A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus and Reagents
2.2. Fabrication of Non-Enzymatic Cu2O Glucose Sensor
3. Results and Discussion
3.1. Surface Characterization with SEM and Tof-SIMS
3.2. Surface Characterization of Cuprous Oxide Layer with XPS
3.3. Electrochemical Measurement of Glucose by Differential Pulse Voltammetry (DPV)
3.4. Glucose Detection by Chronoamperometry (CA) and Single-Potential Amperometric Voltammetry
3.5. Detection of Glucose in Undiluted Human Serum by DPV
3.6. Interference Study of the Cu2O Thin Layer-Based Sensor for Glucose Detection
3.7. Non-Enzymatic Metallic Catalyst-Based Glucose Sensors in Alkaline Solution
3.7.1. Electrochemically Deposited Copper Film for the Detection of Glucose in Alkaline Solution
3.7.2. Electrochemically Deposited Nickel Film for the Detection of Glucose in Basic Solution
3.7.3. Sputtered Thin Platinum Film Sensor for the Detection of Glucose in Alkaline Solution
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- MedcineNet. Available online: https://www.medicinenet.com/glucose/article.htm (accessed on 1 September 2017).
- Zhang, M.; Liao, C.; Mak, C.H.; You, P.; Mak, C.L.; Yan, F. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 2015, 5, 8311. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Alex, S.; Siegal, G.; Tiwari, A. Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Mater. Sci. Eng. C 2015, 46, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Vilian, A.E.; Chen, S.-M.; Ali, M.A.; Al-Hemaid, F.M. Direct electrochemistry of glucose oxidase immobilized on ZrO2 nanoparticles-decorated reduced graphene oxide sheets for a glucose biosensor. RSC Adv. 2014, 4, 30358–30367. [Google Scholar] [CrossRef]
- Vilian, A.E.; Mani, V.; Chen, S.-M.; Dinesh, B.; Huang, S.-T. The immobilization of glucose oxidase at manganese dioxide particles-decorated reduced graphene oxide sheets for the fabrication of a glucose biosensor. Ind. Eng. Chem. Res. 2014, 53, 15582–15589. [Google Scholar] [CrossRef]
- Li, L.H.; Zhang, W.D. Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim. Acta 2008, 163, 305–311. [Google Scholar] [CrossRef]
- Sun, Y.P.; Buck, H.; Mallouk, T.E. Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal. Chem. 2001, 73, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Han, J.; Ning, X.; Cao, W.; Xu, W.; Guo, L. Controllable Morphology and Conductivity of Electrodeposited Cu2O Thin Film: Effect of Surfactants. Appl. Mater. Interfaces 2014, 6, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.S.; Shorowordi, K.M. Electrodeposition and characterization of copper oxide thin films for solar cell applications. Procedia Eng. 2015, 105, 679–685. [Google Scholar] [CrossRef]
- Torto, N.; Ruzgas, T.; Gorton, L. Electrochemical oxidation of mono-and disaccharides at fresh as well as oxidized copper electrodes in alkaline media. J. Electroanal. Chem. 1999, 464, 252–258. [Google Scholar] [CrossRef]
- Corbo, D.; Bertotti, M. Amperometric determination of ethanol in beverages at copper electrodes in alkaline medium. Anal. Chim. Acta 2002, 472, 123–131. [Google Scholar]
- Dai, Y.; Liu, C.C. A simple, cost-effective sensor for detecting lead ions in water using under-potential deposited bismuth sub-layer with differential pulse voltammetry (DPV). Sensors 2017, 17, 950. [Google Scholar] [CrossRef]
- Dai, Y.; Molazemhosseini, A.; Liu, C.C. In Vitro quantified determination of β-amyloid 42 peptides, a biomarker of neuro-degenerative disorders, in PBS and human serum using a simple, cost-effective thin gold film biosensor. Biosensors 2017, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Molazemhosseni, A.; Magagnin, L.; Vena, P.; Liu, C.C. Single-use nonenzymatic glucose biosensor based on CuO nanoparticles ink printed on thin film gold electrode by micro-plotter technology. J. Electroanal. Chem. 2017, 789, 50–57. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, C.C. Detection of 17 β-Estradiol in environmental samples and for health care using a single-use, cost-effective biosensor based on differential pulse voltammetry (DPV). Biosensors 2017, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Molazemhosseini, A.; Liu, C.C. A single-use, in vitro biosensor for the detection of T-tau protein, a biomarker of neuro-degenerative disorders, in PBS and human serum using differential pulse voltammetry (DPV). Biosensors 2017, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.T.; Tan, J.S.; Wang, Q.T.; Li, C.Y.; Liu, X.H.; Cai, R.S.; Ding, Y.H.; Wang, Y.Q. Electrochemical deposition and formation mechanism of single-crystalline Cu2O octahedral on aluminum. J. Anal. Methods Chem. 2012, 406162. [Google Scholar]
- Vickerman, J.; Gilmore, I. (Eds.) Surface Analysis: The Principal Techniques, 2nd ed.; Wiley Publications: Hoboken, NJ, USA, 2009; ISBN 978-0-470-01763-0. [Google Scholar]
- Zhou, C.; Xu, L.; Song, J.; Xing, R.; Xu, S.; Liu, D.; Song, H. Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites. Sci. Rep. 2014, 4, 7382. [Google Scholar] [CrossRef] [PubMed]
- Zamble, D. Nickel in biology. R. Soc. Chem. 2015, 7, 588. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Zhang, F.; Baldwin, R. Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems. Anal. Chim. Acta 1991, 244, 169–178. [Google Scholar] [CrossRef]
- Fleischmann, M.; Korinek, K.; Pletcher, D. The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. 1971, 31, 39. [Google Scholar] [CrossRef]
- Boubatra, M.; Azizi, A.; Schmerber, G.; Dinia, A. The influence of pH electrolyte on the electrochemical deposition and properties of nickel thin films. Ionics 2012, 18, 425–432. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Molazemhosseini, A.; Abbasi, K.; Liu, C.C. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution. Biosensors 2018, 8, 4. https://doi.org/10.3390/bios8010004
Dai Y, Molazemhosseini A, Abbasi K, Liu CC. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution. Biosensors. 2018; 8(1):4. https://doi.org/10.3390/bios8010004
Chicago/Turabian StyleDai, Yifan, Alireza Molazemhosseini, Kevin Abbasi, and Chung Chiun Liu. 2018. "A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution" Biosensors 8, no. 1: 4. https://doi.org/10.3390/bios8010004
APA StyleDai, Y., Molazemhosseini, A., Abbasi, K., & Liu, C. C. (2018). A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution. Biosensors, 8(1), 4. https://doi.org/10.3390/bios8010004