Wearable Ultrasound-Imaging-Based Visual Feedback (UVF) Training for Ankle Rehabilitation of Chronic Stroke Survivors: A Proof-of-Concept Randomized Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Equipment
2.4. Protocol of Providing Ultrasound-Imaging-Based Visual Feedback (UVF)
2.5. Experimental Procedures
2.5.1. Setup and Positioning
2.5.2. Warm-Up and Familiarization
2.5.3. Measurement of MIVC and Maximal TA Thickness
2.5.4. Training Protocol
2.6. Outcome Measurements
2.6.1. Ankle Dorsiflexion Torque
2.6.2. TA Muscle Thickness
2.7. Data Analysis
2.7.1. Ankle Dorsiflexion Torque
2.7.2. TA Muscle Thickness
2.8. Statistical Analysis
3. Results
3.1. Pariticipants
3.2. Effect of UVF on Ankle Dorsiflexion Torque
3.3. Effect of UVF on TA Muscle Thickness
3.4. Relationship Between Ankle Dorsiflexion Torque and TA Muscle Thickness
4. Discussion
4.1. Effects of UVF on Ankle Dorsiflexion Torque Magnitude and Variation
4.2. Effects of UVF on TA Muscle Thickness Magnitude and Variation During Contraction
4.3. Relationship Between Ankle Dorsiflexion Torque and TA Muscle Thickness During Contraction
4.4. Implications for Future Research and Clinical Practice
4.5. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CONSORT | Consolidated Standards of Reporting Trials |
EEG | Electroencephalogram |
FIM | Functional Independence Measure |
FMA-LE | Fugl-Meyer Assessment for Lower Extremity |
fNIRS | Functional near-infrared spectroscopy |
ICTRP | International Clinical Trials Registry Platform |
MIVC | Maximal isometric voluntary contraction |
MIVCMT | MIVC muscle thickness |
MIVCTq | MIVC torque |
PSSUQ | Post-Study System Usability Questionnaire |
ROM | Range of motion |
SMG | Sonomyography |
SPPB | Short Physical Performance Battery |
SUS | System Usability Scale |
TA | Tibialis anterior |
UVF | Ultrasound-imaging-based visual feedback |
References
- Feigin, V.L.; Norrving, B.; Mensah, G.A. Global Burden of Stroke. Circ. Res. 2017, 120, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.-J.; Hua, Y.; Yan, F.; Bian, H.; Yang, Y.; Lou, M.; Kang, D.; He, L.; Chu, L.; Zeng, J.; et al. Prevalence of Stroke in China, 2013-2019: A Population-Based Study. Lancet Reg. Health—West. Pac. 2022, 28, 100550. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, B.; Sun, H.; Ru, X.; Sun, D.; Wang, L.; Wang, L.; Jiang, Y.; Li, Y.; Wang, Y.; et al. Prevalence, Incidence, and Mortality of Stroke in China. Circulation 2017, 135, 759–771. [Google Scholar] [CrossRef]
- Scherbakov, N.M.D.; Sandek, A.M.D.; Doehner, W.M.D.P. Stroke-Related Sarcopenia: Specific Characteristics. J. Am. Med. Dir. assoc. 2015, 16, 272–276. [Google Scholar] [CrossRef]
- Su, Y.; Yuki, M.; Otsuki, M. Prevalence of Stroke-Related Sarcopenia: A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2020, 29, 105092. [Google Scholar] [CrossRef]
- Tower, S.S. The Reaction of Muscle to Denervation. Physiol. Rev. 1939, 19, 1–48. [Google Scholar] [CrossRef]
- De Deyne, P.G.; Hafer-Macko, C.E.; Ivey, F.M.; Ryan, A.S.; Macko, R.F. Muscle Molecular Phenotype After Stroke is Associated with Gait Speed. Muscle Nerve 2004, 30, 209–215. [Google Scholar] [CrossRef]
- Scherbakov, N.; Doehner, W. Sarcopenia in Stroke—Facts and Numbers on Muscle Loss Accounting for Disability After Stroke. J. Cachexia Sarcopenia Muscle 2011, 2, 5–8. [Google Scholar] [CrossRef]
- Lance, J.W. The Control of Muscle Tone, Reflexes, and Movement: Robert Wartenberg Lecture. Neurology 1980, 30, 1303–1313. [Google Scholar] [CrossRef]
- Zorowitz, R.D.; Gillard, P.J.; Brainin, M. Poststroke Spasticity. Neurology 2013, 80 (Suppl. S2), S45–S52. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, J.; Guo, Y.; Tan, S. Prevalence and Risk Factors for Spasticity After Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 11, 616097. [Google Scholar] [CrossRef] [PubMed]
- Sommerfeld, D.K.; Eek, E.U.B.; Svensson, A.-K.; Holmqvist, L.W.N.; von Arbin, M.H. Spasticity After Stroke: Its Occurrence and association with Motor Impairments and Activity Limitations. Stroke 2004, 35, 134–139. [Google Scholar] [CrossRef]
- Chung-Hoon, K.; Tracy, B.L.; Dibble, L.E.; Marcus, R.L.; Burgess, P.; LaStayo, P.C. The association Between Knee Extensor Force Steadiness, Force Accuracy, and Mobility in Older Adults Who Have Fallen. J. Geriatr. Phys. Ther. 2016, 39, 1–7. [Google Scholar] [CrossRef]
- Bourbonnais, D.; Noven, S.V. Weakness in Patients with Hemiparesis. Am. J. Occup. Ther. 1989, 43, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, N.; Acosta, A.M.; Lopez-Rosado, R.; Stienen, A.H.A.; Dewald, J.P.A. Lower Extremity Motor Impairments in Ambulatory Chronic Hemiparetic Stroke: Evidence for Lower Extremity Weakness and Abnormal Muscle and Joint Torque Coupling Patterns. Neurorehabilit. Neural Repair 2017, 31, 814–826. [Google Scholar] [CrossRef] [PubMed]
- Le Sant, G.; Nordez, A.; Hug, F.; Andrade, R.; Lecharte, T.; McNair, P.J.; Gross, R. Effects of Stroke Injury on the Shear Modulus of the Lower Leg Muscle During Passive Dorsiflexion. J. Appl. Physiol. 2019, 126, 11–22. [Google Scholar] [CrossRef]
- Barzi, Y.; Zehr, E.P. Rhythmic Arm Cycling Suppresses Hyperactive Soleus H-Reflex Amplitude After Stroke. Clin. Neurophysiol. 2008, 119, 1443–1452. [Google Scholar] [CrossRef]
- Ng, S.S.; Hui-Chan, C.W. Contribution of Ankle Dorsiflexor Strength to Walking Endurance in People with Spastic Hemiplegia After Stroke. Arch. Phys. Med. Rehabil. 2012, 93, 1046–1051. [Google Scholar] [CrossRef]
- Aagaard, P.; Suetta, C.; Caserotti, P.; Magnusson, S.P.; Kjær, M. Role of the Nervous System in Sarcopenia and Muscle Atrophy with Aging: Strength Training as a Countermeasure. Scand. J. Med. Sci. Sports 2010, 20, 49–64. [Google Scholar] [CrossRef]
- Pontes, S.S.; de Carvalho, A.L.R.; Almeida, K.d.O.; Neves, M.P.; Ribeiro Schindler, I.F.S.; Alves, I.G.N.; Arcanjo, F.L.; Gomes-Neto, M. Effects of Isokinetic Muscle Strengthening on Muscle Strength, Mobility, and Gait in Post-Stroke Patients: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2019, 33, 381–394. [Google Scholar] [CrossRef]
- Ryan, A.S.; Ivey, F.M.; Prior, S.; Li, G.; Hafer-Macko, C. Skeletal Muscle Hypertrophy and Muscle Myostatin Reduction After Resistive Training in Stroke Survivors. Stroke 2011, 42, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Van Peppen, R.P.; Kwakkel, G.; Wood-Dauphinee, S.; Hendriks, H.J.; Van der Wees, P.J.; Dekker, J. The Impact of Physical Therapy on Functional Outcomes After Stroke: What’s the Evidence? Clin. Rehabil. 2004, 18, 833–862. [Google Scholar] [CrossRef] [PubMed]
- Pak, S.; Patten, C. Strengthening to Promote Functional Recovery Poststroke: An Evidence-Based Review. Top. Stroke Rehabil. 2008, 15, 177–199. [Google Scholar] [CrossRef] [PubMed]
- Veldema, J.; Jansen, P. Resistance Training in Stroke Rehabilitation: Systematic Review and Meta-Analysis. Clin. Rehabil. 2020, 34, 1173–1197. [Google Scholar] [CrossRef]
- Kang, N.; Cauraugh, J.H. Bimanual Force Variability in Chronic Stroke: With and Without Visual Information. Neurosci. Lett. 2015, 587, 41–45. [Google Scholar] [CrossRef]
- van Vliet Research Fellow, P.M.; Wulf, G. Extrinsic Feedback for Motor Learning After Stroke: What Is the Evidence? Disabil. Rehabil. 2006, 28, 831–840. [Google Scholar] [CrossRef]
- Binder, S.A.; Moll, C.B.; Wolf, S.L. Evaluation of Electromyographic Biofeedback as An Adjunct to Therapeutic Exercise in Treating the Lower Extremities of Hemiplegic Patients. Phys. Ther. 1981, 61, 886–893. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H.; Kang, N.; Cauraugh, J.H. Visual Feedback Improves Bimanual Force Control Performances at Planning and Execution Levels. Sci. Rep. 2021, 11, 21149. [Google Scholar] [CrossRef]
- Seo, N.J.; Fischer, H.W.; Bogey, R.A.; Rymer, W.Z.; Kamper, D.G. Use of Visual Force Feedback to Improve Digit Force Direction During Pinch Grip in Persons with Stroke: A Pilot Study. Arch. Phys. Med. Rehabil. 2011, 92, 24–30. [Google Scholar] [CrossRef]
- Koritnik, T.; Koenig, A.; Bajd, T.; Riener, R.; Munih, M. Comparison of Visual and Haptic Feedback During Training of Lower Extremities. Gait Posture 2010, 32, 540–546. [Google Scholar] [CrossRef]
- Liu, W.; Wu, H.-D.; Li, Y.-Y.; Zhu, R.T.-L.; Luo, Y.-Y.; Ling, Y.T.; Wang, L.-K.; Wang, J.-F.; Zheng, Y.-P.; Ma, C.Z.-H. Effect of Ankle-Foot Orthosis on Paretic Gastrocnemius and Tibialis Anterior Muscle Contraction of Stroke Survivors During Walking: A Pilot Study. Biosensors 2024, 14, 595. [Google Scholar] [CrossRef]
- Lyu, P.-Z.; Zhu, R.T.-L.; Ling, Y.T.; Wang, L.-K.; Zheng, Y.-P.; Ma, C.Z.-H. How Paretic and Non-Paretic Ankle Muscles Contract During Walking in Stroke Survivors: New Insight Using Novel Wearable Ultrasound Imaging and Sensing Technology. Biosensors 2022, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Galea, M.P.; Tisseverasinghe, S.; Sherburn, M. A Randomised Controlled Trial of Transabdominal Ultrasound Biofeedback for Pelvic Floor Muscle Training in Older Women with Urinary Incontinence. Aust. N. Z. Cont. J. 2013, 19, 38–44. [Google Scholar]
- Sarafadeen, R.; Ganiyu, S.O.; Ibrahim, A.A. Effects of Spinal Stabilization Exercise with Real-Time Ultrasound Imaging Biofeedback in Individuals with Chronic Nonspecific Low Back Pain: A Pilot Study. J. Exerc. Rehabil. 2020, 16, 293–299. [Google Scholar] [CrossRef]
- McPherson, S.L.; Watson, T. Training of Transversus Abdominis Activation in the Supine Position with Ultrasound Biofeedback Translated to Increased Transversus Abdominis Activation During Upright Loaded Functional Tasks. PmR 2014, 6, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Henry, S.M.; Teyhen, D.S. Ultrasound Imaging as A Feedback Tool in the Rehabilitation of Trunk Muscle Dysfunction for People with Low Back Pain. J. Orthop. Sports Phys. Ther. 2007, 37, 627–634. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Fernández-de-Las-Peñas, C.; Varol, U.; Ortega-Santiago, R.; Gallego-Sendarrubias, G.M.; Arias-Buría, J.L. Ultrasound Imaging as A Visual Biofeedback Tool in Rehabilitation: An Updated Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 7554. [Google Scholar] [CrossRef]
- Sosnowska, A.; Vuckovic, A.; Gollee, H. (Eds.) Training Towards Precise Control Over Muscle Activity with Real Time Biofeedback Based on Ultrasound Imaging; Springer Nature: Singapore, 2019. [Google Scholar]
- Huang, Z.-H.; Ma, C.Z.-H.; Wang, L.-K.; Wang, X.-Y.; Fu, S.-N.; Zheng, Y.-P. Real-Time Visual Biofeedback Via Wearable Ultrasound Imaging Can Enhance the Muscle Contraction Training Outcome of Young Adults. J. Strength Cond. Res. 2022, 36, 941–947. [Google Scholar] [CrossRef]
- Kokotilo, K.J.; Eng, J.J.; Boyd, L.A. Reorganization of Brain Function During Force Production After Stroke: A Systematic Review of the Literature. J. Neurol. Phys. Ther. 2009, 33, 45–54. [Google Scholar] [CrossRef]
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. Consort 2010 Statement: Extension to Randomised Crossover Trials. BMJ 2019, 366, l4378. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Perkisas, S.; Bastijns, S.; Baudry, S.; Bauer, J.; Beaudart, C.; Beckwee, D.; Cruz-Jentoft, A.; Gasowski, J.; Hobbelen, H.; Jager-Wittenaar, H.; et al. Application of Ultrasound for Muscle assessment in Sarcopenia: 2020 Sarcus Update. Eur. Geriatr. Med. 2021, 12, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Teratsias, P.; Hodson-Tole, E.F. Ultrasound Imaging to assess Skeletal Muscle Architecture During Movements: A Systematic Review of Methods, Reliability, and Challenges. J. Appl. Physiol. 2020, 128, 978–999. [Google Scholar] [CrossRef]
- Wu, W.-T.; Chang, K.-V.; Hsu, Y.-C.; Hsu, P.-C.; Ricci, V.; Özçakar, L. Artifacts in Musculoskeletal Ultrasonography: From Physics to Clinics. Diagnostics 2020, 10, 645. [Google Scholar] [CrossRef]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The Reliability of the Functional Independence Measure: A Quantitative Review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Kwong, P.W.; Ng, S.S. Cutoff Score of the Lower-Extremity Motor Subscale of Fugl-Meyer assessment in Chronic Stroke Survivors: A Cross-Sectional Study. Arch. Phys. Med. Rehabil. 2019, 100, 1782–1787. [Google Scholar] [CrossRef]
- Danazumi, M.S.; Ibrahim, S.U.; Yakasai, A.M.; Dermody, G.; Bello, B.; Kaka, B. A Comparison Between the Effect of Combined Chain Exercises Plus Kinesio Taping with Combined Chain Exercises Alone in Knee Osteoarthritis: A Randomized Clinical Trial. Am. J. Phys. Med. Rehabil. 2021, 100, 1070–1077. [Google Scholar] [CrossRef]
- Pinto, M.D.; Wilson, C.J.; Kay, A.D.; Blazevich, A.J. Reliability of Isokinetic Tests of Velocity-and Contraction Intensity-Dependent Plantar Flexor Mechanical Properties. Scand. J. Med. Sci. Sports 2021, 31, 1009–1025. [Google Scholar] [CrossRef]
- Lewek, M.D.; Schmit, B.D.; Hornby, T.G.; Dhaher, Y.Y. Hip Joint Position Modulates Volitional Knee Extensor Muscle Activity After Stroke. Muscle Nerve 2006, 34, 767–774. [Google Scholar] [CrossRef]
- Moraux, A.; Canal, A.; Ollivier, G.; Ledoux, I.; Doppler, V.; Payan, C.; Hogrel, J.-Y. Ankle Dorsi- and Plantar-Flexion Torques Measured By Dynamometry in Healthy Subjects From 5 to 80 Years. BMC Musculoskelet. Disord. 2013, 14, 104. [Google Scholar] [CrossRef]
- Olsen, S.; Signal, N.; Niazi, I.K.; Rashid, U.; Alder, G.; Mawston, G.; Nedergaard, R.B.; Jochumsen, M.; Taylor, D. Peripheral Electrical Stimulation Paired with Movement-Related Cortical Potentials Improves Isometric Muscle Strength and Voluntary Activation Following Stroke. Front. Hum. Neurosci. 2020, 14, 156. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhou, Y.; Wang, J.; Zong-Hao Ma, C.; Zheng, Y. Synthesizing Real-Time Ultrasound Images of Muscle Based on Biomechanical Simulation and Conditional Diffusion Network. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2024, 71, 1501–1513. [Google Scholar] [CrossRef]
- Lin, S.; Mann, J.; Mansfield, A.; Wang, R.H.; Harris, J.E.; Taati, B. Investigating the Feasibility and Acceptability of Real-Time Visual Feedback in Reducing Compensatory Motions During Self-Administered Stroke Rehabilitation Exercises: A Pilot Study with Chronic Stroke Survivors. J. Rehabil. Assist. Technol. Eng. 2019, 6, 2055668319831631. [Google Scholar] [CrossRef]
- Luc, B.A.; Harkey, M.H.; Arguelles, G.D.; Blackburn, J.T.; Ryan, E.D.; Pietrosimone, B. Measuring Voluntary Quadriceps Activation: Effect of Visual Feedback and Stimulus Delivery. J. Electromyogr. Kinesiol. 2016, 26, 73–81. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Bhadane, M.; Zhou, P.; Rymer, W.Z. Activation Deficit Correlates with Weakness in Chronic Stroke: Evidence From Evoked and Voluntary Emg Recordings. Clin. Neurophysiol. 2014, 125, 2413–2417. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.B.; Kang, N.; Misra, G.; Marble, S.; Patten, C.; Coombes, S.A. Visual Feedback Alters Force Control and Functional Activity in the Visuomotor Network After Stroke. Neuroimage Clin. 2018, 17, 505–517. [Google Scholar] [CrossRef]
- Martinez-Trujillo, J.C.; Cheyne, D.; Gaetz, W.; Simine, E.; Tsotsos, J.K. Activation of Area Mt/V5 and the Right Inferior Parietal Cortex During the Discrimination of Transient Direction Changes in Translational Motion. Cereb. Cortex 2007, 17, 1733–1739. [Google Scholar] [CrossRef]
- Caminiti, R.; Ferraina, S.; Johnson, P.B. The Sources of Visual Information to the Primate Frontal Lobe: A Novel Role for the Superior Parietal Lobule. Cereb. Cortex 1996, 6, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.P.; Boussaoud, D.; Johnson, P.B.; Caminiti, R. Premotor and Parietal Cortex: Corticocortical Connectivity and Combinatorial Computations. Annu. Rev. Neurosci. 1997, 20, 25–42. [Google Scholar] [CrossRef]
- Mtui, E.; FitzGerald, M.J.T.; Gruener, G. Clinical Neuroanatomy and Neuroscience, 6th ed.; Hyde, M., Scott, J., Harrison, R., Eds.; Elsevier—Health Sciences Division: Amsterdam, The Netherlands, 2011; p. 307. [Google Scholar]
- Krakauer, J.W.; Ghilardi, M.-F.; Mentis, M.; Barnes, A.; Veytsman, M.; Eidelberg, D.; Ghez, C. Differential Cortical and Subcortical Activations in Learning Rotations and Gains for Reaching: A Pet Study. J. Neurophysiol. 2004, 91, 924–933. [Google Scholar] [CrossRef]
- Grefkes, C.; Ritzl, A.; Zilles, K.; Fink, G.R. Human Medial Intraparietal Cortex Subserves Visuomotor Coordinate Transformation. Neuroimage 2004, 23, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- McKenna, L.J.; Bonnett, L.; Panzich, K.; Lim, J.; Hansen, S.K.; Graves, A.; Jacques, A.; Williams, S.A. The Addition of Real-Time Ultrasound Visual Feedback to Manual Facilitation Increases Serratus Anterior Activation in Adults with Painful Shoulders: A Randomized Crossover Trial. Phys. Ther. 2021, 101, pzaa208. [Google Scholar] [CrossRef] [PubMed]
- Warneke, K.; Brinkmann, A.; Hillebrecht, M.; Schiemann, S. Influence of Long-Lasting Static Stretching on Maximal Strength, Muscle Thickness and Flexibility. Front. Physiol. 2022, 13, 878955. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, L.; Jalo, H.; Tarassova, O.; Pennati, G.V.; Arndt, A. Individualized Muscle Architecture and Contractile Properties of Ankle Plantarflexors and Dorsiflexors in Post-Stroke Individuals. Front. Bioeng. Biotechnol. 2024, 12, 1453604. [Google Scholar] [CrossRef]
- Hodges, P.W.; Pengel, L.H.M.; Herbert, R.D.; Gandevia, S.C. Measurement of Muscle Contraction with Ultrasound Imaging. Muscle Nerve 2003, 27, 682–692. [Google Scholar] [CrossRef]
- Gans, C.; Bock, W.J. The Functional Significance of Muscle Architecture—A Theoretical Analysis. Ergeb. Der Anat. Und Entwicklungsgeschichte 1965, 38, 115–142. [Google Scholar]
- Otten, E. Concepts and Models of Functional Architecture in Skeletal Muscle. Exerc. Sport Sci. Rev. 1988, 16, 89–137. [Google Scholar] [CrossRef]
- Zajac, F.E. Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control. Crit. Rev. Biomed. Eng. 1989, 17, 359–411. [Google Scholar]
- Kim, S.; Son, J.; Yi, C.; Kim, D.; Kim, Y. Pennation Angles of Ankle Dorsiflexor and Plantarflexors Depending on Muscle Contraction Intensity. Int. J. Precis. Eng. Manuf. 2013, 14, 855–858. [Google Scholar] [CrossRef]
- Maganaris, C.N.; Baltzopoulos, V. Predictability of in Vivo Changes in Pennation Angle of Human Tibialis Anterior Muscle From Rest to Maximum Isometric Dorsiflexion. Eur. J. Appl. Physiol. 1999, 79, 294–297. [Google Scholar] [CrossRef]
- Manal, K.; Roberts, D.P.; Buchanan, T.S. Optimal Pennation Angle of the Primary Ankle Plantar and Dorsiflexors: Variations with Sex, Contraction Intensity, and Limb. J. Appl. Biomech. 2006, 22, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Jalal, N.; Gracies, J.-M.; Zidi, M. Mechanical and Microstructural Changes of Skeletal Muscle Following Immobilization and/or Stroke. Biomech. Model. Mechanobiol. 2020, 19, 61–80. [Google Scholar] [CrossRef]
- Jakubowski, K.L.; Terman, A.; Santana, R.V.C.; Lee, S.S.M. Passive Material Properties of Stroke-Impaired Plantarflexor and Dorsiflexor Muscles. Clin. Biomech. 2017, 49, 48–55. [Google Scholar] [CrossRef]
- Olesen, A.T.; Jensen, B.R.; Uhlendorf, T.L.; Cohen, R.W.; Baan, G.C.; Maas, H. Muscle-Specific Changes in Length-Force Characteristics of the Calf Muscles in the Spastic Han-Wistar Rat. J. Appl. Physiol. 2014, 117, 989–997. [Google Scholar] [CrossRef]
- Kim, S.-J.; Cho, H.-Y.; Kim, K.-H.; Lee, S.-M. Effects of Ankle Biofeedback Training on Strength, Balance, and Gait in Patients with Stroke. J. Phys. Ther. Sci. 2016, 28, 2596–2600. [Google Scholar] [CrossRef]
- Patel, P.; Casamento-Moran, A.; Christou, E.A.; Lodha, N. Force-Control Vs. Strength Training: The Effect on Gait Variability in Stroke Survivors. Front. Neurol. 2021, 12, 667340. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Suzuki, T.; Bean, J.; Fielding, R.A. High Intensity Strength Training Improves Strength and Functional Performance After Stroke. Am. J. Phys. Med. Rehabil. 2000, 79, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Den Otter, A.R.; Geurts, A.C.H.; Mulder, T.; Duysens, J. Abnormalities in the Temporal Patterning of Lower Extremity Muscle Activity in Hemiparetic Gait. Gait Posture 2007, 25, 342–352. [Google Scholar] [CrossRef]
- Srivastava, S.; Patten, C.; Kautz, S.A. Altered Muscle Activation Patterns (Amap): An Analytical Tool to Compare Muscle Activity Patterns of Hemiparetic Gait with A Normative Profile. J. Neuroeng. Rehabil. 2019, 16, 21. [Google Scholar] [CrossRef]
- Sousa, C.O.; Barela, J.A.; Prado-Medeiros, C.L.; Salvini, T.F.; Barela, A.M.F. Gait Training with Partial Body Weight Support During Overground Walking for Individuals with Chronic Stroke: A Pilot Study. J. Neuroeng. Rehabil. 2011, 8, 48. [Google Scholar] [CrossRef]
- Paoloni, M.; Mangone, M.; Scettri, P.; Procaccianti, R.; Cometa, A.; Santilli, V. Segmental Muscle Vibration Improves Walking in Chronic Stroke Patients with Foot Drop: A Randomized Controlled Trial. Neurorehabilit. Neural Repair 2010, 24, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Weerdesteijn, V.; Niet, M.d.; Van Duijnhoven, H.; Geurts, A.C. Falls in Individuals with Stroke. J. Rehabil. Res. Dev. 2008, 45, 1195–1213. [Google Scholar] [CrossRef]
- Brooks, J. Sus-A “Quick and Dirty” Usability Scale. In Usability Evaluation in Industry, 1st ed.; Digital Equipment Corporation: Maynard, MA, USA, 1996; p. 6. [Google Scholar]
- Held, J.P.; Klaassen, B.; van Beijnum, B.-J.F.; Luft, A.R.; Veltink, P.H. Usability Evaluation of a Vibrotactile Feedback System in Stroke Subjects. Front. Bioeng. Biotechnol. 2017, 4, 98. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.R. Psychometric Evaluation of the Post-Study System Usability Questionnaire: The Pssuq. In Proceedings of the Human Factors and Ergonomics Society 36th Annual Meeting, Atlanta, GA, USA, 12–16 October 1992; pp. 1259–1260. [Google Scholar]
- Donnelly, M.R.; Marin-Pardo, O.; Abdullah, A.; Phanord, C.; Kumar, A.; Chakraborty, S.; Liew, S.-L. Pre-Implementation Analysis of the Usability and Acceptability of A Poststroke Complex Telehealth Biofeedback Intervention. Am. J. Occup. Ther. 2024, 78, 7802180210. [Google Scholar] [CrossRef]
- Gao, J.; He, W.; Du, L.-J.; Chen, J.; Park, D.; Wells, M.; Fowlkes, B.; O’Dell, M. Quantitative Ultrasound Imaging to assess the Biceps Brachii Muscle in Chronic Post-Stroke Spasticity: Preliminary Observation. Ultrasound Med. Biol. 2018, 44, 1931–1940. [Google Scholar] [CrossRef]
- Akazawa, N.; Harada, K.; Okawa, N.; Kishi, M.; Tamura, K.; Moriyama, H. Changes in Quadriceps Thickness and Echo Intensity in Chronic Stroke Survivors: A 3-Year Longitudinal Study. J. Stroke Cerebrovasc. Dis. 2021, 30, 105543. [Google Scholar] [CrossRef]
- Lv, S.; Ling, L.; Shi, H.; Chen, X.; Chen, S.; Zhu, S.; Lin, W.; Lv, R.; Ding, G. Application of Muscle Thickness and Quality Measured by Ultrasound in Frailty assessment in China. Front. Med. 2022, 9, 859555. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Gender (female/male) | 13/20 |
Type (ischemic/haemorrhagic) | 18/15 |
Age (year) | 60.5 ± 9.3 |
Height (cm) | 164.8 ± 7.8 |
Weight (kg) | 64.3 ± 10.1 |
BMI (kg/m2) | 23.7 ± 2.7 |
Stroke duration (year) | 6.4 ± 5.5 |
FIM | 89.0 ± 7.6 |
FMA-LE motor | 21.1 ± 5.8 |
FMA-ROM DF | 0.7 ± 0.8 |
FMA-ROM PF | 1.7 ± 0.6 |
SPPB | 7.2 ± 3.0 |
Contraction Phase | Without UVF | With UVF | Percentage Difference | p-Value |
---|---|---|---|---|
Whole contraction | ||||
Normalized mean torque (Nm/kg) | 0.16 ± 0.11 | 0.17 ± 0.10 | 26.7% ± 52.6% | 0.081 |
Normalized peak torque (Nm/kg) | 0.20 ± 0.13 | 0.21 ± 0.11 | 19.4% ± 37.5% | 0.075 |
Coefficient of variation | 35.52% ± 12.20% | 33.45% ± 8.04% | −1.2% ± 18.1% | 0.782 |
%MIVCTq | 66.91% ± 20.41% | 77.00% ± 20.82% | 26.0% ± 46.8% | 0.007 † |
Initial (first 1/3 of contraction) | ||||
Normalized mean torque (Nm/kg) | 0.16 ± 0.11 | 0.16 ± 0.09 | 16.3% ± 43.3% | 0.851 |
Normalized peak torque (Nm/kg) | 0.19 ± 0.12 | 0.20 ± 0.10 | 17.0% ± 37.0% | 0.330 |
Coefficient of variation | 30.80% ± 5.62% | 33.13% ± 6.32% | 8.7% ± 16.5% | 0.007 † |
%MIVCTq | 69.86% ± 19.30% | 75.24% ± 16.10% | 16.3% ± 43.3% | 0.155 |
Mid (middle 1/3 of contraction) | ||||
Normalized mean torque (Nm/kg) | 0.17 ± 0.12 | 0.19 ± 0.11 | 41.9% ± 103.7% | 0.006 † |
Normalized peak torque (Nm/kg) | 0.19 ± 0.13 | 0.21 ± 0.11 | 22.6% ± 39.9% | 0.044 † |
Coefficient of variation | 15.00% ± 23.58% | 9.09% ± 8.02% | −5.9% ± 87.2% | 0.046 † |
%MIVCTq | 72.23% ± 23.89% | 87.89% ± 26.43% | 41.9% ± 103.7% | 0.001 † |
End (last 1/3 of contraction) | ||||
Normalized mean torque (Nm/kg) | 0.14 ± 0.10 | 0.15 ± 0.10 | 36.4% ± 74.0% | 0.022 † |
Normalized peak torque (Nm/kg) | 0.17 ± 0.12 | 0.19 ± 0.12 | 31.0% ± 55.8% | 0.006 † |
Coefficient of variation | 36.35% ± 13.73% | 35.12% ± 8.82% | 2.4% ± 24.4% | 0.526 |
%MIVCTq | 58.56% ± 23.66% | 68.09% ± 24.32% | 36.4% ± 74.0% | 0.004 * |
Contraction Phase | Without UVF | With UVF | Percentage Difference | p-Value |
---|---|---|---|---|
Whole contraction | ||||
Mean thickness (mm) | 28.5 ± 2.4 | 28.6 ± 2.4 | 0.4% ± 0.0% | 0.164 |
Peak thickness (mm) | 28.8 ± 2.4 | 28.9 ± 2.4 | 0.5% ± 0.0% | 0.145 |
Coefficient of variation | 0.3% ± 0.4% | 0.3% ± 0.4% | 8.6% ± 0.6% | 0.681 |
%MIVCMT | 99.8% ± 2.4% | 100.2% ± 2.3% | 0.4% ± 0.0% | 0.173 |
Initial (first 1/3 of contraction) | ||||
Mean thickness (mm) | 28.4 ± 2.4 | 28.5 ± 2.4 | 0.4% ± 0.0% | 0.191 |
Peak thickness (mm) | 28.6 ± 2.4 | 28.7 ± 2.4 | 0.4% ± 0.0% | 0.187 |
Coefficient of variation | 0.3% ± 0.4% | 0.3% ± 0.3% | 7.5% ± 0.5% | 0.860 |
%MVCMT | 99.8% ± 2.4% | 100.2% ± 2.4% | 0.4% ± 0.0% | 0.187 |
Mid (middle 1/3 of contraction) | ||||
Mean thickness (mm) | 28.5 ± 2.4 | 28.7 ± 2.4 | 0.5% ± 0.0% | 0.092 |
Peak thickness (mm) | 28.6 ± 2.4 | 28.8 ± 2.4 | 0.6% ± 0.0% | 0.045 * |
Coefficient of variation | 0.1% ± 0.2% | 0.2% ± 0.2% | 23.0% ± 0.8% | 0.044 † |
%MIVCMT | 99.8% ± 2.5% | 100.3% ± 2.5% | 0.5% ± 0.0% | 0.095 |
End (last 1/3 of contraction) | ||||
Mean thickness (mm) | 28.5 ± 2.4 | 28.7 ± 2.5 | 0.6% ± 0.0% | 0.099 |
Peak thickness (mm) | 28.7 ± 2.5 | 28.8 ± 2.5 | 0.6% ± 0.0% | 0.096 |
Coefficient of variation | 0.2% ± 0.3% | 0.2% ± 0.3% | 18.9% ± 0.7% | 0.788 |
%MIVCMT | 99.7% ± 2.4% | 100.2% ± 2.3% | 0.6% ± 0.0% | 0.112 |
Condition | Correlation Coefficient (r) | p-Value |
---|---|---|
Combined two training conditions | ||
Whole contraction | 0.30 | 0.016 † |
Initial (first 1/3 of contraction) | 0.37 | 0.003 † |
Mid (middle 1/3 of contraction) | 0.30 | 0.013 † |
End (last 1/3 of contraction) | 0.20 | 0.100 |
Training with UVF only | ||
Whole contraction | 0.27 | 0.134 |
Initial (first 1/3 of contraction) | 0.31 | 0.079 |
Mid (middle 1/3 of contraction) | 0.28 | 0.111 |
End (last 1/3 of contraction) | 0.21 | 0.242 |
Training without UVF only | ||
Whole contraction | 0.32 | 0.072 |
Initial (first 1/3 of contraction) | 0.36 | 0.040 † |
Mid (middle 1/3 of contraction) | 0.34 | 0.051 |
End (last 1/3 of contraction) | 0.20 | 0.271 |
Condition | Correlation Coefficient (r) | p-Value |
---|---|---|
Combined two training conditions | ||
Whole contraction | 0.30 | 0.014 † |
Initial (first 1/3 of contraction) | 0.35 | 0.005 † |
Mid (middle 1/3 of contraction) | 0.31 | 0.011 † |
End (last 1/3 of contraction) | 0.24 | 0.054 |
Training with UVF only | ||
Whole contraction | 0.25 | 0.157 |
Initial (first 1/3 of contraction) | 0.36 | 0.039 * |
Mid (middle 1/3 of contraction) | 0.25 | 0.155 |
End (last 1/3 of contraction) | 0.23 | 0.206 |
Training without UVF only | ||
Whole contraction | 0.34 | 0.054 |
Initial (first 1/3 of contraction) | 0.35 | 0.049 † |
Mid (middle 1/3 of contraction) | 0.36 | 0.043 † |
End (last 1/3 of contraction) | 0.24 | 0.172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.-Y.; Huang, C.; Song, Z.; Nazari, V.; Wong, A.Y.-L.; Yang, L.; Dong, M.; Zhang, M.; Zheng, Y.-P.; Fu, A.S.-N.; et al. Wearable Ultrasound-Imaging-Based Visual Feedback (UVF) Training for Ankle Rehabilitation of Chronic Stroke Survivors: A Proof-of-Concept Randomized Crossover Study. Biosensors 2025, 15, 365. https://doi.org/10.3390/bios15060365
Luo Y-Y, Huang C, Song Z, Nazari V, Wong AY-L, Yang L, Dong M, Zhang M, Zheng Y-P, Fu AS-N, et al. Wearable Ultrasound-Imaging-Based Visual Feedback (UVF) Training for Ankle Rehabilitation of Chronic Stroke Survivors: A Proof-of-Concept Randomized Crossover Study. Biosensors. 2025; 15(6):365. https://doi.org/10.3390/bios15060365
Chicago/Turabian StyleLuo, Yu-Yan, Chen Huang, Zhen Song, Vaheh Nazari, Arnold Yu-Lok Wong, Lin Yang, Mingjie Dong, Mingming Zhang, Yong-Ping Zheng, Amy Siu-Ngor Fu, and et al. 2025. "Wearable Ultrasound-Imaging-Based Visual Feedback (UVF) Training for Ankle Rehabilitation of Chronic Stroke Survivors: A Proof-of-Concept Randomized Crossover Study" Biosensors 15, no. 6: 365. https://doi.org/10.3390/bios15060365
APA StyleLuo, Y.-Y., Huang, C., Song, Z., Nazari, V., Wong, A. Y.-L., Yang, L., Dong, M., Zhang, M., Zheng, Y.-P., Fu, A. S.-N., & Ma, C. Z.-H. (2025). Wearable Ultrasound-Imaging-Based Visual Feedback (UVF) Training for Ankle Rehabilitation of Chronic Stroke Survivors: A Proof-of-Concept Randomized Crossover Study. Biosensors, 15(6), 365. https://doi.org/10.3390/bios15060365