolecular Analysis. Sens. Int. 2020, 1, 100040. [Google Scholar] [CrossRef]
- Karakuş, E.; Erdemir, E.; Demirbilek, N.; Liv, L. Colorimetric and Electrochemical Detection of SARS-CoV-2 Spike Antigen with a Gold Nanoparticle-Based Biosensor. Anal. Chim. Acta 2021, 1182, 338939. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Wu, L.-P.; Chou, T.-T.; Hsieh, Y.-Z. Functional Magnetic Nanoparticles–Assisted Electrochemical Biosensor for Eosinophil Cationic Protein in Cell Culture. Sens. Actuators B Chem. 2018, 257, 672–677. [Google Scholar] [CrossRef]
- Hwang, K.Y.; Brown, D.; Attanayake, S.B.; Luu, D.; Nguyen, M.D.; Lee, T.R.; Phan, M.-H. Signal Differentiation of Moving Magnetic Nanoparticles for Enhanced Biodetection and Diagnostics. Biosensors 2025, 15, 116. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, R.; Chai, Y.; Hu, F. Electrochemical Sensing of Hydrogen Peroxide Using Metal Nanoparticles: A Review. Microchim. Acta 2013, 180, 15–32. [Google Scholar] [CrossRef]
- Dhara, K.; Mahapatra, D.R. Recent Advances in Electrochemical Nonenzymatic Hydrogen Peroxide Sensors Based on Nanomaterials: A Review. J. Mater. Sci. 2019, 54, 12319–12357. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Duan, H.; Oveissi, F.; Farajikhah, S.; Dehghani, F.; Naficy, S. Flexible Sensors for Hydrogen Peroxide Detection: A Critical Review. ACS Appl. Mater. Interfaces 2022, 14, 20491–20505. [Google Scholar] [CrossRef]
- Yao, Z.; Yang, X.; Wu, F.; Wu, W.; Wu, F. Synthesis of Differently Sized Silver Nanoparticles on a Screen-Printed Electrode Sensitized with a Nanocomposites Consisting of Reduced Graphene Oxide and Cerium(IV) Oxide for Nonenzymatic Sensing of Hydrogen Peroxide. Microchim. Acta 2016, 183, 2799–2806. [Google Scholar] [CrossRef]
- Yang, X.; Ouyang, Y.; Wu, F.; Hu, Y.; Zhang, H.; Wu, Z. In Situ & Controlled Preparation of Platinum Nanoparticles Dopping into Graphene Sheets@cerium Oxide Nanocomposites Sensitized Screen Printed Electrode for Nonenzymatic Electrochemical Sensing of Hydrogen Peroxide. J. Electroanal. Chem. 2016, 777, 85–91. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, F.-B.; Lin, H.-W.; Wu, F.; Chen, D.-Z.; Wu, Z.-Y. A Novel H2O2 Biosensor Based on Fe3O4–Au Magnetic Nanoparticles Coated Horseradish Peroxidase and Graphene Sheets–Nafion Film Modified Screen-Printed Carbon Electrode. Electrochim. Acta 2013, 109, 750–755. [Google Scholar] [CrossRef]
- Gatselou, V.A.; Giokas, D.L.; Vlessidis, A.G.; Prodromidis, M.I. Rhodium Nanoparticle-Modified Screen-Printed Graphite Electrodes for the Determination of Hydrogen Peroxide in Tea Extracts in the Presence of Oxygen. Talanta 2015, 134, 482–487. [Google Scholar] [CrossRef]
- Chou, T.-C.; Wu, K.-Y.; Hsu, F.-X.; Lee, C.-K. Pt-MWCNT Modified Carbon Electrode Strip for Rapid and Quantitative Detection of H2O2 in Food. J. Food Drug Anal. 2018, 26, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Bain, D.; Russier-Antoine, I.; Yuan, H.; Kolay, S.; Maclot, S.; Moulin, C.; Salmon, E.; Brevet, P.-F.; Pniakowska, A.; Olesiak-Bańska, J.; et al. Solvent-Induced Aggregation of Self-Assembled Copper–Cysteine Nanoparticles Reacted with Glutathione: Enhancing Linear and Nonlinear Optical Properties. Langmuir 2023, 39, 16554–16561. [Google Scholar] [CrossRef]
- Ma, B.; Wang, S.; Liu, F.; Zhang, S.; Duan, J.; Li, Z.; Kong, Y.; Sang, Y.; Liu, H.; Bu, W.; et al. Self-Assembled Copper–Amino Acid Nanoparticles for in Situ Glutathione “AND” H2O2 Sequentially Triggered Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141, 849–857. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Yao, S.; Wang, Z.; Zhang, Z.; Wen, K.; Ma, B.; Li, L. Chirality of Copper–Amino Acid Nanoparticles Determines Chemodynamic Cancer Therapeutic Outcome. Small 2024, 20, 2309328. [Google Scholar] [CrossRef]
- Liu, M.; Yan, C.; Ye, Q.; Sun, X.; Han, J. Discrimination and Quantification of Glutathione by Cu+-Based Nanozymes. Biosensors 2023, 13, 827. [Google Scholar] [CrossRef]
- Cui, H.; Cheng, C.; Lin, X.; Wu, J.; Chen, J.; Eda, S.; Yuan, Q. Rapid and Sensitive Detection of Small Biomolecule by Capacitive Sensing and Low Field AC Electrothermal Effect. Sens. Actuators B Chem. 2016, 226, 245–253. [Google Scholar] [CrossRef]
- Mirzajani, H.; Cheng, C.; Vafaie, R.H.; Wu, J.; Chen, J.; Eda, S.; Aghdam, E.N.; Ghavifekr, H.B. Optimization of ACEK-Enhanced, PCB-Based Biosensor for Highly Sensitive and Rapid Detection of Bisphenol a in Low Resource Settings. Biosens. Bioelectron. 2022, 196, 113745. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cui, H.; Yuan, Q.; Wu, J.; Wadhwa, A.; Eda, S.; Jiang, H. AC Electrokinetics-Enhanced Capacitive Immunosensor for Point-of-Care Serodiagnosis of Infectious Diseases. Biosens. Bioelectron. 2014, 51, 437–443. [Google Scholar] [CrossRef]
- Qi, H.; Xiao, L.; Wu, J.; Lv, L.; Hu, X.; Zhuang, Y.; Liu, X.; Zhao, W.; You, F.; Zhang, J.; et al. One-Step and Real-Time Detection of Hg2+ in Brown Rice Flour Using a Biosensor Integrated with AC Electrothermal Enrichment. Food Chem. 2023, 416, 135823. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Huang, J.; Wu, J.; Eda, S. A Rapid, Sensitive, and Simple-to-Use Biosensor for on-Site Detection of Attomolar Level microRNA Biomarkers from Serum Extracellular Vesicles. Sens. Actuators B Chem. 2022, 369, 132314. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, V.; Sachdev, A.; Matai, I. Electrochemical Microfluidic Sensor Based on hBN-CeO2@Cyt c Hydrogel-Modified SPCE for the Detection of Hydrogen Peroxide. Ionics 2024, 30, 8559–8575. [Google Scholar] [CrossRef]
- Qi, H.; Zhao, M.; Liang, H.; Wu, J.; Huang, Z.; Hu, A.; Wang, J.; Lu, Y.; Zhang, J. Rapid Detection of Trace Cu2+ Using an L-cysteine Based Interdigitated Electrode Sensor Integrated with AC Electrokinetic Enrichment. Electrophoresis 2019, 40, 2699–2705. [Google Scholar] [CrossRef]
- Wu, J. Interactions of Electrical Fields with Fluids:Laboratory-on-a-Chip Applications. IET Nanobiotechnol. 2008, 2, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Wan, N.; Jiang, Y.; Huang, J.; Oueslati, R.; Eda, S.; Wu, J.; Lin, X. Rapid and Sensitive Detection of miRNA Based on AC Electrokinetic Capacitive Sensing for Point-of-Care Applications. Sensors 2021, 21, 3985. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Wu, J.; Qi, H.; Wang, C.; Fang, X.; Cheng, C.; Yang, W. Rapid Detection of Ultra-Trace Nanoparticles Based on ACEK Enrichment for Semiconductor Manufacturing Quality Control. Microfluid. Nanofluid 2019, 23, 2. [Google Scholar] [CrossRef]
- Qi, H.; Wang, B.; Liang, H.; Wu, J.J.; Ni, T.; Huang, Z.; Lu, Y.; Zhang, J. A Nanofluidic Sensor for Real-Time Detection of Ultratrace Contaminant Particles in IC Fabrication. IEEE Sens. J. 2021, 21, 755–764. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, K.; Lou, J.; Zhang, K. Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells. Biosensors 2024, 14, 417. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, J.; Greenbaum, E.; Evans, B.R. A Resettable In-Line Particle Concentrator Using AC Electrokinetics for Distributed Monitoring of Microalgae in Source Waters. Sens. Actuators B Chem. 2017, 244, 265–274. [Google Scholar] [CrossRef]
- Wu, J. Ac Electro-Osmotic Micropump by Asymmetric Electrode Polarization. J. Appl. Phys. 2008, 103, 024907. [Google Scholar] [CrossRef]
- Lin, X.; Cheng, C.; Terry, P.; Chen, J.; Cui, H.; Wu, J. Rapid and Sensitive Detection of Bisphenol a from Serum Matrix. Biosens. Bioelectron. 2017, 91, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.; Islam, N.; Wu, J. AC Electrothermal Manipulation of Conductive Fluids and Particles for Lab-Chip Applications. IET Nanobiotechnol. 2007, 1, 36–43. [Google Scholar] [CrossRef]
- Soomro, R.A.; Nafady, A.; Sirajuddin; Memon, N.; Sherazi, T.H.; Kalwar, N.H. L-Cysteine Protected Copper Nanoparticles as Colorimetric Sensor for Mercuric Ions. Talanta 2014, 130, 415–422. [Google Scholar] [CrossRef]
Samples | Spiked/fM | Found/fM | Recovery/% | RSD/% |
---|---|---|---|---|
1 | 10 | 10.92 | 109.2 | 0.37 |
2 | 100 | 120 | 120 | 0.57 |
3 | 1000 | 1262 | 126.2 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilmaz Aydin, D.; Wu, J.J.; Chen, J. Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection. Biosensors 2025, 15, 315. https://doi.org/10.3390/bios15050315
Yilmaz Aydin D, Wu JJ, Chen J. Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection. Biosensors. 2025; 15(5):315. https://doi.org/10.3390/bios15050315
Chicago/Turabian StyleYilmaz Aydin, Duygu, Jie Jayne Wu, and Jiangang Chen. 2025. "Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection" Biosensors 15, no. 5: 315. https://doi.org/10.3390/bios15050315
APA StyleYilmaz Aydin, D., Wu, J. J., & Chen, J. (2025). Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection. Biosensors, 15(5), 315. https://doi.org/10.3390/bios15050315