Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review
Abstract
1. Introduction
2. Inflammatory Bowel Diseases
3. Diagnostic and Prognostic Problems in Inflammatory Bowel Diseases
Methods of Diagnosis | Advantages | Disadvantages | References |
---|---|---|---|
Endoscopy | -Biopsy collection; -Assess disease severity; -Therapeutic intervations; | -Invasive procedure; -Risk of complications; -Cost and availability; -Results are operator- and proper patient-preparation-dependent; -Limited to the superficial mucosal layers of the intestine; -Cannot image all parts of the intestine, due to its anatomy | [22,40,41] |
Video Capsule endoscopy (VCE) | -Less invasive than an endoscopy; -Images of the whole bowel | -Risk of capsule retention; -Even more cost-effective; -Cannot be used to perform biopsies; -Lack of therapeutic capabilities | [42,47] |
Confocal laser endomicroscopy (CLE) | -Used in vivo, allows to obtain living tissue images during colonoscopy; -Faster diagnosis | -Technical complexity; -Time-consuming preparation -Risk of complications; -Cost and availability; | [42,44,45] |
Single-/Double-ballon assisted endoscopy (SBE, DBE, respectively) | -Images of small bowel areas a standard endoscopy cannot reach | -More invasive than a standard endoscopy; -Technical complexity; -Specialized training and expertise by endoscopists is needed; -Cost and availability | [42,47] |
Ultrasound | -Cost-effective; -Radiation-free; -Performed in real-time | -Heavily dependent on the operator; -Limited in evaluating the entire length of the bowel | [14] |
Computed tomography (CT) | -Can assess bowel wall thickening, mesenteric edema, lymphadenopathy, inflammatory masses and abcesses (Cross-sectional imaging capability) | -Limited in detecting subtle mucosal inflammation; -Radiation exposure; -Patient discomfort; -Cost and technical complexity. | [14] |
Magnetic Resonance Enterography (MRE) | -Cross-sectional imaging capability; -Lack of ionizing radiation | -Cost and technical complexity; -Patient discomfort | [14] |
4. Biomarkers in Inflammatory Bowel Diseases
4.1. Serological Markers
4.1.1. Serological Markers for CRP
4.1.2. Serological Markers for LRG
Biomarker | Quantity | Detection Technique | Advantages | Disadvantages | Sensitivity (Se) Specificity (Sp) | Reference |
---|---|---|---|---|---|---|
CRP | Normal: <1 mg/L Mild inflammation/Viral infections: 10–40 mg/L; Severe active inflammation/Bacterial infection: 50–200 mg/L | Turbidimetric and nephelometric techniques with CRP enzyme-linked immunosorbent assay (ELISA) kits | Robust and affordable; This biomarker can access the extensibility and severity of the disease | Detection Technique: Advanced equipment; Multiple samples; Exhibit selective detection; Time-consuming and involving multiple steps. Biomarker: Not IBD-specific, low specificity | Se: 77–82% for UC; 83–92% for CD Sp: 32–40% for UC; 70–89% for CD | [50,57,59,65,66,67,68] |
Erythrocyte sedimentation rate (ESR) | Normal: Male < 50 years old: ≤15 mm/hr Female < 50 years old: ≤20 mm/hr Male > 50 years old: ≤20 mm/hr Female > 50 years old: ≤30 mm/hr Child: ≤10 mm/hr Abnormal: >20 mm/hr | Measured by various methods: Westergren, Wintrobe, micro-ESR, and automated machines. | Simple and cost-effective way to detect acute inflammation | Detection Technique: Technical factors (amount of blood drawn into the tube, vibrations, temperature, time from specimen collection, the addition of proper anticoagulants, and tube orientation) can affect the results; time-consuming; medication can affect results. Biomarker: Not IBD-specific, low sensitivity and specificity | Se and Sp: Around 78% | [42,69,70] |
Leucine-rich alpha 2-glycoprotein (LRG) | Reference values range vary with according to the Assay method (different kits/labs); Sample type (serum vs. EDTA/heparin/citrate plasma); Population (age, health status) Normal: There are no male/female differences in normal LRG values. Serum (Elisa): 19–40 ng/mL. Plasma/Serum: 21–50 µg/mL. Abnormal: ≥10.8 μg/L for UC and ≥13.4 μg/L for CD | Immunoturbidimetric or immunoenzymatic assays (such as Nanopia kit and ELISA kits) | Robust and affordable; Can predict mucosal healing in patients with UC and CD, even when CRP levels are normal | Detection Technique: Advanced equipment; Multiple samples; Exhibit selective detection; Time-consuming and involving multiple steps. Biomarker: Not IBD specific, lack of knowledge about this protein and its correlation with IBD | Se: 87.9–99.3% for UC; 68–96% for CD Sp: 86.2–99.9% for UC; 87–97% for CD | [65,71,72,73] |
4.2. Serological Antibodies
Biomarker | Detection Technique | Advantages | Disadvantages | Sensitivity (Se) Specificity (Sp) | Reference |
---|---|---|---|---|---|
Perinuclear anti-neutrophil cytoplasmic antibodies (p-ANCAs) | Indirect immunofluorescence | Can help distinguish between IBD subtypes: p-ANCA+/ASCA− is often found in UC patients, whereas p-ANCA−/ASCA+ is more common in CD patients | Biomarker: Not IBD-specific, low sensitivity, low accuracy Detection Technique: Complex, time-consuming, background noise, subjective, and expensive | Se: 31–34% Sp: 96–98% | [34,75,76,77] |
Anti-Saccharomyces cerevisiae antibodies (ASCAs) | ASCA enzyme-linked immunosorbent assay (ELISA), Indirect immunofluorescence | Robust and affordable; can help distinguish between IBD subtypes: pANCA+/ASCA− for UC; pANCA−/ASCA+ for CD | Detection Technique: Advanced equipment; Multiple samples; Exhibit selective detection; Time-consuming and involving multiple steps. Biomarker: Not IBD-specific, low sensitivity, low accuracy | Se: 38–42% Sp: 91–94% | [34,78,79] |
4.3. Fecal Biomarkers
Biomarker | Quantity | Detection Technique | Advantages | Disadvantages | Sensitivity (Se) Specificity (Sp) | Reference |
---|---|---|---|---|---|---|
Calprotectin | Normal: Not yet established (possibly around 150–250 μg/g) Abnormal: >250 μg/g | Turbidimetry, CLIA and ELISA assays | Stable biomarker and resistant to degradation. Detection techniques are robust and affordable | Its sensitivity and specificity vary among different assays, and sample collection can be challenging. Not IBD-specific. Advanced equipment; Time-consuming and involving multiple steps | Se: 88% Sp: 80% | [34,50,88] |
Calgranulin C | Abnormal: cut-off of 10 mg/kg | Sandwich enzyme-linked immunosorbent assay (ELISA) | Stable, resist degradation. Detection techniques are robust and affordable. Possible to discriminate IBD with/without mucosal lesions and IBS. | Detection technique involves advanced equipment, is time-consuming and involves multiple steps | Se: 96% Sp: 92% | [89,90,91] |
Lactoferrin | Normal: <7.25 μg/g Abnormal: >7.25 μg/g | Quantitative ELISA | Stable, and its extracellular release is the most efficient. Resistant to degradation | Detection technique involves advanced equipment, is time-consuming, and involves multiple steps | Se: 82% Sp: 95% | [34,92,93] |
Lipocalin-2 (LCN-2) | Abnormal: >6700 ng/g | Sandwich enzyme-linked immunosorbent assay (ELISA) | Valuable marker for UC, helping distinguish between IBD subtypes | Detection technique involves advanced equipment, is time-consuming, and involves multiple steps | Se: 85.7% for CD and 82% for UC Sp: 45.5% and 80% for UC | [86,94] |
5. Genetics and Epigenetics Behind Inflammatory Bowel Diseases
6. Biosensors and Their Clinical Applications in IBD
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
5-ASA | aminosalycilate drug mesalazine |
ASCAs | Anti-Saccharomyces cerevisae Antibodies |
AuNPs | Gold Nanoparticles |
CAI | Colitis Activity Index |
CARD15 | Caspase Recruitment Domain family member 15 |
CD | Crohn’s Disease |
CDAI | Crohn’s Disease Activity Index |
CLE | Confocal Laser Endomicroscopy |
CNT | Carbon Nanotubes |
CP | Calprotectin |
CRP | C-reactive Protein |
CT | Computed Tomography |
DBE | Double-Ballon Assisted Endoscopy |
ELISA | Enzyme-Linked Immunosorbent Assay |
ERS | Erythrocyte Sedimentation Rate |
FA | Folic acid |
FET | Field-Effect Transistor |
GWASs | Genome-wide Association Studies |
HLA | Human Leukocyte Complex |
IBD | Inflammatory Bowel Disease |
IBS | Irritable Bowel Syndrome |
IL-1β | interleukin-1β |
IL23-R | Interleukin-24 receptor |
LCN-2 | Lipocalin-2 |
LOD | Limit of Detection |
LRG | Leucine-rich alpha 2-glycoprotein |
miRNAs | MicroRNAs |
ML | Micrococcus lysodeikticus |
MRE | Magnetic Resonance Enterography |
NMs | Nanomaterials |
NOD2 | Nucleotide-binding Oligomerization Domain-containing protein 2 |
NPs | Nanoparticles |
p-ANCAs | Perinuclear Anti-neutrophil Cytoplasmic Antibodies |
PDDA | poly(diallyldimethylamonium) |
PGE-MUM | Prostaglandin E-major |
SBE | Single-Ballon Assisted Endoscopy |
SERS | Surface-Enhanced Raman spectroscopy |
SNPs | Single-Nucleotide Polymorphisms |
SPE | Screen-Printed carbon Electrode |
SPR | Surface Plasmon Resonance |
SWV | Square Wave Voltammetry |
TNF-α | Tumor Necrosis Factor-alpha |
UC | Ulcerative Colitis |
US | Ultrasound |
VA-NCNT | Vertically aligned nitrogen-doped carbon nanotube. |
VCE | Video Capsule Endoscopy |
μQLIDA | Quantum Dot-Linked Immuno-Diagnostic Assay |
References
- Loddo, I.; Romano, C. Inflammatory Bowel Disease: Genetics, Epigenetics, and Pathogenesis. Front. Immunol. 2015, 6, 551. [Google Scholar] [CrossRef]
- Sarmento, A. Editorial: Understanding Crohn’s Disease: Immunity, Genes and Microbes. Front. Immunol. 2017, 8, 357. [Google Scholar] [CrossRef]
- McDowell, C.; Farooq, U.; Haseeb, M. Inflammatory Bowel Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470312/ (accessed on 16 October 2023).
- Michail, S.; Bultron, G.; Depaolo, W. Genetic variants associated with Crohn’s disease. Appl. Clin. Genet. 2013, 6, 25. [Google Scholar] [CrossRef]
- Caviglia, G.P.; Garrone, A.; Bertolino, C.; Vanni, R.; Bretto, E.; Poshnjari, A.; Tribocco, E.; Frara, S.; Armandi, A.; Astegiano, M.; et al. Epidemiology of Inflammatory Bowel Diseases: A Population Study in a Healthcare District of North-West Italy. J. Clin. Med. 2023, 12, 641. [Google Scholar] [CrossRef]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases With Time, Based on Systematic Review. Gastroenterology 2012, 142, 46–54.e42. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Portela, F.; Lago, P.; Chagas, C.; Moreira, F.; Pereira, F.; Rodrigues, B.; Pedrosa, H.; Correia, L. Burden of Disease and Cost of Illness of Inflammatory Bowel Diseases in Portugal. GE—Port. J. Gastroenterol. 2022, 30, 283–292. [Google Scholar] [CrossRef]
- Dias, C.C.; Santiago, M.; Correia, L.; Portela, F.; Ministro, P.; Lago, P.; Trindade, E.; Freitas, A.; Magro, F.; GEDII. Hospitalization trends of the Inflammatory Bowel Disease landscape: A nationwide overview of 16 years. Dig. Liver Dis. 2019, 51, 952–960. [Google Scholar] [CrossRef]
- Haag, L.-M.; Siegmund, B. Intestinal Microbiota and the Innate Immune System—A Crosstalk in Crohn’s Disease Pathogenesis. Front. Immunol. 2015, 6, 489. [Google Scholar] [CrossRef]
- Pizarro, T.T.; Stappenbeck, T.S.; Rieder, F.; Rosen, M.J.; Colombel, J.-F.; Donowitz, M.; Towne, J.; Mazmanian, S.K.; Faith, J.J.; Hodin, R.A.; et al. Challenges in IBD Research: Preclinical Human IBD Mechanisms. Inflamm. Bowel Dis. 2019, 25 (Suppl. S2), S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-M.; Lewis, J.D.; Mayer, E.A.; Plevy, S.E.; Chuang, E.; Rappaport, S.M.; Croitoru, K.; Korzenik, J.R.; Krischer, J.; Hyams, J.S.; et al. Challenges in IBD Research: Environmental Triggers. Inflamm. Bowel Dis. 2019, 25 (Suppl. S2), S13–S23. [Google Scholar] [CrossRef] [PubMed]
- Scott, F.I.; Rubin, D.T.; Kugathasan, S.; Bousvaros, A.; Elson, C.O.; Newberry, R.D.; Melmed, G.Y.; Pekow, J.; Fleshman, J.W.; Boyle, B.M.; et al. Challenges in IBD Research: Pragmatic Clinical Research. Inflamm. Bowel Dis. 2019, 25 (Suppl. S2), S40–S47. [Google Scholar] [CrossRef]
- Denson, L.A.; Curran, M.; McGovern, D.P.B.; Koltun, W.A.; Duerr, R.H.; Kim, S.C.; Sartor, R.B.; Sylvester, F.A.; Abraham, C.; de Zoeten, E.F.; et al. Challenges in IBD Research: Precision Medicine. Inflamm. Bowel Dis. 2019, 25 (Suppl. S2), S31–S39. [Google Scholar] [CrossRef]
- Dhyani, M.; Joshi, N.; Bemelman, W.A.; Gee, M.S.; Yajnik, V.; D’Hoore, A.; Traverso, G.; Donowitz, M.; Mostoslavsky, G.; Lu, T.K.; et al. Challenges in IBD Research: Novel Technologies. Inflamm. Bowel Dis. 2019, 25 (Suppl. S2), S24–S30. [Google Scholar] [CrossRef]
- Agrawal, G.; Aitken, J.; Hamblin, H.; Collins, M.; Borody, T.J. Putting Crohn’s on the MAP: Five Common Questions on the Contribution of Mycobacterium avium subspecies paratuberculosis to the Pathophysiology of Crohn’s Disease. Dig. Dis. Sci. 2021, 66, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Ntunzwenimana, J.C.; Boucher, G.; Paquette, J.; Gosselin, H.; Alikashani, A.; Morin, N.; Beauchamp, C.; Thauvette, L.; Rivard, M.-E.; Dupuis, F.; et al. Functional screen of Inflammatory Bowel Disease genes reveals key epithelial functions. Genome Med. 2021, 13, 181. [Google Scholar] [CrossRef]
- Sousa, T.; Costa, M.; Sarmento, P.; Manso, M.C.; Abreu, C.; Bull, T.J.; Cabeda, J.; Sarmento, A. DNA-based detection of Mycobacterium avium subsp. paratuberculosis in domestic and municipal water from Porto (Portugal), an area of high IBD prevalence. AIMS Microbiol. 2021, 7, 163–174. [Google Scholar] [CrossRef]
- Cross, E.; Saunders, B.; Farmer, A.D.; Prior, J.A. Diagnostic delay in adult Inflammatory Bowel Disease: A systematic review. Indian J. Gastroenterol. 2023, 42, 40–52. [Google Scholar] [CrossRef]
- Cleynen, I.; Boucher, G.; Jostins, L.; Schumm, L.P.; Zeissig, S.; Ahmad, T.; Andersen, V.; Andrews, J.M.; Annese, V.; Brand, S.; et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: A genetic association study. Lancet 2016, 387, 156–167. [Google Scholar] [CrossRef]
- Levine, J.S.; Burakoff, R. Extraintestinal Manifestations of Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2011, 7, 235–241. [Google Scholar]
- Huang, S.; Li, L.; Ben-Horin, S.; Mao, R.; Lin, S.; Qiu, Y.; Feng, R.; He, Y.; Chen, B.; Zeng, Z.; et al. Mucosal Healing Is Associated With the Reduced Disabling Disease in Crohn’s Disease. Clin. Transl. Gastroenterol. 2019, 10, e00015. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhou, G.; Lin, J.; Li, L.; Zeng, Z.; Chen, M.; Zhang, S. Serum Biomarkers for Inflammatory Bowel Disease. Front. Med. 2020, 7, 123. [Google Scholar] [CrossRef] [PubMed]
- Targownik, L.E.; Singh, H.; Nugent, Z.; Bernstein, C.N. The Epidemiology of Colectomy in Ulcerative Colitis: Results From a Population-Based Cohort. Off. J. Am. Coll. Gastroenterol. ACG 2012, 107, 1228. [Google Scholar] [CrossRef] [PubMed]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Nunes, P.B.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohns Colitis 2019, 13, 144–164K. [Google Scholar] [CrossRef] [PubMed]
- Burgmann, T.; Clara, I.; Graff, L.; Walker, J.; Lix, L.; Rawsthorne, P.; McPhail, C.; Rogala, L.; Miller, N.; Bernstein, C.N. The Manitoba Inflammatory Bowel Disease Cohort Study: Prolonged Symptoms Before Diagnosis—How Much Is Irritable Bowel Syndrome? Clin. Gastroenterol. Hepatol. 2006, 4, 614–620. [Google Scholar] [CrossRef]
- Blackwell, J.; Saxena, S.; Jayasooriya, N.; Bottle, A.; Petersen, I.; Hotopf, M.; Alexakis, C.; Pollok, R.C.; POP-IBD study group. Prevalence and Duration of Gastrointestinal Symptoms Before Diagnosis of Inflammatory Bowel Disease and Predictors of Timely Specialist Review: A Population-Based Study. J. Crohns Colitis 2021, 15, 203–211. [Google Scholar] [CrossRef]
- Card, T.R.; Siffledeen, J.; Fleming, K.M. Are IBD patients more likely to have a prior diagnosis of irritable bowel syndrome? Report of a case-control study in the General Practice Research Database. United Eur. Gastroenterol. J. 2014, 2, 505–512. [Google Scholar] [CrossRef]
- Cantoro, L.; Sabatino, A.D.; Papi, C.; Margagnoni, G.; Ardizzone, S.; Giuffrida, P.; Giannarelli, D.; Massari, A.; Monterubbianesi, R.; Lenti, M.V.; et al. The Time Course of Diagnostic Delay in Inflammatory Bowel Disease Over the Last Sixty Years: An Italian Multicentre Study. J. Crohns Colitis 2017, 11, 975–980. [Google Scholar] [CrossRef]
- Pellino, G.; Sciaudone, G.; Selvaggi, F.; Riegler, G. Delayed diagnosis is influenced by the clinical pattern of Crohn’s disease and affects treatment outcomes and quality of life in the long term: A cross-sectional study of 361 patients in Southern Italy. Eur. J. Gastroenterol. Hepatol. 2015, 27, 175–181. [Google Scholar] [CrossRef]
- Lee, D.; Koo, J.S.; Choe, J.W.; Suh, S.J.; Kim, S.Y.; Hyun, J.J.; Jung, S.W.; Jung, Y.K.; Yim, H.J.; Lee, S.W. Diagnostic delay in Inflammatory Bowel Disease increases the risk of intestinal surgery. World J. Gastroenterol. 2017, 23, 6474–6481. [Google Scholar] [CrossRef]
- Basaranoglu, M.; Sayilir, A.; Demirbag, A.E.; Mathew, S.; Ala, A.; Senturk, H. Seasonal clustering in Inflammatory Bowel Disease: A single centre experience. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 877–881. [Google Scholar] [CrossRef]
- Dias, A.; Gomes, V.; Cruz, C.; Sampaio, A.; Ferro, M.; Andrade, S.; Ramos, D. PCR267 Evaluating Patient-Reported Experience Along the Inflammatory Bowel Disease Patient Journey in Portugal. Value Health 2022, 25, S442. [Google Scholar] [CrossRef]
- Walker, G.J.; Lin, S.; Chanchlani, N.; Thomas, A.; Hendy, P.; Heerasing, N.; Moore, L.; Green, H.D.; Chee, D.; Bewshea, C.; et al. Quality improvement project identifies factors associated with delay in IBD diagnosis. Aliment. Pharmacol. Ther. 2020, 52, 471–480. [Google Scholar] [CrossRef]
- D’Incà, R.; Sturniolo, G. Biomarkers in IBD: What to Utilize for the Diagnosis? Diagnostics 2023, 13, 2931. [Google Scholar] [CrossRef]
- Best, W.R.; Becktel, J.M.; Singleton, J.W.; Kern, F. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology 1976, 70, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ajlan, A.M.; Eskander, A.A.; Alhazmi, T.A.; Khashoggi, K.; Wazzan, M.A.; Abduljabbar, A.H. Magnetic resonance imaging in the management of Crohn’s disease: A systematic review and meta-analysis. Insights Imaging 2021, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.F.; Bradshaw, J.M. A simple index of Crohn’s-disease activity. Lancet 1980, 1, 514. [Google Scholar] [CrossRef]
- Kishi, M.; Hirai, F.; Takatsu, N.; Hisabe, T.; Takada, Y.; Beppu, T.; Takeuchi, K.; Naganuma, M.; Ohtsuka, K.; Watanabe, K.; et al. A review on the current status and definitions of activity indices in Inflammatory Bowel Disease: How to use indices for precise evaluation. J. Gastroenterol. 2022, 57, 246–266. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, B.; Lin, K.-C.; Pali, M.; Shahub, S.; Sardesai, A.; Muthukumar, S.; Prasad, S. An observational study demonstrating the measurement, characterization and validation of expression of calprotectin in human sweat through a sweat wearable. Biosens. Bioelectron. X 2023, 13, 100314. [Google Scholar] [CrossRef]
- Dmochowska, N.; Wardill, H.; Hughes, P. Advances in Imaging Specific Mediators of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2018, 19, 2471. [Google Scholar] [CrossRef]
- Gee, M.S.; Harisinghani, M.G. MRI in patients with Inflammatory Bowel Disease. J. Magn. Reson. Imaging 2011, 33, 527–534. [Google Scholar] [CrossRef]
- Alghoul, Z.; Yang, C.; Merlin, D. The Current Status of Molecular Biomarkers for Inflammatory Bowel Disease. Biomedicines 2022, 10, 1492. [Google Scholar] [CrossRef]
- Rezapour, M.; Amadi, C.; Gerson, L.B. Retention associated with video capsule endoscopy: Systematic review and meta-analysis. Gastrointest. Endosc. 2017, 85, 1157–1168.e2. [Google Scholar] [CrossRef]
- Neumann, H.; Vieth, M.; Atreya, R.; Neurath, M.F.; Mudter, J. Prospective evaluation of the learning curve of confocal laser endomicroscopy in patients with IBD. Histol. Histopathol. 2011, 26, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, S.; Narula, N.; Tandon, P.; Yaghoobi, M. Role of endoscopy in Inflammatory Bowel Disease. Gastroenterol. Rep. 2018, 6, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Heine, G.D.; Al-Toma, A.; Mulder, C.J.J.; Jacobs, M.A.J.M. Milestone in gastrointestinal endoscopy: Double-balloon enteroscopy of the small bowel. Scand. J. Gastroenterol. 2006, 41, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Bourreille, A.; Ignjatovic, A.; Aabakken, L.; Loftus, E.V., Jr.; Eliakim, R.; Pennazio, M.; Bouhnik, Y.; Seidman, E.; Keuchel, M.; Albert, J.G. Role of small-bowel endoscopy in the management of patients with Inflammatory Bowel Disease: An international OMED–ECCO consensus. Endoscopy 2009, 41, 618–637. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Korzenik, J.R.; Hur, C. Can Mucosal Healing Be a Cost-effective Endpoint for Biologic Therapy in Crohn’s Disease? A Decision Analysis. Inflamm. Bowel Dis. 2013, 19, 37–44. [Google Scholar] [CrossRef]
- Shah, S.C.; Colombel, J.-F.; Sands, B.E.; Narula, N. Systematic review with meta-analysis: Mucosal healing is associated with improved long-term outcomes in Crohn’s disease. Aliment. Pharmacol. Ther. 2016, 43, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S. Laboratory markers in IBD: Useful, magic, or unnecessary toys? Gut 2006, 55, 426–431. [Google Scholar] [CrossRef]
- Tiele, A.; Wicaksono, A.; Kansara, J.; Arasaradnam, R.P.; Covington, J.A. Breath Analysis Using eNose and Ion Mobility Technology to Diagnose Inflammatory Bowel Disease—A Pilot Study. Biosensors 2019, 9, 55. [Google Scholar] [CrossRef]
- Ishida, N.; Miyazu, T.; Takano, R.; Tamura, S.; Tani, S.; Kagami, T.; Yamade, M.; Hamaya, Y.; Iwaizumi, M.; Osawa, S.; et al. Prostaglandin E-major urinary metabolite versus fecal immunochemical occult blood test as a biomarker for patient with ulcerative colitis. BMC Gastroenterol. 2020, 20, 114. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Kempiński, R.; Bromke, M.; Neubauer, K. Biochemical Biomarkers of Mucosal Healing for Inflammatory Bowel Disease in Adults. Diagnostics 2020, 10, 367. [Google Scholar] [CrossRef]
- Baldan-Martin, M.; Chaparro, M.; Gisbert, J.P. Systematic Review: Urine Biomarker Discovery for Inflammatory Bowel Disease Diagnosis. Int. J. Mol. Sci. 2023, 24, 10159. [Google Scholar] [CrossRef]
- Liu, D.; Saikam, V.; Skrada, K.A.; Merlin, D.; Iyer, S.S. Inflammatory Bowel Disease Biomarkers. Med. Res. Rev. 2022, 42, 1856–1887. [Google Scholar] [CrossRef]
- Vermeire, S.; Van Assche, G.; Rutgeerts, P. C-Reactive Protein as a Marker for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2004, 10, 661–665. [Google Scholar] [CrossRef]
- Yang, H.J.; Kim, M.W.; Raju, C.V.; Cho, C.H.; Park, T.J.; Park, J.P. Highly sensitive and label-free electrochemical detection of C-reactive protein on a peptide receptor−gold nanoparticle−black phosphorous nanocomposite modified electrode. Biosens. Bioelectron. 2023, 234, 115382. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.; Lu, J.; Delport, F.; Vermeire, S.; Spasic, D.; Lammertyn, J.; Gils, A. Development and validation of an optical biosensor for rapid monitoring of adalimumab in serum of patients with Crohn’s disease. Drug Test. Anal. 2018, 10, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Jiang, M.; Sun, M.-J.; Cao, Q. Fecal Lactoferrin for Assessment of Inflammatory Bowel Disease Activity: A Systematic Review and Meta-Analysis. J. Clin. Gastroenterol. 2020, 54, 545–553. [Google Scholar] [CrossRef]
- Turner, D.; Mack, D.R.; Hyams, J.; LeLeiko, N.; Otley, A.; Markowitz, J.; Kasirer, Y.; Muise, A.; Seow, C.H.; Silverberg, M.S.; et al. C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) or both? A systematic evaluation in pediatric ulcerative colitis. J. Crohns Colitis 2011, 5, 423–429. [Google Scholar] [CrossRef]
- Naka, T.; Fujimoto, M. LRG is a novel inflammatory marker clinically useful for the evaluation of disease activity in rheumatoid arthritis and Inflammatory Bowel Disease. Immunol. Med. 2018, 41, 62–67. [Google Scholar] [CrossRef]
- Shirai, R.; Hirano, F.; Ohkura, N.; Ikeda, K.; Inoue, S. Up-regulation of the expression of leucine-rich α2-glycoprotein in hepatocytes by the mediators of acute-phase response. Biochem. Biophys. Res. Commun. 2009, 382, 776–779. [Google Scholar] [CrossRef]
- Kawamoto, A.; Takenaka, K.; Hibiya, S.; Ohtsuka, K.; Okamoto, R.; Watanabe, M. Serum Leucine-Rich α2 Glycoprotein: A Novel Biomarker For Small Bowel Mucosal Activity in Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2022, 20, e1196–e1200. [Google Scholar] [CrossRef]
- Yasutomi, E.; Inokuchi, T.; Hiraoka, S.; Takei, K.; Igawa, S.; Yamamoto, S.; Ohmori, M.; Oka, A.; Yamasaki, Y.; Kinugasa, H.; et al. Leucine-rich alpha-2 glycoprotein as a marker of mucosal healing in Inflammatory Bowel Disease. Sci. Rep. 2021, 11, 11086. [Google Scholar] [CrossRef]
- Chang, S.; Malter, L.; Hudesman, D. Disease monitoring in Inflammatory Bowel Disease. World J. Gastroenterol. WJG 2015, 21, 11246–11259. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Chen, S.-Y.; Liu, G.-T.; Jia, X.-Y.; Haq, S.U.; Deng, Z.-J.; Luo, D.-X.; Li, R.; Gong, Z.-H. Morphological, physiochemical, and transcriptome analysis and CaEXP4 identification during pepper (Capsicum annuum L.) fruit cracking. Sci. Hortic. 2022, 297, 110982. [Google Scholar] [CrossRef]
- Mouliou, D.S. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Saruta, M. Positioning and Usefulness of Biomarkers in Inflammatory Bowel Disease. Digestion 2023, 104, 30–41. [Google Scholar] [CrossRef]
- Tishkowski, K.; Gupta, V. Erythrocyte Sedimentation Rate. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK557485/ (accessed on 24 March 2024).
- Horiuchi, I.; Horiuchi, A.; Umemura, T. Serum Leucine-Rich α2 Glycoprotein: A Biomarker for Predicting the Presence of Ulcerative Colitis but Not Ulcerative Proctitis. J. Clin. Med. 2022, 11, 6366. [Google Scholar] [CrossRef] [PubMed]
- Shinzaki, S.; Matsuoka, K.; Iijima, H.; Mizuno, S.; Serada, S.; Fujimoto, M.; Arai, N.; Koyama, N.; Morii, E.; Watanabe, N.; et al. Leucine-rich Alpha-2 Glycoprotein is a Serum Biomarker of Mucosal Healing in Ulcerative Colitis. J. Crohns Colitis 2017, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yin, G.N.; Kim, D.-K.; Han, A.-R.; Lee, D.S.; Min, K.W.; Fu, Y.; Yun, J.; Suh, J.-K.; Ryu, J.-K.; et al. Crystal structure of LRG1 and the functional significance of LRG1 glycan for LPHN2 activation. Exp. Mol. Med. 2023, 55, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarifar, A.; Ganji, A.; Sadrneshin, M.; Bahari, A.; Esmaeilzadeh, A.; Ghafarzadegan, K.; Nikpour, S. Diagnostic Value of ASCA and Atypical p-ANCA in Differential Diagnosis of Inflammatory Bowel Disease. Middle East J. Dig. Dis. 2013, 5, 93–97. [Google Scholar]
- Goding, J.W. 12—Immunofluorescence. In Monoclonal Antibodies, 3rd ed.; Goding, J.W., Ed.; Academic Press: London, UK, 1996; pp. 352–399. [Google Scholar] [CrossRef]
- Savige, J.; Davies, D.; Falk, R.; Jennette, J.; Wiik, A. Antineutrophil cytoplasmic antibodies and associated diseases: A review of the clinical and laboratory features. Kidney Int. 2000, 57, 846–862. [Google Scholar] [CrossRef]
- Lee, W.-I.; Subramaniam, K.; Hawkins, C.A.; Randall, K.L. The significance of ANCA positivity in patients with Inflammatory Bowel Disease. Pathology 2019, 51, 634–639. [Google Scholar] [CrossRef]
- Walker, L.J.; Aldhous, M.C.; Drummond, H.E.; Smith, B.R.K.; Nimmo, E.R.; Arnott, I.D.R.; Satsangi, J. Anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn’s disease are associated with disease severity but not NOD2/CARD15 mutations. Clin. Exp. Immunol. 2004, 135, 490–496. [Google Scholar] [CrossRef]
- Desplat-Jégo, S.; Johanet, C.; Escande, A.; Goetz, J.; Fabien, N.; Olsson, N.; Ballot, E.; Sarles, J.; Baudon, J.J.; Grimaud, J.C.; et al. Update on Anti-Saccharomyces cerevisiae antibodies, anti-nuclear associated anti-neutrophil antibodies and antibodies to exocrine pancreas detected by indirect immunofluorescence as biomarkers in chronic Inflammatory Bowel Diseases: Results of a multicenter study. World J. Gastroenterol. WJG 2007, 13, 2312–2318. [Google Scholar] [CrossRef]
- Lopez, R.N.; Leach, S.T.; Lemberg, D.A.; Duvoisin, G.; Gearry, R.B.; Day, A.S. Fecal biomarkers in Inflammatory Bowel Disease. J. Gastroenterol. Hepatol. 2017, 32, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Kopi, T.A.; Shahrokh, S.; Mirzaei, S.; Asadzadeh Aghdaei, H.; Amini Kadijani, A. The role of serum calprotectin as a novel biomarker in Inflammatory Bowel Diseases: A review study. Gastroenterol. Hepatol. Bed Bench 2019, 12, 183–189. [Google Scholar]
- Meuwis, M.-A.; Vernier-Massouille, G.; Grimaud, J.C.; Bouhnik, Y.; Laharie, D.; Piver, E.; Seidel, L.; Colombel, J.F.; Louis, E.; GETAID (Groupe d’Étude Thérapeutique Des Affections Inflammatoires Digestives). Serum calprotectin as a biomarker for Crohn’s disease. J. Crohns Colitis 2013, 7, e678–e683. [Google Scholar] [CrossRef] [PubMed]
- Malham, M.; Carlsen, K.; Riis, L.; Paerregaard, A.; Vind, I.; Fenger, M.; Wewer, V. Plasma calprotectin is superior to serum calprotectin as a biomarker of intestinal inflammation in ulcerative Colitis. Scand. J. Gastroenterol. 2019, 54, 1214–1219. [Google Scholar] [CrossRef]
- Waluga, M. 9—Biomarkers of irritable bowel syndrome. In A Comprehensive Overview of Irritable Bowel Syndrome; Fichna, J., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 107–127. [Google Scholar] [CrossRef]
- Buderus, S.; Boone, J.H.; Lentze, M.J. Fecal Lactoferrin: Reliable Biomarker for Intestinal Inflammation in Pediatric IBD. Gastroenterol. Res. Pract. 2015, 2015, 578527. [Google Scholar] [CrossRef]
- Buisson, A.; Vazeille, E.; Minet-Quinard, R.; Goutte, M.; Bouvier, d.; Goutorbe, F.; Pereira, B.; Barnich, N.; Bommelaer, G. Fecal Matrix Metalloprotease-9 and Lipocalin-2 as Biomarkers in Detecting Endoscopic Activity in Patients With Inflammatory Bowel Diseases. J. Clin. Gastroenterol. 2018, 52, e53. [Google Scholar] [CrossRef]
- Stallhofer, J.; Friedrich, M.; Konrad-Zerna, A.; Wetzke, M.; Lohse, P.; Glas, J.; Tillack-Schreiber, C.; Schnitzler, F.; Beigel, F.; Brand, S. Lipocalin-2 Is a Disease Activity Marker in Inflammatory Bowel Disease Regulated by IL-17A, IL-22, and TNF-α and Modulated by IL23R Genotype Status. Inflamm. Bowel Dis. 2015, 21, 2327–2340. [Google Scholar] [CrossRef] [PubMed]
- Korndörfer, I.P.; Brueckner, F.; Skerra, A. The Crystal Structure of the Human (S100A8/S100A9)2 Heterotetramer, Calprotectin, Illustrates how Conformational Changes of Interacting α-Helices Can Determine Specific Association of Two EF-hand Proteins. J. Mol. Biol. 2007, 370, 887–898. [Google Scholar] [CrossRef]
- Moroz, O.V.; Antson, A.A.; Dodson, E.J.; Burrell, H.J.; Grist, S.J.; Lloyd, R.M.; Maitland, N.J.; Dodson, G.G.; Wilson, K.S.; Lukanidin, E.; et al. The structure of S100A12 in a hexameric form and its proposed role in receptor signalling. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Mahamad, A.; El-Gamal, A.H.; Omar, N.M.; Shebl, A.M.; Mansour, A.H.; El-Aziz, S.M.A.; Othman, G.; Mohammed, S.A. Faecal Calgranulin C Versus Faecal Calprotectin as Non Invasive Markers Distinguishing Functional From Organic Causes of Chronic Diarrhea. J. Med. Sci. 2014, 14, 179–191. [Google Scholar] [CrossRef]
- Heida, A.; Kobold, A.C.M.; Wagenmakers, L.; van de Belt, K.; van Rheenen, P.F. Reference values of fecal calgranulin C (S100A12) in school aged children and adolescents. Clin. Chem. Lab. Med. 2017, 56, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Lamb, C.A.; Mansfield, J.C. Measurement of faecal calprotectin and lactoferrin in Inflammatory Bowel Disease. Frontline Gastroenterol. 2011, 2, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Drago-Serrano, M.E.; Campos-Rodríguez, R.; Carrero, J.C.; de la Garza, M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int. J. Mol. Sci. 2017, 18, 501. [Google Scholar] [CrossRef]
- Goetz, D.H.; Willie, S.T.; Armen, R.S.; Bratt, T.; Borregaard, N.; Strong, R.K. Ligand Preference Inferred from the Structure of Neutrophil Gelatinase Associated Lipocalin. Biochemistry 2000, 39, 1935–1941. [Google Scholar] [CrossRef]
- Ahmad, T.; Satsangi, J.; Mcgovern, D.; Bunce, M.; Jewell, D.P. The genetics of Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2001, 15, 731–748. [Google Scholar] [CrossRef]
- Garza-Hernandez, D.; Sepulveda-Villegas, M.; Garcia-Pelaez, J.; Aguirre-Gamboa, R.; Lakatos, P.L.; Estrada, K.; Martinez-Vazquez, M.; Trevino, V. A systematic review and functional bioinformatics analysis of genes associated with Crohn’s disease identify more than 120 related genes. BMC Genom. 2022, 23, 302. [Google Scholar] [CrossRef]
- Gordon, H.; Trier Moller, F.; Andersen, V.; Harbord, M. Heritability in Inflammatory Bowel Disease: From the First Twin Study to Genome-Wide Association Studies. Inflamm. Bowel Dis. 2015, 21, 1428–1434. [Google Scholar] [CrossRef]
- El Hadad, J.; Schreiner, P.; Vavricka, S.R.; Greuter, T. The Genetics of Inflammatory Bowel Disease. Mol. Diagn. Ther. 2024, 28, 27–35. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Z. The latest breakthrough on genetic characteristics of Inflammatory Bowel Disease in Chinese and other East Asian ancestries. Precis. Clin. Med. 2023, 6, pbad017. [Google Scholar] [CrossRef] [PubMed]
- Annese, V. Genetics and epigenetics of IBD. Pharmacol. Res. 2020, 159, 104892. [Google Scholar] [CrossRef]
- Kellermayer, R. Epigenetics and the Developmental Origins of Inflammatory Bowel Diseases. Can. J. Gastroenterol. 2012, 26, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Mukherjee, A.; Zhang, H. From Genetics to Epigenetics, Roles of Epigenetics in Inflammatory Bowel Disease. Front. Genet. 2019, 10, 1017. Available online: https://www.frontiersin.org/articles/10.3389/fgene.2019.01017 (accessed on 30 January 2024). [CrossRef] [PubMed]
- Ventham, N.T.; Kennedy, N.A.; Adams, A.T.; Kalla, R.; Heath, S.; O’Leary, K.R.; Drummond, H.; IBD BIOM consortium; IBD CHARACTER consortium; Wilson, D.C.; et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in Inflammatory Bowel Disease. Nat. Commun. 2016, 7, 13507. [Google Scholar] [CrossRef] [PubMed]
- Howell, K.J.; Kraiczy, J.; Nayak, K.M.; Gasparetto, M.; Ross, A.; Lee, C.; Mak, T.N.; Koo, B.-K.; Kumar, N.; Lawley, T.; et al. DNA Methylation and Transcription Patterns in Intestinal Epithelial Cells From Pediatric Patients With Inflammatory Bowel Diseases Differentiate Disease Subtypes and Associate With Outcome. Gastroenterology 2018, 154, 585–598. [Google Scholar] [CrossRef]
- Saeid Seyedian, S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of Inflammatory Bowel Disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, H.-M.; Yang, M.-F.; Liang, Y.-J.; Peng, Q.-Z.; Zhang, Y.; Tian, C.-M.; Wang, L.S.; Yao, J.; Nie, Y.-Q.; et al. New Insights Into the Epigenetic Regulation of Inflammatory Bowel Disease. Front. Pharmacol. 2022, 13, 813659. [Google Scholar] [CrossRef]
- Lino, C.; Barrias, S.; Chaves, R.; Adega, F.; Martins-Lopes, P.; Fernandes, J.R. Biosensors as diagnostic tools in clinical applications. Biochim. Biophys. Acta BBA—Rev. Cancer 2022, 1877, 188726. [Google Scholar] [CrossRef] [PubMed]
- Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. Biosensors 2019, 9, 65. [Google Scholar] [CrossRef]
- Chan, L.L.; Gosangari, S.L.; Watkin, K.L.; Cunningham, B.T. A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation. Apoptosis 2007, 12, 1061–1068. [Google Scholar] [CrossRef]
- Ali, J.; Najeeb, J.; Asim Ali, M.; Farhan Aslam, M.; Raza, A. Biosensors: Their Fundamentals, Designs, Types and Most Recent Impactful Applications: A Review. J. Biosens. Bioelectron. 2017, 8, 1000235. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Kalantar-zadeh, K.; Ha, N.; Ou, J.Z.; Berean, K.J. Ingestible Sensors. ACS Sens. 2017, 2, 468–483. [Google Scholar] [CrossRef]
- Jagannath, B.; Lin, K.-C.; Pali, M.; Sankhala, D.; Muthukumar, S.; Prasad, S. A Sweat-based Wearable Enabling Technology for Real-time Monitoring of IL-1β and CRP as Potential Markers for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 1533–1542. [Google Scholar] [CrossRef]
- Thangamuthu, M.; Santschi, C.; Martin, O.J.F. Label-Free Electrochemical Immunoassay for C-Reactive Protein. Biosensors 2018, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Barani, M.; Rahdar, A.; Sargazi, S.; Amiri, M.S.; Sharma, P.K.; Bhalla, N. Nanotechnology for Inflammatory Bowel Disease management: Detection, imaging and treatment. Sens. Bio-Sens. Res. 2021, 32, 100417. [Google Scholar] [CrossRef]
- Wang, Q.; Subramanian, P.; Schechter, A.; Teblum, E.; Yemini, R.; Nessim, G.D.; Vasilescu, A.; Li, M.; Boukherroub, R.; Szunerits, S. Vertically Aligned Nitrogen-Doped Carbon Nanotube Carpet Electrodes: Highly Sensitive Interfaces for the Analysis of Serum from Patients with Inflammatory Bowel Disease. ACS Appl. Mater. Interfaces 2016, 8, 9600–9609. [Google Scholar] [CrossRef]
- Nigović, B.; Mornar, A.; Brusač, E.; Jeličić, M.-L. Selective sensor for simultaneous determination of mesalazine and folic acid using chitosan coated carbon nanotubes functionalized with amino groups. J. Electroanal. Chem. 2019, 851, 113450. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, J.; Yang, T.; Deng, Y.; Gu, M.; Wang, M.; Hu, R.; Yang, Y. Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Adv. 2020, 10, 9723–9729. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Lumb, R.; Walker, E.V.; Foshaug, R.R.; Dang, T.T.; Verma, S.; Huang, V.W.; Kroeker, K.I.; Wong, K.; Dieleman, L.A.; et al. Noninvasive Fecal Immunochemical Testing and Fecal Calprotectin Predict Mucosal Healing in Inflammatory Bowel Disease: A Prospective Cohort Study. Inflamm. Bowel Dis. 2017, 23, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Pham Ba, V.A.; Han, Y.M.; Cho, Y.; Kim, T.; Lee, B.Y.; Kim, J.S.; Hong, S. Modified Floating Electrode-Based Sensors for the Quantitative Monitoring of Drug Effects on Cytokine Levels Related with Inflammatory Bowel Diseases. ACS Appl. Mater. Interfaces 2018, 10, 17100–17106. [Google Scholar] [CrossRef]
- Lu, J.; Stappen, T.V.; Spasic, D.; Delport, F.; Vermeire, S.; Gils, A.; Lammertyn, J. Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of Inflammatory Bowel Disease patients. Biosens. Bioelectron. 2016, 79, 173–179. [Google Scholar] [CrossRef]
- Fang, B.; Guo, P.; Yang, M.; Ma, Y.; Yan, X.; Jia, Z.; Gao, W.; Ahmad, S.; Xu, C.; Liu, C.; et al. A novel fluorescent enhancing platform based on DNA-scaffolded silver nanoclusters for potential Inflammatory Bowel Disease-associated microRNA detection. Talanta 2020, 218, 121122. [Google Scholar] [CrossRef]
- Dinca, V.; Zaharie-Butucel, D.; Stanica, L.; Brajnicov, S.; Marascu, V.; Bonciu, A.; Cristocea, A.; Gaman, L.; Gheorghiu, M.; Astilean, S.; et al. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme. Colloids Surf. B Biointerfaces 2018, 162, 98–107. [Google Scholar] [CrossRef]
- Gholami, M.D.; Sonar, P.; Ayoko, G.A.; Izake, E.L. A highly sensitive SERS quenching nanosensor for the determination of tumor necrosis factor alpha in blood. Sens. Actuators B Chem. 2020, 310, 127867. [Google Scholar] [CrossRef]
- Yu, C.; Kim, G.-B.; Clark, P.M.; Zubkov, L.; Papazoglou, E.S.; Noh, M. A microfabricated quantum dot-linked immuno-diagnostic assay (μQLIDA) with an electrohydrodynamic mixing element. Sens. Actuators B Chem. 2015, 209, 722–728. [Google Scholar] [CrossRef]
- Ashiba, H.; Oyamada, C.; Hosokawa, K.; Ueno, K.; Fujimaki, M. Sensitive Detection of C-Reactive Protein by One-Step Method Based on a Waveguide-Mode Sensor. Sensors 2020, 20, 3195. [Google Scholar] [CrossRef]
- Bennike, T.; Birkelund, S.; Stensballe, A.; Andersen, V. Biomarkers in inflammatory bowel diseases: Current status and proteomics identification strategies. World J. Gastroenterol. 2014, 20, 3231–3244. [Google Scholar] [CrossRef] [PubMed]
- Hirten, R.P.; Lin, K.-C.; Whang, J.; Shahub, S.; Churcher, N.K.M.; Helmus, D.; Muthukumar, S.; Sands, B.; Prasad, S. Longitudinal monitoring of IL-6 and CRP in inflammatory bowel disease using IBD-AWARE. Biosens. Bioelectron. X 2024, 16, 100435. [Google Scholar] [CrossRef] [PubMed]
- Torati, S.R.; Slaughter, G. Laser-Induced Graphene for Early Disease Detection: A Review. ChemElectroChem 2025, 12, e202400672. [Google Scholar] [CrossRef]
- Iria, I.; Soares, R.R.G.; Brás, E.J.S.; Chu, V.; Gonçalves, J.; Conde, J.P. Accurate and rapid microfluidic ELISA to monitor Infliximab titers in patients with inflammatory bowel diseases. Analyst 2022, 147, 480–488. [Google Scholar] [CrossRef]
- Awawdeh, K.; Buttkewitz, M.A.; Bahnemann, J.; Segal, E. Enhancing the performance of porous silicon biosensors: The interplay of nanostructure design and microfluidic integration. Microsyst. Nanoeng. 2024, 10, 100. [Google Scholar] [CrossRef]
- Chia, S.; Guo, T.; Goldys, E.M.; Payne, S.C.; Duan, W.; Lovell, N.H.; Shivdasani, M.N.; Deng, F. A CRISPR mediated point-of-care assay for the detection of mucosal calprotectin in an animal model of ulcerative colitis. Bioeng. Transl. Med. 2025, 10, e10725. [Google Scholar] [CrossRef]
- Resende, S.; Frasco, M.F.; Freitas, P.P.; Sales, M.G.F. Detection of serum calprotectin based on molecularly imprinted photonic hydrogels: A novel approach for IBD diagnosis. Biosens. Bioelectron. X 2023, 13, 100313. [Google Scholar] [CrossRef]
- Shepherd, S.F.; McGuire, N.D.; de Lacy Costello, B.P.J.; Ewen, R.J.; Jayasena, D.H.; Vaughan, K.; Ahmed, I.; Probert, C.S.; Ratcliffe, N.M. The use of a gas chromatograph coupled to a metal oxide sensor for rapid assessment of stool samples from irritable bowel syndrome and Inflammatory Bowel Disease patients. J. Breath Res. 2014, 8, 026001. [Google Scholar] [CrossRef]
- Urquhart, S.A.; Christof, M.; Coelho-Prabhu, N. The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia. Ther. Adv. Gastroenterol. 2025, 18, 17562848251348574. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.R.; Rahman, S.; Verma, N.; Srivastava, A.; Jahan, N.; Mohanty, S.; Suman, S. Gut–Oral Microbial Dysbiosis: A Correlated Ecosystem. Adv. Gut Microbiome Res. 2025, 2025, 7351229. [Google Scholar] [CrossRef]
Role/Pathway | IBD | CD | UC |
---|---|---|---|
Innate mucosal defence | CARD 9, RER | NOD2, ITLN1 | SLC11A1, FGR2a/B |
Paneth cells | XBP1 | NOD2, ILTN1, ATG16L1 | |
IL23/TH17 | IL23R, JAK2, TYK2, ICOSLG, TNFSF15 | STAT3 | IL21 |
Autophagy | CUL2 | ATG16L1, IRGM, NOD2, LRRK2 | PARK7, DAP |
Epithelial barrier | MUC19, ILTN1 | GNA12, HNF4A, CDH1, ERRFI1 | |
Immune cell recruitment | MST1 | CCL11, CCL2, CCL7, CCL8, CCR6 | IL8RA, IL8RB |
T cell regulation | TNFSF8, IL12B, IL23, PRDM1, ICOSLG | NDFIP1, TAGAP, IL2R | TNFRSF9, PIM3, IL/R, TNFSF8, IGNG, IL23 |
Antigen presentation | ERAP2, LNPEP, DENND1B | ||
Immune tolerance | IL10, CREM | IL27, SBNO2, NOD2 | IL1R1, IL1R2 |
Apoptosis | PUS10, MST1 | FASLG, THAA | |
ER stress | ORMDL3, XBP1 | CPEB4 | SERNC3 |
Oxidative stress | CARD9, UTS2, PEX13 | PRDX5, BACH2, ADO, GPC4, GPX1, SLC22A4, LRRK2, NOD2 | HSPA6, DLD, PARK7 |
Increased Methylation | Decreased Methylation | |
---|---|---|
IBD vs. controls | THRAP2, FANCC, GBGT1, WDR8, ITGB2, CARD9, CDH1 | DOK2, TNFSF4, VMP1, ICAM3 |
CD vs. UC | CBGT1, IGFBP4, FAM10A4 | IFITM1 |
Active vs. remission | CDH1, GDNF, SIT2, MDR1, FMR1, GXYLT2, RAFB, SLIT2 | FOXA2, ROR1, NOTCH3, CDH17, PAD14, TNFSF8, EPHX1, HOXV2, FRK |
More aggressive vs. mild | PAR2, MDR1, CDx1, RPS6KA2 | |
Colorectal cancer risk | RUNX3, MINT1, TGFB2, SLIT2, HS3ST2, TMEFF2, ITGA4, TFP12, FOXE1, SYNE1, APC, CDH13, MGMT, MLH1, nBMP3, NDRG4, EYA4, Vimentin | COX-2 |
Increased Expression | Decreased Expression | |
---|---|---|
IBD vs. controls | miRs-3180-3p, miRplus-E1035, miRplusF1159, miR20b, miR-98, miR125b-1 *, let-7e *, miRs-103-2 *, miR-362-3p, miR-532-3p, miR-98, miR340 *, miR-484 | |
Active vs. remission | miR-16, miR-21, miR-24, miR-126, miR-203, miR-28-5p, miR-151-5p, MiR-199a-5p, miR-340 *, miRplus-E1271, miR596, mir-199a-5p, miR-362-3p, miR-532-3p, miRplus-E1271, miR-877, miR-595 | miR200b, mir-124, miRplus-F1075 |
More aggressive vs. mild | miR-29a, miR-29b, miR-29c, miR19a-3p, miR19b-3p, miR-31-5p | miR-196b-5p, miR-149-5p |
Colorectal cancer risk | miR-31, miR-224, miR-21, miR-155, miR-26b, miR-15b, miR-17, miR-26b, miR-145 | miR-143, miR-145 |
Biosensor Type | Material/Active Component | Marker/Detected Molecule | LOD | Reference |
---|---|---|---|---|
Electrochemical biosensor | VA-NCNT electrodes | lysozyme | 100 fM | [116] |
Functionalized CNTs with amino groups | 5-ASA and FA | 36 and 3.1 nM, respectively | [117] | |
Electrochemical immunoassay | Iridium NP-loaded graphene | CRP | 3.3 pg/mL | [118] |
Carbon electrode (SPE) loaded with AuNPs | CRP | 0.15 nM | [114] | |
Endoscopy | Fecal immunochemical testing | fecal calprotectin (FCP); mucosal healing (MH) | 100 ng/mL; 250 μg/g | [119] |
FET sensor | Anti-TNF-α/CNT-SiO2 | TNF-α | 1 pg.L−1 | [120] |
Fiber optic-SPR bioassay | Functionalized Au-coated optical fibers | infliximab | 2.2 ng/mL (15 pM) | [121] |
Fluorescent sensor | P1–4/AgNC/cDNA probe | miRNA (miR-223) | 0.018 μM | [122] |
Immunosorbent assay | CdSe/ZnS QDs | CRP | 0.46 ng/mL | [57] |
Impedance spectroscopy based sensor | Polyamide/ZnO | CRP, IL-1β | 0.2 pg/mL | [113] |
Optical absorption spectroscopy | ML@PDDA | lysozyme | 0.5 μg/mL | [123] |
SERS quenching nanosensor | gold-coated copper oxide nanomaterial | TNF-α | 173 pg/L | [124] |
μQLIDA | PMMA microcapillary/MPO antibody/Quantum dots | myeloperoxidase | <5 nM | [125] |
Waveguide-mode sensor | Streptavidin/AuNPs | CRP | 10 pg/mL | [126] |
Electrochemical Impedance Spectroscopy (EIS) | Wearable microneedle | CRP in interstitial fluid | 0.7 µg/mL (buffer) and 0.8 µg/m | [127] |
Sweat-based EIS wearable | CRP, IL-6 andTNF-α in sweat | Distinction between inflamed and uninflamed state ~pg/mL ranges | [128] | |
LIG-based electrochemical immunosensors | CRP and IL-6 | 1.45 pg/mL and 5.1 pg/mL, respectively | [129] | |
Microfluidic ELISA (mELISA) | ELISA microfluidic biosensor to quantify the therapeutic antibodies in IBD patient plasma samples | Anti-TNF-α on plasma | 26 ng/mL (~6 times lower than standard ELISA) | [130] |
Porous-silicon (Psi) Fabri-Pérot aptasensor | Gastrointestinal fluid | lactoferrin | 1.8 μg/mL | [131] |
CRISPR/Cas12a Colorimetric Assay | Portable tube-based CRISPR/Cas assay for point-of-care testing | Fecal calcoprotein | 1 ng/ mL | [132] |
Photonic Hydrogel sensor | Molecularly imprinted hydrogels and photonic crystals | Calprotectin on serum | 70 pg/mL | [133] |
Sensor Type/Platform | Target Biomarkers | Estimated Cost | Scalability | Practicality (Ease of Use) |
---|---|---|---|---|
Lateral Flow Assays (LFAs) | Fecal calprotectin | USD 5–30/test | High | Very High (home use) |
Electrochemical Sensors (Aptamer/EIS) | CRP, IL-6, TNF-α | USD 10–50/device | Moderate-High | Moderate (requires reader) |
Wearable Microneedle/EIS Sensors | CRP, IL-6 | USD 100–300/device | Low | Moderate (needs calibration) |
Lab-on-Chip ELISA (Microfluidic) | Cytokines, calprotectin, mAbs | USD 50–100/test | Moderate | Moderate (some user steps) |
FO-SPR/SPR Platforms | Infliximab, adalimumab | USD 200–1000/setup | Low | Low (lab-based, skilled use) |
Nucleic Acid Biochips | miRNA, bacterial DNA (oral/gut) | USD 50–200/test | Low-Moderate | Low (pre-processing needed) |
CRISPR-based Colorimetric Assays | Fecal calprotectin | ~USD 5–10/test | Moderate-High | High (minimal training) |
Wearable Saliva Sensors/Oral Patches | Oral microbiome, IL-1β, IL-6 | USD 50–150/device | Low | Low-Moderate (conceptual phase) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, B.; Gonçalves, H.M.R.; Martins-Lopes, P. Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review. Biosensors 2025, 15, 513. https://doi.org/10.3390/bios15080513
Teixeira B, Gonçalves HMR, Martins-Lopes P. Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review. Biosensors. 2025; 15(8):513. https://doi.org/10.3390/bios15080513
Chicago/Turabian StyleTeixeira, Beatriz, Helena M. R. Gonçalves, and Paula Martins-Lopes. 2025. "Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review" Biosensors 15, no. 8: 513. https://doi.org/10.3390/bios15080513
APA StyleTeixeira, B., Gonçalves, H. M. R., & Martins-Lopes, P. (2025). Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review. Biosensors, 15(8), 513. https://doi.org/10.3390/bios15080513