Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Textile Substrates
2.2. Integration Technique for E-Textile Electrodes with Textile Substrates
2.3. EDA Monitoring Testing Protocols
2.4. Systematic Testing of E-Textile and Textile Materials
2.5. Statistical Analysis
3. Results
3.1. Characterization of Textile Substrates
3.2. Evaluation of Integration of E-Textile Electrodes with Textile Substrates
3.3. Analysis of EDA Stimulus Response Data for E-Textile Electrodes
3.4. Analysis of 4-h EDA Data for E-Textile Electrodes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, Y.L.; Ding, X.R.; Poon, C.C.Y.; Lo, B.P.L.; Zhang, H.; Zhou, X.L.; Yang, G.Z.; Zhao, N.; Zhang, Y.T. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 2014, 61, 1538–1554. [Google Scholar] [CrossRef] [PubMed]
- Fensli, R.; Pedersen, P.E.; Gundersen, T.; Hejlesen, O. Sensor acceptance model—Measuring patient acceptance of wearable sensors. Methods Inf. Med. 2008, 47, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Estève, D.; Fourniols, J.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Boucsein, W. Electrodermal Activity, 2nd ed.; Springer: Boston, MA, USA, 2012; ISBN 978-1-4614-1125-3. [Google Scholar]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.-M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef] [PubMed]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Ethridge, E.; Urban, D. Electrotextiles. Int. J. High Speed Electron. Syst. 2002, 12, 365–369. [Google Scholar] [CrossRef]
- Tao, X. (Ed.) Wearable Electronics and Photonics, 1st ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2005; ISBN 9781855739055. [Google Scholar]
- Gonçalves, C.; Ferreira da Silva, A.; Gomes, J.; Simoes, R. Wearable e-textile technologies: A review on sensors, actuators and control elements. Inventions 2018, 3, 14. [Google Scholar] [CrossRef]
- Greco, A.; Lanata, A.; Citi, L.; Vanello, N.; Valenza, G.; Scilingo, E. Skin admittance measurement for emotion recognition: A study over frequency sweep. Electronics 2016, 5, 46. [Google Scholar] [CrossRef]
- Seoane, F.; Mohino-Herranz, I.; Ferreira, J.; Alvarez, L.; Buendia, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R. Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 2014, 14, 7120–7141. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kwon, S.; Seo, S.; Park, K. Kwangsuk Park Highly wearable galvanic skin response sensor using flexible and conductive polymer foam. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6631–6634. [Google Scholar]
- Postolache, O.; Viegas, V.; Dias Pereira, J.M.; Vinhas, D.; Girao, P.S.; Postolache, G. Toward developing a smart wheelchair for user physiological stress and physical activity monitoring. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisboa, Portugal, 11–12 June 2014; pp. 1–6. [Google Scholar]
- Seoane, F.; Ferreira, J.; Alvarez, L.; Buendia, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R. Sensorized garments and textrode-enabled measurement instrumentation for ambulatory assessment of the autonomic nervous system response in the ATREC project. Sensors 2013, 13, 8997–9015. [Google Scholar] [CrossRef] [PubMed]
- Lanatà, A.; Valenza, G.; Scilingo, E.P. A novel EDA glove based on textile-integrated electrodes for affective computing. Med. Biol. Eng. Comput. 2012, 50, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Poh, M.; Loddenkemper, T.; Reinsberger, C.; Swenson, N.C.; Goyal, S.; Sabtala, M.C.; Madsen, J.R.; Picard, R.W. Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia 2012, 53, e93–e97. [Google Scholar] [CrossRef] [PubMed]
- Healey, J. GSR sock: A new e-textile sensor prototype. In Proceedings of the 2011 15th Annual International Symposium on Wearable Computers, San Francisco, CA, USA, 12–15 June 2011; pp. 113–114. [Google Scholar]
- Valenza, G.; Lanatà, A.; Scilingo, E.P.; De Rossi, D. Towards a smart glove: Arousal recognition based on textile electrodermal response. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3598–3601. [Google Scholar]
- Poh, M.Z.; Loddenkemper, T.; Swenson, N.C.; Goyal, S.; Madsen, J.R.; Picard, R.W. Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4415–4418. [Google Scholar]
- Fletcher, R.R.; Dobson, K.; Goodwin, M.S.; Eydgahi, H.; Wilder-Smith, O.; Fernholz, D.; Kuboyama, Y.; Hedman, E.B.; Poh, M.; Picard, R.W. iCalm: Wearable sensor and network architecture for wirelessly communicating and logging autonomic activity. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Poh, M.; Swenson, N.C.; Picard, R.W. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Boucsein, W.; Fowles, D.C.; Grimnes, S.; Ben-Shakhar, G.; Roth, W.T.; Dawson, M.E.; Filion, D.L. Publication recommendations for electrodermal measurements. Psychophysiology 2012, 49, 1017–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Empatica Empatica. Available online: www.empatica.com (accessed on 19 May 2018).
- Moodmetric Moodmetric. Available online: www.moodmetric.com (accessed on 19 May 2018).
- Movisens edaMove. Available online: www.movisens.com/en/products/eda-sensor/ (accessed on 19 May 2018).
- Picard, R.W.; Fedor, S.; Ayzenberg, Y. Multiple arousal theory and daily-life electrodermal activity asymmetry. Emot. Rev. 2016, 8, 62–75. [Google Scholar] [CrossRef]
- Koss, M.C.; Davison, M.A. Characteristics of the electrodermal response. Naunyn Schmiedebergs. Arch. Pharmacol. 1976, 295, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.W.; Bailey, C.S.; Johson, R.D.; Kitchell, R.L. Spinal nerve root origin of the median, ulnar and musculocutaneous nerves and their muscle nerve branches to the canine forelimb. Anat. Histol. Embryol. J. Vet. Med. Ser. C 1990, 19, 359–368. [Google Scholar] [CrossRef]
- Loukas, M.; Louis, R.G.; Stewart, L.; Hallner, B.; DeLuca, T.; Morgan, W.; Shah, R.; Mlejnek, J. The surgical anatomy of ulnar and median nerve communications in the palmar surface of the hand. J. Neurosurg. 2007, 106, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Scerbo, A.S.; Freedman, L.W.; Raine, A.; Dawson, M.E.; Venables, P.H. A major effect of recording site on measurement of electrodermal activity. Psychophysiology 1992, 29, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.W.; Scerbo, A.S.; Dawson, M.E.; Raine, A.; Mcclure, W.O.; Venables, P.H. The relationship of sweat gland count to electrodermal activity. Psychophysiology 1994, 31, 196–200. [Google Scholar] [CrossRef] [PubMed]
- ASTM International. ASTM E96/E96M-16, Standard Test Methods for Water Vapor Transmission of Materials; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Bracco, G.; Holst, B. Surface Science Techniques; Bracco, G., Holst, B., Eds.; Springer Series in Surface Sciences; Springer: Berlin/Heidelberg, Germany, 2013; Volume 51, ISBN 978-3-642-34242-4. [Google Scholar]
- De Bilbao, E.; Soulat, D.; Hivet, G.; Gasser, A. Experimental study of bending behaviour of reinforcements. Exp. Mech. 2010, 50, 333–351. [Google Scholar] [CrossRef]
- Haddad, P.A.; Servati, A.; Soltanian, S.; Ko, F.; Servati, P. Effects of flexible dry electrode design on electrodermal activity stimulus response detection. IEEE Trans. Biomed. Eng. 2017, 64, 2979–2987. [Google Scholar] [CrossRef] [PubMed]
- Stroop, J.R.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Svetlak, M.; Bob, P.; Cernik, M.; Kukleta, M. Electrodermal complexity during the Stroop colour word test. Auton. Neurosci. 2010, 152, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Randall, W.C. Quantitation and regional distribution of sweat glands in man. J. Clin. Investig. 1946, 25, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Randall, W.C. Sweat gland activity and changing patterns of sweat secretion on the skin surface. Am. J. Physiol. Content 1946, 147, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Pearson, K. Mathematical contributions to the theory of evolution—Regression, heredity, and panmixia. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1896, 187, 253–318. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Rood, R.; Noh, Y.; Burnham, K.; Pennace, J.; Chon, K.H. Novel dry electrodes for recording electrodermal activity. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5701–5704. [Google Scholar]
- Chi, Y.M.; Jung, T.; Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Silva, P.; Carvalho, H.; Carvalho, M. Textile moisture sensor matrix for monitoring of disabled and bed-rest patients. In Proceedings of the 2011 IEEE EUROCON—International Conference on Computer as a Tool, Lisbon, Portugal, 27–29 April 2011; pp. 1–4. [Google Scholar]
- Cheng, M.; Chen, L.; Hung, Y.; Chen, C. A vital wearing system with wireless capability. In Proceedings of the 2008 Second International Conference on Pervasive Computing Technologies for Healthcare, Tampere, Finland, 30 January–1 Feberuary 2008; pp. 268–271. [Google Scholar]
- Albulbul, A. Evaluating major electrode types for idle biological signal measurements for modern medical technology. Bioengineering 2016, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Ranogajec, S.; Geršak, G. Measuring site dependency when measuring skin conductance. In Proceedings of the Twenty-third International Electrotechnical and Computer Science Conference, Portorož, Slovenia, 22–24 September 2014; pp. 155–158. [Google Scholar]
- Maulsby, R.L.; Edelberg, R. The interrelationship between the galvanic skin response, basal resistance, and temperature. J. Comp. Physiol. Psychol. 1960, 53, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Lobstein, T.; Cort, J. The relationship between skin temperature and skin conductance activity: Indications of genetic and fitness determinants. Biol. Psychol. 1978, 7, 139–143. [Google Scholar] [CrossRef]
- Turpin, G.; Shine, P.; Lader, M. Ambulatory electrodermal monitoring: Effects of ambient temperature, general activity, electrolyte media, and length of recording. Psychophysiology 1983, 20, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Deltombe, T.; Hanson, P.; Jamart, J.; Clérin, M. The influence of skin temperature on latency and amplitude of the sympathetic skin response in normal subjects. Muscle Nerve 1998, 21, 34–39. [Google Scholar] [CrossRef]
- Giakoumis, D.; Tzovaras, D.; Hassapis, G. Subject-dependent biosignal features for increased accuracy in psychological stress detection. Int. J. Hum. Comput. Stud. 2013, 71, 425–439. [Google Scholar] [CrossRef]
- Prince, E.B.; Kim, E.S.; Wall, C.A.; Gisin, E.; Goodwin, M.S.; Simmons, E.S.; Chawarska, K.; Shic, F. The relationship between autism symptoms and arousal level in toddlers with autism spectrum disorder, as measured by electrodermal activity. Autism 2017, 21, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Esen, F.; Çelebi, G.; Ertekin, C.; Çolakoglu, Z. Electrodermal activity in patients with Parkinson’s disease. Clin. Auton. Res. 1997, 7, 35–40. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, P.A.; Servati, A.; Soltanian, S.; Ko, F.; Servati, P. Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring. Biosensors 2018, 8, 79. https://doi.org/10.3390/bios8030079
Haddad PA, Servati A, Soltanian S, Ko F, Servati P. Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring. Biosensors. 2018; 8(3):79. https://doi.org/10.3390/bios8030079
Chicago/Turabian StyleHaddad, Peter A., Amir Servati, Saeid Soltanian, Frank Ko, and Peyman Servati. 2018. "Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring" Biosensors 8, no. 3: 79. https://doi.org/10.3390/bios8030079
APA StyleHaddad, P. A., Servati, A., Soltanian, S., Ko, F., & Servati, P. (2018). Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring. Biosensors, 8(3), 79. https://doi.org/10.3390/bios8030079