Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics
Abstract
:1. Introduction
2. Methods for Detecting Lipid and Amphiphilic Biomarkers
2.1. Storage and Processing of Patient Samples
2.2. Mass Spectrometry
2.3. Nuclear Magnetic Resonance (NMR)
2.4. Biosensors
2.4.1. Optical Biosensors Detecting Lipids
2.4.2. Electrochemical Biosensors Detecting Lipids
2.4.3. Mechanical Biosensors Detecting Lipids
3. Lipid Biomarkers for Infectious Diseases
3.1. Sepsis
3.2. Mycobacterial Infections
3.3. Antimicrobial Resistance
3.4. Malaria
4. Lipid Biomarkers for Non-infectious Diseases
4.1. Cardiovascular Diseases and Disorders
4.2. Cancer
4.3. Preeclampsia
4.4. Lipotoxicity
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Murugaiyan, S.B.; Ramasamy, R.; Gopal, N.; Kuzhandaivelu, V. Biosensors in clinical chemistry: An overview. Adv. Biomed. Res. 2014, 3, 67. [Google Scholar] [CrossRef] [PubMed]
- Ridgway, N.; McLeod, R. Biochemistry of Lipids, Lipoproteins and Membranes, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- O’Brien, J.S.; Sampson, E.L. Lipid composition of the normal human brain: Gray matter, white matter, and myelin. J. Lipid Res. 1965, 6, 537–544. [Google Scholar] [PubMed]
- Akira, S.; Hemmi, H. Recognition of pathogen-associated molecular patterns by tlr family. Immunol. Lett. 2003, 85, 85–95. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Pathogen recognition with toll-like receptors. Curr. Opin Immunol. 2005, 17, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition in the innate immune response. Biochem. J. 2009, 420, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011, 30, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, Y.; Takeuchi, O.; Akira, S. Pathogen recognition by innate receptors. J. Infect. Chemother. 2008, 14, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Akira, S. Pathogen recognition by innate immunity and its signaling. Proc. Jpn. Acad. Ser. B 2009, 85, 143–156. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [PubMed]
- Sin, M.L.; Mach, K.E.; Wong, P.K.; Liao, J.C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert. Rev. Mol. Diagn. 2014, 14, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, A.M.; Wiest, M.M.; Nguyen, U.T.; Davis, R.; Watkins, S.M.; German, J.B. Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics 2009, 5, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Rudy, M.D.; Kainz, M.J.; Graeve, M.; Colombo, S.M.; Arts, M.T. Handling and storage procedures have variable effects on fatty acid content in fishes with different lipid quantities. PLoS ONE 2016, 11, e0160497. [Google Scholar] [CrossRef] [PubMed]
- Marion, E.; Prado, S.; Cano, C.; Babonneau, J.; Ghamrawi, S.; Marsollier, L. Photodegradation of the mycobacterium ulcerans toxin, mycolactones: Considerations for handling and storage. PLoS ONE 2012, 7, e33600. [Google Scholar] [CrossRef] [PubMed]
- Sakamuri, R.M.; Price, D.N.; Lee, M.; Cho, S.N.; Barry, C.E., 3rd; Via, L.E.; Swanson, B.I.; Mukundan, H. Association of lipoarabinomannan with high density lipoprotein in blood: Implications for diagnostics. Tuberculosis (Edinb) 2013, 93, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Harkewicz, R.; Dennis, E.A. Applications of mass spectrometry to lipids and membranes. Annu. Rev. Biochem. 2011, 80, 301–325. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, W.J.; Wang, Y. Mass spectrometry: From proteomics to metabolomics and lipidomics. Chem. Soc. Rev. 2009, 38, 1882–1896. [Google Scholar] [CrossRef] [PubMed]
- Gross, R.W.; Han, X. Lipidomics at the interface of structure and function in systems biology. Chem. Biol. 2011, 18, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Brugger, B. Lipidomics: Analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Ann. Rev. Biochem. 2014, 83, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Hinterwirth, H.; Stegemann, C.; Mayr, M. Lipidomics—quest for molecular lipid biomarkers in cardiovascular disease. Circ. Cardiovasc. Genet. 2014, 7, 941–954. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Han, J.; Wang, Z.; Liu, J.a.; Wei, J.; Xiong, S.; Zhao, Z. Mass spectrometry methodology in lipid analysis. Int. J. Mol. Sci. 2014, 15, 10492–10507. [Google Scholar] [CrossRef] [PubMed]
- Milne, S.; Ivanova, P.; Forrester, J.; Alex Brown, H. Lipidomics: An analysis of cellular lipids by esi-ms. Methods 2006, 39, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.C.; Gaskell, S.J. New applications of mass spectrometry in lipid analysis. J. Biol. Chem. 2011, 286, 25427–25433. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Canadian J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Nie, B.; Arnold, R.D.; Cummings, B.S. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed. Chromatogr. 2016, 30, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Cajka, T.; Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal. Chem. TRAC 2014, 61, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gross, R.W. Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 2005, 24, 367–412. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gross, R.W. Shotgun lipidomics: Multidimensional ms analysis of cellular lipidomes. Expert Rev. Proteom. 2005, 2, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, B.; Süß, R.; Schiller, J. An update of maldi-tof mass spectrometry in lipid research. Prog. Lipid Res. 2010, 49, 450–475. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.; Süß, R.; Arnhold, J.; Fuchs, B.; Leßig, J.; Müller, M.; Petković, M.; Spalteholz, H.; Zschörnig, O.; Arnold, K. Matrix-assisted laser desorption and ionization time-of-flight (maldi-tof) mass spectrometry in lipid and phospholipid research. Prog. Lipid Res. 2004, 43, 449–488. [Google Scholar] [CrossRef] [PubMed]
- Bugni, T.S. Review of mass spectrometry: Instrumentation, interpretation, and applications. J. Nat. Prod. 2017, 80, 574–575. [Google Scholar] [CrossRef]
- El-Aneed, A.; Cohen, A.; Banoub, J. Mass spectrometry, review of the basics: Electrospray, maldi, and commonly used mass analyzers. Appl. Spectrosc. Rev. 2009, 44, 210–230. [Google Scholar] [CrossRef]
- Anand, S.; Young, S.; Esplin, M.S.; Peaden, B.; Tolley, H.D.; Porter, T.F.; Varner, M.W.; D’Alton, M.E.; Jackson, B.J.; Graves, S.W. Detection and confirmation of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry. J. Lipid Res. 2016, 57, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Minkler, P.E.; Hoppel, C.L. Separation and characterization of cardiolipin molecular species by reverse-phase ion pair high-performance liquid chromatography-mass spectrometry. J. Lipid Res. 2010, 51, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Sparagna, G.C.; Chicco, A.J.; Murphy, R.C.; Bristow, M.R.; Johnson, C.A.; Rees, M.L.; Maxey, M.L.; McCune, S.A.; Moore, R.L. Loss of cardiac tetralinoleoyle cardiolipin in human and experimental heart failure. J. Lipid Res. 2007, 48, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Kiebish, M.A.; Han, X.; Cheng, H.; Chuang, J.H.; Seyfried, T.N. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the warburg theory of cancer. J. Lipid Res. 2008, 49, 2545–2556. [Google Scholar] [CrossRef] [PubMed]
- Crutchfield, C.A.; Thomas, S.N.; Sokoll, L.J.; Chan, D.W. Advances in mass spectrometry-based clinical biomarker discovery. Clin. Proteom. 2016, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Van, Q.N.; Issaq, H.J.; Jiang, Q.J.; Li, Q.L.; Muschik, G.M.; Waybright, T.J.; Lou, H.; Dean, M.; Uitto, J.; Veenstra, T.D. Comparison of 1d and 2d nmr spectroscopy for metabolic profiling. J. Proteome Res. 2008, 7, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Fonville, J.M.; Maher, A.D.; Coen, M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Evaluation of full-resolution j-resolved h-1 nmr projections of biofluids for metabonomics information retrieval and biomarker identification. Anal. Chem. 2010, 82, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Adosraku, R.K.; Choi, G.T.Y.; Constantinoukokotos, V.; Anderson, M.M.; Gibbons, W.A. Nmr lipid profiles of cells, tissues, and body-fluids—Proton nmr analysis of human erythrocyte lipids. J. Lipid Res. 1994, 35, 1925–1931. [Google Scholar] [PubMed]
- Nicholson, J.K.; Wilson, I.D. High-resolution proton magnetic-resonance spectroscopy of biological-fluids. Prog. Nucl. Magn. Reson. Spectrosc. 1989, 21, 449–501. [Google Scholar] [CrossRef]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.G.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for nmr spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Casu, M.; Anderson, G.J.; Choi, G.; Gibbons, W.A. Nmr lipid profiles of cells, tissues and body-fluids 1. 1d and 2d proton nmr of lipids from rat-liver. Magn. Reson. Chem. 1991, 29, 594–602. [Google Scholar] [CrossRef]
- Kostara, C.E.; Papathanasiou, A.; Cung, M.T.; Elisaf, M.S.; Goudevenos, J.; Bairaktari, E.T. Evaluation of established coronary heart disease on the basis of hdl and non-hdl nmr lipid profiling. J. Proteome Res. 2010, 9, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Mahrous, E.A.; Lee, R.B.; Lee, R.E. A rapid approach to lipid profiling of mycobacteria using 2d hsqc nmr maps. J. Lipid Res. 2008, 49, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, T.L.; Monzavi-Karbassi, B.; Kieber-Emmons, T. H-1-nmr metabonomics analysis of sera differentiates between mammary tumor-bearing mice and healthy controls. Metabolomics 2005, 1, 269–278. [Google Scholar] [CrossRef]
- Beger, R.D.; Schnackenberg, L.K.; Holland, R.D.; Li, D.H.; Dragan, Y. Metabonomic models of human pancreatic cancer using 1d proton nmr spectra of lipids in plasma. Metabolomics 2006, 2, 125–134. [Google Scholar] [CrossRef]
- Kostara, C.E.; Papathanasiou, A.; Psychogios, N.; Cung, M.T.; Elisaf, M.S.; Goudevenos, J.; Bairaktari, E.T. Nmr-based lipidomic analysis of blood lipoproteins differentiates the progression of coronary heart disease. J. Proteome Res. 2014, 13, 2585–2598. [Google Scholar] [CrossRef] [PubMed]
- Gebregiworgis, T.; Powers, R. Application of nmr metabolomics to search for human disease biomarkers. Comb. Chem. High Throughput Screen. 2012, 15, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Giovane, A.; Balestrieri, A.; Napoli, C. New insights into cardiovascular and lipid metabolomics. J. Cell. Biochem. 2008, 105, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Xu, L.; Shen, J.M.; Cao, B.; Cheng, T.; Zhao, T.; Liu, X.Y.; Zhang, H.X. Metabolic signatures of esophageal cancer: Nmr-based metabolomics and uhplc-based focused metabolomics of blood serum. Biochim. Biophys. Acta-Mol. Basis Dis. 2013, 1832, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Monleon, D.; Morales, J.M.; Barrasa, A.; Lopez, J.A.; Vazquez, C.; Celda, B. Metabolite profiling of fecal water extracts from human colorectal cancer. Nmr in Biomed. 2009, 22, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Beckonert, O.; Coen, M.; Keun, H.C.; Wang, Y.L.; Ebbels, T.M.D.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. High-resolution magic-angle-spinning nmr spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 2010, 5, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.Z.; Raftery, D. Comparing and combining nmr spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem. 2007, 387, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Vidalino, L.; Anesi, A.; Macchi, P.; Guella, G. A lipidomics investigation of the induced hypoxia stress on hela cells by using ms and nmr techniques. Mol. Biosyst. 2014, 10, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C. Systems biology—metabonomics. Nature 2008, 455, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef] [PubMed]
- Urbina, J.; Waugh, J.S. Proton-enhanced c-13 nuclear magnetic-resonance of lipids and biomembranes. Proc. Natl. Acad. Sci. USA 1974, 71, 5062–5067. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhang, S.C.; Ragg, S.; Raftery, D.; Vitek, O. Identification and quantification of metabolites in h-1 nmr spectra by bayesian model selection. Bioinformatics 2011, 27, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, J.H.F.; Griffin, J.L. An introduction to biological nuclear magnetic resonance spectroscopy. Biol. Rev. 2011, 86, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Bertram, H.C.; Malmendal, A.; Petersen, B.O.; Madsen, J.C.; Pedersen, H.; Nielsen, N.C.; Hoppe, C.; Molgaard, C.; Michaelsen, K.F.; Duus, J.O. Effect of magnetic field strength on nmr-based metabonomic human urine data comparative study of 250, 400, 500, and 800 mhz. Anal. Chem. 2007, 79, 7110–7115. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.P.; McElroy, C.A.; Amero, C.D. Solution nmr of large molecules and assemblies. Biochemistry 2007, 46, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Lewis, I.A.; Schommer, S.C.; Hodis, B.; Robb, K.A.; Tonelli, M.; Westler, W.M.; Suissman, M.R.; Markley, J.L. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional h-1-c-13 nmr spectra. Anal. Chem. 2007, 79, 9385–9390. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Nicholson, J.K.; Holmes, E.; Everett, J.R. Metabonomics: Metabolic processes studied by nmr spectroscopy of biofluids. Concepts Magn. Reson. 2000, 12, 289–320. [Google Scholar] [CrossRef]
- Carrasco-Pancorbo, A.; Navas-Iglesias, N.; Cuadros-Rodriguez, L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part 1: Modern lipid analysis. Trac-Trends Anal. Chem. 2009, 28, 263–278. [Google Scholar] [CrossRef]
- Zhang, F.; Bruschweiler-Li, L.; Robinette, S.L.; Brushweiler, R. Self-consistent metabolic mixture analysis by heteronuclear nmr. Application to a human cancer cell line. Anal. Chem. 2008, 80, 7549–7553. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.K.; Tripathi, P.; Sinha, N. Quantification of metabolites from two-dimensional nuclear magnetic resonance spectroscopy: Application to human urine samples. Anal. Chem. 2009, 81, 10232–10238. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.C.; Baert, R. Medical diagnosis by high resolution nmr of human specimens. IUBMB Life 2003, 55, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.M. Portable Nmr-Based Sensors in Medical Diagnosis. In Applications of nmr spectroscopy; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2. [Google Scholar]
- Maynard, J.A.; Lindquist, N.C.; Sutherland, J.N.; Lesuffleur, A.; Warrington, A.E.; Rodriguez, M.; Oh, S.-H. Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnol. J. 2009, 4, 1542–1558. [Google Scholar] [CrossRef] [PubMed]
- Hoa, X.D.; Kirk, A.G.; Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 2007, 23, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Kussrow, A.; Enders, C.S.; Bornhop, D.J. Interferometric methods for label-free molecular interaction studies. Anal. Chem. 2012, 84, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Baksh, M.M.; Kussrow, A.K.; Mileni, M.; Finn, M.G.; Bornhop, D.J. Label-free quantification of membrane-ligand interactions using backscattering interferometry. Nat. Biotechnol. 2011, 29, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Kussrow, A.; Enders, C.S.; Castro, A.R.; Cox, D.L.; Ballard, R.C.; Bornhop, D.J. The potential of backscattering interferometry as an in vitro clinical diagnostic tool for the serological diagnosis of infectious disease. Analyst 2010, 135, 1535–1537. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.S.; Dattelbaum, A.M.; Montano, G.A.; Price, D.N.; Schmidt, J.G.; Martinez, J.S.; Grace, W.K.; Grace, K.M.; Swanson, B.I. Functional peg-modified thin films for biological detection. Langmuir 2008, 24, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Viallat, A.; Jin, G. Vesicle adhesion visualized with total internal reflection imaging ellipsometry biosensor. Sens. Actuators B 2014, 190, 221–226. [Google Scholar] [CrossRef]
- Castellana, E.T.; Gamez, R.C.; Russell, D.H. Label-free biosensing with lipid-functionalized gold nanorods. J. Am. Chem. Soc. 2011, 133, 4182–4185. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.S.; Grace, W.K.; Grace, K.M.; Hartman, N.; Swanson, B.I. Pathogen detection using single mode planar optical waveguides. J. Mater. Chem. 2005, 15, 4639–4647. [Google Scholar] [CrossRef]
- Sakamuri, R.M.; Capek, P.; Dickerson, T.J.; Barry, C.E., 3rd; Mukundan, H.; Swanson, B.I. Detection of stealthy small amphiphilic biomarkers. J. Microbiol. Methods 2014, 103, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, H.; Xie, H.; Price, D.; Kubicek-Sutherland, J.Z.; Grace, W.K.; Anderson, A.S.; Martinez, J.S.; Hartman, N.; Swanson, B.I. Quantitative multiplex detection of pathogen biomarkers on multichannel waveguides. Anal. Chem. 2010, 82, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, H.; Anderson, A.S.; Grace, W.K.; Grace, K.M.; Hartman, N.; Martinez, J.S.; Swanson, B.I. Waveguide-based biosensors for pathogen detection. Sensors 2009, 9, 5783–5809. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, H.; Price, D.N.; Goertz, M.; Parthasarathi, R.; Montano, G.A.; Kumar, S.; Scholfield, M.R.; Anderson, A.S.; Gnanakaran, S.; Iyer, S.; et al. Understanding the interaction of lipoarabinomannan with membrane mimetic architectures. Tuberculosis 2012, 92, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Vu, D.M.; Sakamuri, R.M.; Waters, W.R.; Swanson, B.I.; Mukundan, H. Detection of lipomannan in cattle infected with bovine tuberculosis. Anal. Sci. 2017, 33, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Stromberg, L.R.; Hengartner, N.W.; Swingle, K.L.; Moxley, R.A.; Graves, S.W.; Montano, G.A.; Mukundan, H. Membrane insertion for the detection of lipopolysaccharides: Exploring the dynamics of amphiphile-in-lipid assays. PLoS ONE 2016, 11, e0156295. [Google Scholar] [CrossRef] [PubMed]
- Noormohamed, A.; Stromberg, L.R.; Anderson, A.S.; Karim, Z.; Dighe, P.; Kempaiah, P.; Ong’echa, J.M.; Perkins, D.J.; Doggett, N.; McMahon, B.; et al. Detection of Lipopolysaccharides in Serum Using a Waveguide-Based Optical Biosensor. In Optical Diagnostics and Sensing XVII: Toward Point-of-Care Diagnostics; Proc. SPIE: San Francisco, CA, USA, 2017; Volume 10072. [Google Scholar]
- Kale, R.R.; Mukundan, H.; Price, D.N.; Harris, J.F.; Lewallen, D.M.; Swanson, B.I.; Schmidt, J.G.; Iyer, S.S. Detection of intact influenza viruses using biotinylated biantennary s-sialosides. J. Am. Chem. Soc. 2008, 130, 8169–8171. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, H.; Xie, H.; Anderson, A.S.; Grace, W.K.; Shively, J.E.; Swanson, B.I. Optimizing a waveguide-based sandwich immunoassay for tumor biomarkers: Evaluating fluorescent labels and functional surfaces. Bioconjug. Chem. 2009, 20, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, H.; Kubicek, J.Z.; Holt, A.; Shively, J.E.; Martinez, J.S.; Grace, K.; Grace, W.K.; Swanson, B.I. Planar optical waveguide-based biosensor for the quantitative detection of tumor markers. Sens. Actuators B 2009, 138, 453–460. [Google Scholar] [CrossRef]
- Goncalves, M.S. Fluorescent labeling of biomolecules with organic probes. Chem. Rev. 2009, 109, 190–212. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, D.; MacKenzie, R.; Voros, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Rushworth, J.V.; Hirst, N.A.; Millner, P.A. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev. 2014, 27, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Cheng, Q.; Stevens, R.C. Amperometric detection of escherichia coli heat-labile enterotoxin by redox diacetylenic vesicles on a sol-gel thin-film electrode. Anal. Chem. 2000, 72, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Zhu, S.; Song, J.; Zhang, N. Functional lipid microstructures immobilized on a gold electrode for voltammetric biosensing of cholera toxin. Analyst 2004, 129, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Shiba, K.; Umezawa, Y.; Watanabe, T.; Ogawa, S.; Fujiwara, S. Thin-layer potentiometric analysis of lipid antigen-antibody reaction by tetrapentylammonium (tpa+) ion loaded liposomes and tpa+ ion selective electrode. Anal. Chem. 1980, 52, 1610–1613. [Google Scholar] [CrossRef] [PubMed]
- Psychoyios, V.N.; Nikoleli, G.-P.; Tzamtzis, N.; Nikolelis, D.P.; Psaroudakis, N.; Danielsson, B.; Israr, M.Q.; Willander, M. Potentiometric cholesterol biosensor based on zno nanowalls and stabilized polymerized lipid film. Electroanalysis 2013, 25, 367–372. [Google Scholar] [CrossRef]
- Nikoleli, G.-P.; Ibupoto, Z.H.; Nikolelis, D.P.; Likodimos, V.; Psaroudakis, N.; Tzamtzis, N.; Willander, M.; Hianik, T. Potentiometric cholesterol biosensing application of graphene electrode with stabilized polymeric lipid membrane. Cent. Eur. J. Chem. 2013, 11, 1554–1561. [Google Scholar] [CrossRef]
- Ali, M.A.; Srivastava, S.; Pandey, M.K.; Agrawal, V.V.; John, R.; Malhotra, B.D. Protein-conjugated quantum dots interface: Binding kinetics and label-free lipid detection. Anal. Chem. 2014, 86, 1710–1718. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Kamil Reza, K.; Srivastava, S.; Agrawal, V.V.; John, R.; Malhotra, B.D. Lipid-lipid interactions in aminated reduced graphene oxide interface for biosensing application. Langmuir 2014, 30, 4192–4201. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Solanki, P.R.; Srivastava, S.; Singh, S.; Agrawal, V.V.; John, R.; Malhotra, B.D. Protein functionalized carbon nanotubes-based smart lab-on-a-chip. ACS Appl. Mater. Interfaces 2015, 7, 5837–5846. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.J.; Frank, C.W.; Kasemo, B.; Hook, F. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat. Protoc. 2010, 5, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Edvardsson, M.; Svedhem, S.; Wang, G.; Richter, R.; Rodahl, M.; Kasemo, B. Qcm-d and reflectometry instrument: Applications to supported lipid structures and their biomolecular interactions. Anal. Chem. 2009, 81, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Nieradkaa, K.; Kapczyńskab, K.; Rybkab, J.; Lipińskib, T.; Grabiecc, P.; Skowickid, M.; Gotszalka, T. Microcantilever array biosensors for detection and recognition of gram-negative bacterial endotoxins. Sens. Actuators B 2014, 198, 114–124. [Google Scholar] [CrossRef]
- Zhang, Z.; Murakami, Y.; Taniguchi, T.; Sohgawa, M.; Yamashita, K.; Noda, M. A cantilever-based biosensor for real-time monitoring of interactions between amyloid-β(1–40) and membranes comprised of phosphatidylcholine lipids with different hydrophobic acyl chains. Electroanalysis 2017, 29, 722–729. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling drug-resistant infections globally: Final report and recommendations. Available online: https://amr-review.org/sites/default/files/160518_Finalpaper_with cover.pdf (accessed on 31 May 2017).
- Washington, J.A. Principles of Diagnosis. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Levin, J.; Poore, T.E.; Zauber, N.P.; Oser, R.S. Detection of endotoxin in the blood of patients with sepsis due to gram-negative bacteria. N. Engl. J. Med. 1970, 283, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Grunfeld, C. The role of hdl in innate immunity. J. Lipid Res. 2011, 52, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Triantafilou, M.; Mouratis, M.A.; Lepper, P.M.; Haston, R.M.; Baldwin, F.; Lowes, S.; Ahmed, M.A.; Schumann, C.; Boyd, O.; Triantafilou, K. Serum proteins modulate lipopolysaccharide and lipoteichoic acid-induced activation and contribute to the clinical outcome of sepsis. Virulence 2012, 3, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Tanaka, M.; Ogata, N.; Mizunoe, Y.; Takahashi, K.; Kumazawa, J. Significance of urinary endotoxin concentration in patients with urinary tract infection. Urol. Res. 1991, 19, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Hrabak, J.; Chudackova, E.; Walkova, R. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: From research to routine diagnosis. Clin. Microbiol. Rev. 2013, 26, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Levels, J.H.; Abraham, P.R.; van Barreveld, E.P.; Meijers, J.C.; van Deventer, S.J. Distribution and kinetics of lipoprotein-bound lipoteichoic acid. Infect Immun. 2003, 71, 3280–3284. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, H.; Kumar, S.; Price, D.N.; Ray, S.M.; Lee, Y.J.; Min, S.; Eum, S.; Kubicek-Sutherland, J.; Resnick, J.M.; Grace, W.K.; et al. Rapid detection of mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis 2012, 92, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Kassa, F.A.; Shio, M.T.; Bellemare, M.J.; Faye, B.; Ndao, M.; Olivier, M. New inflammation-related biomarkers during malaria infection. PLoS ONE 2011, 6, e26495. [Google Scholar] [CrossRef] [PubMed]
- Biron, B.M.; Ayala, A.; Lomas-Neira, J.L. Biomarkers for sepsis: What is and what might be? Biomark. Insights 2015, 10, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Faix, J.D. Biomarkers of sepsis. Crit. Rev. Clin. Lab. Sci. 2013, 50, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Aderem, A.; Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 2000, 406, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Chaby, R. Lipopolysaccharide-binding molecules: Transporters, blockers and sensors. Cell. Mol. Life Sci. 2004, 61, 1697–1713. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Khoo, K.H. Mycobacterial lipoarabinomannan: An extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 1998, 8, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Means, T.K.; Lien, E.; Yoshimura, A.; Wang, S.; Golenbock, D.T.; Fenton, M.J. The cd14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for toll-like receptors. J. Immunol. 1999, 163, 6748–6755. [Google Scholar] [PubMed]
- Pathak, S.K.; Basu, S.; Bhattacharyya, A.; Pathak, S.; Kundu, M.; Basu, J. Mycobacterium tuberculosis lipoarabinomannan-mediated irak-m induction negatively regulates toll-like receptor-dependent interleukin-12 p40 production in macrophages. J. Biol. Chem. 2005, 280, 42794–42800. [Google Scholar] [CrossRef] [PubMed]
- Lawn, S.D. Point-of-care detection of lipoarabinomannan (lam) in urine for diagnosis of hiv-associated tuberculosis: A state of the art review. BMC Infect Dis. 2012, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Dheda, K.; Davids, V.; Lenders, L.; Roberts, T.; Meldau, R.; Ling, D.; Brunet, L.; van Zyl Smit, R.; Peter, J.; Green, C.; et al. Clinical utility of a commercial lam-elisa assay for tb diagnosis in hiv-infected patients using urine and sputum samples. PLoS ONE 2010, 5, e9848. [Google Scholar] [CrossRef] [PubMed]
- Sakamuri, R.M.; Moodley, P.; Yusim, K.; Fen, S.H.; Sturm, A.W.; Korber, B.T.M.; Mukundan, H. Current Methods for Diagnosis of Human Tuberculosis and considerAtions for Global Surveillance. In Tuberculosis, Leprosy and Mycobacterial Diseases of Man and Animals: The Many Hosts of Mycobacteria; Mukundan, H., Chambers, M.A., Waters, W.R., Larsen, M.H., Eds.; CABI: Oxfordshire, UK, 2015; p. 72. [Google Scholar]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Kubicek-Sutherland, J.Z.; Lofton, H.; Vestergaard, M.; Hjort, K.; Ingmer, H.; Andersson, D.I. Antimicrobial peptide exposure selects for staphylococcus aureus resistance to human defence peptides. J. Antimicrob. Chemother. 2017, 72, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat. 2016, 26, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Kubicek-Sutherland, J.Z.; Heithoff, D.M.; Ersoy, S.C.; Shimp, W.R.; House, J.K.; Marth, J.D.; Smith, J.W.; Mahan, M.J. Host-dependent induction of transient antibiotic resistance: A prelude to treatment failure. EBioMedicine 2015, 2, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Olivier, M.; Van Den Ham, K.; Shio, M.T.; Kassa, F.A.; Fougeray, S. Malarial pigment hemozoin and the innate inflammatory response. Front. Immunol. 2014, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Frita, R.; Rebelo, M.; Pamplona, A.; Vigario, A.M.; Mota, M.M.; Grobusch, M.P.; Hanscheid, T. Simple flow cytometric detection of haemozoin containing leukocytes and erythrocytes for research on diagnosis, immunology and drug sensitivity testing. Malar. J. 2011, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I. Cholesterol in health and disease. J. Clin. Investig. 2002, 110, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etheron, P.M.; et al. Triglycerides and cardiovascular disease: A scientific statement from the american heart association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef] [PubMed]
- Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol. 2012, 6, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Rader, D.J.; Hovingh, G.K. Hdl and cardiovascular disease. Lancet 2014, 384, 618–625. [Google Scholar] [CrossRef]
- Wadhera, R.K.; Steen, D.L.; Khan, I.; Giugliano, R.P.; Foody, J.M. A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality. J. Clin. Lipidol. 2016, 10, 472–489. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Dąbrowa, A.; Hannam, S.; Rysz, J.; Banach, M. Malignancy-associated dyslipidemia. Open Cardiovasc. Med. J. 2011, 5, 35–40. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, C.R.; Domingues, G.; Matias, I.; Matos, J.; Fonseca, I.; de Almeida, J.M.; Dias, S. Ldl-cholesterol signaling induces breast cancer proliferation and invasion. Lipids Health Dis. 2014, 13, 9. [Google Scholar] [CrossRef]
- Esposito, K.; Chiodini, P.; Capuano, A.; Bellastella, G.; Maiorino, M.I.; Parretta, E.; Lenzi, A.; Giugliano, D. Effect of metabolic syndrome and its components on prostate cancer risk: Meta-analysis. J. Endocrinol. Investig. 2013, 36, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, C.M.; Berrington de González, A.; Freedman, N.D.; Huxley, R.; Mok, Y.; Jee, S.H.; Samet, J.M. Total cholesterol and cancer risk in a large prospective study in korea. J. Clin. Oncol. 2011, 29, 1592–1598. [Google Scholar] [CrossRef] [PubMed]
- Magura, L.; Blanchard, R.; Hope, B.; Beal, J.R.; Schwartz, G.G.; Sahmoun, A.E. Hypercholesterolemia and prostate cancer: A hospital-based case–control study. Cancer Causes Control 2008, 19, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Pelton, K.; Freeman, M.R.; Solomon, K.R. Cholesterol and prostate cancer. Curr. Opin. Pharmacol. 2012, 12, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Ray, G.; Husain, S.A. Role of lipids, lipoproteins and vitamins in women with breast cancer. Clin. Biochem. 2001, 34, 71–76. [Google Scholar] [CrossRef]
- Solomon, K.R.; Freeman, M.R. The complex interplay between cholesterol and prostate malignancy. Urol. Clin. N. Am. 2011, 38, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G. Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ 2016, 353. [Google Scholar] [CrossRef] [PubMed]
- Gallos, I.D.; Sivakumar, K.; Kilby, M.D.; Coomarasamy, A.; Thangaratinam, S.; Vatish, M. Pre-eclampsia is associated with, and preceded by, hypertriglyceridaemia: A meta-analysis. Int. J. Obstet. Gynaecol. 2013, 120, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.G.; Diamond, P.; Singh, G.; Bell, C.M. Brief overview of maternal triglycerides as a risk factor for pre-eclampsia. Int. J. Obstet. Gynaecol. 2006, 113, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Spracklen, C.N.; Smith, C.J.; Saftlas, A.F.; Robinson, J.G.; Ryckman, K.K. Maternal hyperlipidemia and the risk of preeclampsia: A meta-analysis. Am. J. Epidemiol. 2014, 180, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The fatty liver index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Varbo, A. Triglycerides and cardiovascular disease. Lancet 2014, 384, 626–635. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R. Triglyceride and cardiovascular risk: A critical appraisal. Indian J. Endocrinol. Metab. 2016, 20, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.H.; Kohli, R.; Gores, G.J. Mechanisms of lipotoxicity in nafld and clinical implications. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Wende, A.R.; Abel, E.D. Lipotoxicity in the heart. Biochim. Biophys. Acta 2010, 1801, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, H.; Fernandez, J.A.; Hackeng, T.M.; Banka, C.L.; Griffin, J.H. Cardiolipin is a normal component of human plasma lipoproteins. Proc. Natl. Acad. Sci. USA 2000, 97, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Sapandowski, A.; Stope, M.; Evert, K.; Evert, M.; Zimmermann, U.; Peter, D.; Päge, I.; Burchardt, M.; Schild, L. Cardiolipin composition correlates with prostate cancer cell proliferation. Mol. Cell. Biochem. 2015, 410, 175–185. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cardiovascular diseases (cvds). Available online: http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed on 31 May 2017).
- Mearns, B.M. Targeting levels and functions of blood lipids in the prevention of cvd. Nat. Rev. Cardiol. 2011, 8, 179–180. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei-Malazy, O.; Qorbani, M.; Samavat, T.; Sharifi, F.; Larijani, B.; Fakhrzadeh, H. Prevalence of dyslipidemia in iran: A systematic review and meta-analysis study. Int. J. Prev. Med. 2014, 5, 373–393. [Google Scholar] [PubMed]
- Arsenault, B.J.; Boekholdt, S.M.; Kastelein, J.J.P. Lipid parameters for measuring risk of cardiovascular disease. Nat. Rev. Cardiol. 2011, 8, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, Z.; Shen, W.-J.; Azhar, S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr. Metab. 2010, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, D.; Soran, H.; Durrington, P.N. Hypercholesterolemia and its management. BMJ 2008, 337, a993. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. Ldl cholesterol: Controversies and future therapeutic directions. Lancet 2014, 384, 607–617. [Google Scholar] [CrossRef]
- National Cholesterol Education Program. Third report of the national cholesterol education program (ncep) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel iii) final report. Circulation 2002, 106, 3143–3412. [Google Scholar]
- Alere. Alere cholestech ldx® analyzer. Available online: http://www.alere.com/en/home/product-details/cholestech-ldx-system.html (accessed on 31 May 2017).
- Kwiterovich, P.O., Jr. Laboratory Procedure Manual: Total Cholesterol, Hdl-Cholesterol, Triglycerides, and Ldl-Cholesterol. In National Health and Nutrition Examination Survey; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2004. [Google Scholar]
- Schaefer, E.J.; Tsunoda, F.; Diffenderfer, M.; Polisecki, E.; Thai, N.; Asztalos, B. The Measurement of Lipids, Lipoproteins, Apolipoproteins, Fatty Acids, and Sterols, and Next Generation Sequencing for the Diagnosis and Treatment of Lipid Disorders. In Endotext; De Groot, L.J., Chrousos, G., Dungan, K., Feingold, K.R., Grossman, A., Hershman, J.M., Koch, C., Korbonits, M., McLachlan, R., New, M., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Evans, K.; Laker, M.F. Intra-individual factors affecting lipid, lipoprotein and apolipoprotein measurement: A review. Ann. Clin. Biochem. 1995, 32, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Hafiane, A.; Genest, J. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk. BBA Clin. 2015, 3, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Nauck, M.; Warnick, G.R.; Rifai, N. Methods for measurement of ldl-cholesterol: A critical assessment of direct measurement by homogeneous assays versus calculation. Clin. Chem. 2002, 48, 236–254. [Google Scholar] [PubMed]
- Global Industry Analysts. Global Cholesterol Testing—Clinical Diagnostics; Global Industry Analysts: San Jose, CA, USA, 2016; p. 219. [Google Scholar]
- Ekroos, K.; Jänis, M.; Tarasov, K.; Hurme, R.; Laaksonen, R. Lipidomics: A tool for studies of atherosclerosis. Curr. Atheroscler. Rep. 2010, 12, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Schlame, M.; Ren, M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 2006, 580, 5450–5455. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Ye, C.; McCain, K.; Greenberg, M.L. The role of cardiolipin in cardiovascular health. BioMed Res. Int. 2015, 215, 12. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yang, J.; Yang, K.; Zhao, Z.; Abendschein, D.R.; Gross, R.W. Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: A shotgun lipidomics study. Biochemistry 2007, 46, 6417–6428. [Google Scholar] [CrossRef] [PubMed]
- Petrosillo, G.; Di Venosa, N.; Ruggiero, F.M.; Pistolese, M.; D’Agostino, D.; Tiravanti, E.; Fiore, T.; Paradies, G. Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free radicals and cardiolipin. Biochim. Biophys. Acta 2005, 1710, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Frostegard, A.G.; Su, J.; Hua, X.; Vikstrom, M.; Faire, U.; Frostegard, J. Antibodies against native and oxidized cardiolipin and phosphatidylserine and phosphorylcholine in atherosclerosis development. PLoS ONE 2014, 9, 3111764. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Cancer Report 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Laisupasin, P.; Thompat, W.; Sukarayodhin, S.; Sornprom, A.; Sudjaroen, Y. Comparison of serum lipid profiles between normal controls and breast cancer patients. J. Lab. Physician 2013, 5, 38–41. [Google Scholar] [CrossRef]
- Ni, H.; Liu, H.; Gao, R. Serum lipids and breast cancer risk: A meta-analysis of prospective cohort studies. PLoS ONE 2015, 10, e0142669. [Google Scholar] [CrossRef] [PubMed]
- Gacci, M.; Russo, G.I.; De Nunzio, C.; Sebastianelli, A.; Salvi, M.; Vignozzi, L.; Tubaro, A.; Morgia, G.; Serni, S. Meta-analysis of metabolic syndrome and prostate cancer. Prostate Cancer Prostatic Dis. 2017, 20, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Heir, T.; Falk, R.S.; Robsahm, T.E.; Sandvik, L.; Erikssen, J.; Tretli, S. Cholesterol and prostate cancer risk: A long-term prospective cohort study. BMC Cancer 2016, 16, 643. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Zhang, Y.X.; Li, P.F.; Cheng, C.; Zhao, Y.S.; Li, D.P.; Du, C. Cholesterol levels in blood and the risk of prostate cancer: A meta-analysis of 14 prospective studies. Cancer Epidemiol. Biomark. Prev. 2015. [Google Scholar] [CrossRef]
- Boland, M.L.; Chourasia, A.H.; Macleod, K.F. Mitochondrial dysfunction in cancer. Front. Oncol. 2013, 3, 292. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, H.; Dai, M.; Ai, J.; Li, Y.; Mahon, B.; Dai, S.; Deng, Y. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions. Oncotarget 2016, 7, 36622–36631. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ren, S.; Piao, H.-l.; Wang, F.; Yin, P.; Xu, C.; Lu, X.; Ye, G.; Shao, Y.; Yan, M.; et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci. Rep. 2016, 6, 20984. [Google Scholar] [CrossRef] [PubMed]
- Mistry, D.A.H.; French, P.W. Circulating phospholipids as biomarkers of breast cancer: A review. Breast Cancer 2016, 10, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Perrotti, F.; Rosa, C.; Cicalini, I.; Sacchetta, P.; Del Boccio, P.; Genovesi, D.; Pieragostino, D. Advances in lipidomics for cancer biomarkers discovery. Int. J. Mol. Sci. 2016, 17, 1992. [Google Scholar] [CrossRef] [PubMed]
- Berinstein, N.L. Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: A review. J. Clin. Oncol. 2002, 20, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem. 2001, 47, 624–630. [Google Scholar] [PubMed]
- Hammarstrom, S. The carcinoembryonic antigen (cea) family: Structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 1999, 9, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Beard, D.B.; Haskell, C.M. Carcinoembryonic antigen in breast cancer. Clinical review. Am. J. Med. 1986, 80, 241–245. [Google Scholar] [CrossRef]
- Huyghe, J. Cea radioimmunoassay. Clinical applications in colorectal cancer. Acta Chir. Belg. 1983, 83, 77–88. [Google Scholar] [PubMed]
- Chester, S.J.; Maimonis, P.; Vanzuiden, P.; Finklestein, M.; Bookout, J.; Vezeridis, M.P. A new radioimmunoassay detecting early stages of colon cancer: A comparison with Cea, Afp, and Ca 19–9. Dis. Markers 1991, 9, 265–271. [Google Scholar] [PubMed]
- Lamerz, R.; Leonhardt, A.; Ehrhart, H.; von Lieven, H. Serial carcinoembryonic antigen (cea) determinations in the management of metastatic breast cancer. Oncodev Biol. Med. 1980, 1, 123–135. [Google Scholar] [PubMed]
- Chan, D.W.; Beveridge, R.A.; Muss, H.; Fritsche, H.A.; Hortobagyi, G.; Theriault, R.; Kiang, D.; Kennedy, B.J.; Evelegh, M. Use of truquant br radioimmunoassay for early detection of breast cancer recurrence in patients with stage ii and stage iii disease. J. Clin. Oncol. 1997, 15, 2322–2328. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, N.M.; Wilson, D.W.; Bell, P.A. Carcinoembryonic antigen (cea) in patients with breast cancer. Eur. J. Cancer 1977, 13, 171–176. [Google Scholar] [CrossRef]
- Petitte, B.; Bialczak, D.; Fink, L.; Golightly, D. Radioimmunoassay’s role in patient managemen. J. Nucl. Med. Technol. 1991, 19, 155–159. [Google Scholar]
- Kufe, D.W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer 2009, 9, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J.; Bonfrer, J.M.; Kulpa, J.; Rustin, G.J.; Soletormos, G.; Torre, G.C.; Tuxen, M.K.; Zwirner, M. Ca125 in ovarian cancer: European group on tumor markers guidelines for clinical use. Int. J. Gynecol. Cancer 2005, 15, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, C.M.; Duffy, M.J.; Stenman, U.H.; Lilja, H.; Brunner, N.; Chan, D.W.; Babaian, R.; Bast, R.C., Jr.; Dowell, B.; Esteva, F.J.; et al. National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin. Chem. 2008, 54, e11–e79. [Google Scholar] [CrossRef] [PubMed]
- Genway Biotech Inc. Cancer antigen ca125 enzyme immunoassay test kit. Available online: https://www.genwaybio.com/elisas/tumor-marker-elisa/ovarian-cancer-antigen-ca125 (accessed on 31 May 2017).
- Kallioniemi, O.P.; Oksa, H.; Aaran, R.K.; Hietanen, T.; Lehtinen, M.; Koivula, T. Serum ca 15–3 assay in the diagnosis and follow-up of breast cancer. Br. J. Cancer 1988, 58, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Roche Diagnostics Ltd. Elecsys® cancer antigen 15–3 (ca. 15–3). Available online: http://www.roche-diagnostics.ch/content/dam/corporate/roche-dia_ch/documents/broschueren/professional_diagnostics/serumarbeitsplatz/immunologie/tumor-marker/EN_CA15–3_FactSheet.pdf (accessed on 31 May 2017).
- Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Investig. 2016, 126, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Mollaei, H.; Safaralizadeh, R.; Pouladi, N. A brief review of exosomes and their roles in cancer. Meta Gene 2017, 11, 70–74. [Google Scholar] [CrossRef]
- Soung, Y.H.; Ford, S.; Zhang, V.; Chung, J. Exosomes in cancer diagnostics. Cancers 2017, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yuan, X.; Shi, H.; Wu, L.; Qian, H.; Xu, W. Exosomes in cancer: Small particle, big player. J. Hematol. Oncol. 2015, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Carpenter, E.; Issadore, D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Anal. 2016, 141, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Uzan, J.; Carbonnel, M.; Piconne, O.; Asmar, R.; Ayoubi, J.-M. Pre-eclampsia: Pathophysiology, diagnosis, and management. Vasc. Health Risk Manag. 2011, 7, 467–474. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Who Recommendations for Prevention and Treatment of Pre-Eclampsia and Eclampsia; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Backes, C.H.; Markham, K.; Moorehead, P.; Cordero, L.; Nankervis, C.A.; Giannone, P.J. Maternal preeclampsia and neonatal outcomes. J. Pregnancy 2011, 2011, 214365. [Google Scholar] [CrossRef] [PubMed]
- Meads, C.A.; Cnossen, J.S.; Meher, S.; Juarez-Garcia, A.; ter Riet, G.; Duley, L.; Roberts, T.E.; Mol, B.W.; van der Post, J.A.; Leeflang, M.M.; et al. Methods of prediction and prevention of pre-eclampsia: Systematic reviews of accuracy and effectiveness literature with economic modelling. Health Technol. Assess. 2008, 12, 1–270. [Google Scholar] [CrossRef]
- Siddiqui, I.A. Maternal serum lipids in women with pre-eclampsia. Ann. Med. Health Sci. Res. 2014, 4, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.H.J.; Eather, S.R.; Freeman, D.J.; Meyer, B.J.; Mitchell, T.W. A lipidomic analysis of placenta in preeclampsia: Evidence for lipid storage. PLoS ONE 2016, 11, e0163972. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, M.; Eichmann, T.O.; Taschler, U.; Zimmermann, R.; Zechner, R.; Lass, A. Measurement of lipolysis. Methods Adipose Tissue Biol. Pt B 2014, 538, 171–193. [Google Scholar] [CrossRef]
- Schaffer, J.E. Lipotoxicity: When tissues overeat. Curr. Opin. Lipidol. 2003, 14, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Konige, M.; Wang, H.; Sztalryd, C. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochim. Biophys. Acta-Mol. Basis Dis. 2014, 1842, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, J.E. Fatty acid transport: The roads taken. Am. J. Physiol.-Endocrinol. Metab. 2002, 282, E239–E246. [Google Scholar] [CrossRef] [PubMed]
- Brasaemle, D.L. The perilipin family of structural lipid droplet proteins: Stabilization of lipid droplets and control of lipolysis. J. Lipid Res. 2007, 48, 2547–2559. [Google Scholar] [CrossRef] [PubMed]
- Zechner, R.; Zimmermann, R.; Eichmann, T.O.; Kohlwein, S.D.; Haemmerle, G.; Lass, A.; Madeo, F. Fat signals—Lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012, 15, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Farese, R.V.; Walther, T.C. Lipid droplets finally get a little r-e-s-p-e-c-t. Cell 2009, 139, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res. 2001, 40, 325–438. [Google Scholar] [CrossRef]
- Walther, T.C.; Farese, R.V. Lipid droplets and cellular lipid metabolism. Ann. Rev. Biochem. 2012, 81, 687–714. [Google Scholar] [CrossRef] [PubMed]
- Malhi, H.; Gores, G.J. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin. Liver Dis. 2008, 28, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Maaetoft-Udsen, K.; Greineisen, W.E.; Aldan, J.T.; Magaoay, H.; Ligohr, C.; Shimoda, L.M.N.; Sung, C.; Turner, H. Comparative analysis of lipotoxicity induced by endocrine, pharmacological, and innate immune stimuli in rat basophilic leukemia cells. J. Immunotoxicol. 2015, 12, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.H.; Byrne, C.D. Modulation of sterol regulatory element binding proteins (srebps) as potential treatments for non-alcoholic fatty liver disease (nafld). Drug Discov. Today 2007, 12, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Dam-Larsen, S.; Franzmann, M.; Andersen, I.B.; Christoffersen, P.; Jensen, L.B.; Sorensen, T.I.A.; Becker, U.; Bendtsen, F. Long term prognosis of fatty liver: Risk of chronic liver disease and death. Gut 2004, 53, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P.; Lindor, K.D. Non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2002, 17, S186–S190. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y.; Cohen, D.E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 2013, 48, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Postic, C.; Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: Lessons from genetically engineered mice. J. Clin. Investig. 2008, 118, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, P.; Mysels, K.J. Critical Micelle Concentrations of Aqueous Surfactant Systems; NIST National Institute of Standards and Technology: Washington, DC, USA, 1971; NSRDS-NBS 36.
- Avanti Polar Lipids Inc. Storage & Handling of Lipids. Available online: https://avantilipids.com/tech-support/storage-handling-of-lipids/ (accessed on 31 May 2017).
Method | Advantages | Limitations |
---|---|---|
Mass spectrometry | Sensitive | Expensive |
Specific | Sample preparation can be extensive | |
Works in patient samples | Requires highly trained personnel | |
Requires laboratory infrastructure | ||
NMR-based sensors | Rapid | Low sensitivity |
Reproducible | Low specificity | |
Works in patient samples | Sample preparation can be extensive | |
Requires highly trained personnel | ||
Requires laboratory infrastructure | ||
Optical biosensors | ||
SPR-based sensors | Rapid | Low sensitivity in patient samples |
Specific | ||
Interferometry-based sensors | Low-cost | Low specificity in patient samples |
Sensitive | ||
Waveguide-based sensors | Rapid | Short shelf-life of labeled reagents |
Reproducible | ||
Sensitive | ||
Specific | ||
Works in patient samples | ||
Electrochemical biosensors | Rapid | Low sensitivity in patient samples |
Reproducible | Low specificity in patient samples | |
Mechanical biosensors | Rapid | Low sensitivity in patient samples |
Low specificity in patient samples | ||
Reproducibility |
Biomarker | Disease | Location | Interacting Molecules | Reference |
---|---|---|---|---|
Lipopolysaccharide (LPS) | Sepsis | Blood | LBP, HDL, LDL | [107,108] |
holotransferrin | [109] | |||
Urinary tract infection | Urine | n.d. | [110] | |
Antimicrobial resistance | Any sample | n.d. | [111] | |
Lipoteichoic acid (LTA) | Sepsis | Blood | HDL, LDL, VLDL | [108,112] |
LBP, holotransferrin | [109] | |||
Lipoarabinomannan (LAM) | Tuberculosis | Urine | n.d. | [113] |
Blood | HDL | [15] | ||
Lipomannan (LM) | Bovine tuberculosis | Blood | HDL | [84] |
OmpK36 porin | Antimicrobial resistance | Any sample | n.d. | [111] |
Hemozoin (HZ) | Malaria | Blood | LBP, HDL, LDL, VLDL, apolipoprotein E, α-1-antitrypin | [114] |
Biomarker | Disease | Location | Interacting Lipoproteins | Reference |
---|---|---|---|---|
Cholesterol | Cardiovascular disease | Blood | HDL, LDL | [134,135] |
Cancer | Blood | HDL, LDL | [136,137,138,139,140,141,142,143] | |
Preeclampsia | Blood | HDL, LDL | [144,145,146,147] | |
Lipotoxicity | Blood | HDL, LDL | [148] | |
Triglycerides (TG) | Cardiovascular disease | Blood | LDL, VLDL | [132,149,150] |
Cancer | Blood | LDL, VLDL | [136,137,138,139,140,141,142,143] | |
Preeclampsia | Blood | LDL, VLDL | [144,145,146,147] | |
Lipotoxicity | Blood | LDL, VLDL | [148,151,152] | |
Cardiolipin (CL) | Cardiovascular disease | Blood | LDL, HDL, VLDL | [153] |
Cancer | Brain tissue, Prostate tissue | n.d. | [37,154] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubicek-Sutherland, J.Z.; Vu, D.M.; Mendez, H.M.; Jakhar, S.; Mukundan, H. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. Biosensors 2017, 7, 25. https://doi.org/10.3390/bios7030025
Kubicek-Sutherland JZ, Vu DM, Mendez HM, Jakhar S, Mukundan H. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. Biosensors. 2017; 7(3):25. https://doi.org/10.3390/bios7030025
Chicago/Turabian StyleKubicek-Sutherland, Jessica Z., Dung M. Vu, Heather M. Mendez, Shailja Jakhar, and Harshini Mukundan. 2017. "Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics" Biosensors 7, no. 3: 25. https://doi.org/10.3390/bios7030025
APA StyleKubicek-Sutherland, J. Z., Vu, D. M., Mendez, H. M., Jakhar, S., & Mukundan, H. (2017). Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. Biosensors, 7(3), 25. https://doi.org/10.3390/bios7030025