Nanoencapsulated Essential Oils with Enhanced Antifungal Activity for Potential Application on Agri-Food, Material and Environmental Fields
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Essential Oils
2.2. Physicochemical Characterization of Essential Oil-Loaded Nanocapsules (EO-NCs)
2.3. Antifungal Activities of Pure EOs and EO-NCs
3. Discussion
4. Materials and Methods
4.1. Characterization of Essential Oils by Gas Chromatography–Flame Ionization Detection (GC–FID) and Gas Chromatography–Mass Spectrometry (GC–MS)
4.2. Preparation of Essential Oil-Loaded Nanocapsules (EO-NCs)
4.3. Physicochemical Characterization of EO-NCs
4.3.1. Encapsulation Efficiency (EE) and Loading Capacity (LC) of EO-NCs
4.3.2. Particle Size, Polydispersity and Zeta Potential Measurements
4.4. Microorganisms and Growth Conditions
4.5. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Skóra, J.; Sulyok, M.; Nowak, A.; Otlewska, A.; Gutarowska, B. Toxinogenicity and cytotoxicity of Alternaria, Aspergillus and Penicillium moulds isolated from working environments. Int. J. Environ. Sci. Technol. 2016, 14, 595–608. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Sequeira, S.O.; Macedo, M.F. Fungi in archives, libraries, and museums: A review on paper conservation and human health. Crit. Rev. Microbiol. 2019, 45, 686–700. [Google Scholar] [CrossRef] [PubMed]
- Bensch, K.; Braun, U.; Groenewald, J.; Crous, P. The genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Abbas, H.K.; Abel, C.A.; Shier, W.T.; Oliveira, C.; Raghavender, C.R. Mycotoxin contamination of commer-cially important agricultural commodities. Toxin Rev. 2009, 28, 154–168. [Google Scholar] [CrossRef]
- Richard, E.; Heutte, N.; Sage, L.; Pottier, D.; Bouchart, V.; LeBailly, P.; Garon, D. Toxigenic fungi and mycotoxins in mature corn silage. Food Chem. Toxicol. 2007, 45, 2420–2425. [Google Scholar] [CrossRef]
- Hymery, N.; Vasseur, V.; Coton, M.; Mounier, J.; Jany, J.-L.; Barbier, G.; Coton, E. Filamentous Fungi and Mycotoxins in Cheese: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 437–456. [Google Scholar] [CrossRef]
- Topalović, O.; Hussain, M.; Heuer, H. Plants and associated soil microbiota cooperatively suppress plant-parasitic nema-todes. Front. Microbiol. 2020, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Lundell, T.K.; Mäkelä, M.R.; Hildén, K. Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review. J. Basic Microbiol. 2010, 50, 5–20. [Google Scholar] [CrossRef]
- Schmidt, O. Indoor wood-decay basidiomycetes: Damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol. Prog. 2007, 6, 261–279. [Google Scholar] [CrossRef]
- Gostinčar, C.; Grube, M.; Gunde-Cimerman, N. Evolution of Fungal Pathogens in Domestic Environments? Fungal Biol. 2011, 115, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Stević, T.; Berić, T.; Šavikin, K.; Soković, M.; Gođevac, D.; Dimkić, I.; Stanković, S. Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind. Crop. Prod. 2014, 55, 116–122. [Google Scholar] [CrossRef]
- Napoli, E.M.; Ruberto, G. Sicilian aromatic plants: From traditional heritage to a new agro-industrial exploitation. In Spices: Types, Uses and Health Benefits; Kralis, J.F., Ed.; Nova Science Publisher: Hauppauge, NY, USA, 2012; pp. 1–56. [Google Scholar]
- Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.; Zhang, Y.; Muend, S.; Rao, R. Mechanism of Antifungal Activity of Terpenoid Phenols Resembles Calcium Stress and Inhibition of the TOR Pathway. Antimicrob. Agents Chemother. 2010, 54, 5062–5069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Agostino, M.; Tesse, N.; Frippiat, J.; Machouart, M.; Debourgogne, A.; Agostino, D. Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef] [Green Version]
- Gucwa, K.; Milewski, S.; Dymerski, T.; Szweda, P. Investigation of the Antifungal Activity and Mode of Action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus Essential Oils. Molecules 2018, 23, 1116. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Variyar, P.S. Nanoencapsulation of essential oils for sustained release: Application as therapeutics and antimicrobials. In Encapsulations; Elsevier: Amsterdam, The Netherlands, 2016; pp. 641–672. [Google Scholar]
- Weiss, J.; Gaysinsky, S.; Davidson, M.; McClements, J. Nanostructured encapsulation systems: Food antimicrobials. In Global Issues in Food Science and Technology; Academic Press: Cambridge, MA, USA, 2009; pp. 425–479. [Google Scholar]
- Ephrem, E.; Greige-Gerges, H.; Fessi, H.; Charcosset, C. Optimisation of rosemary oil encapsulation in polycaprolactone and scale-up of the process. J. Microencapsul. 2014, 31, 746–753. [Google Scholar] [CrossRef]
- Kohiyama, C.Y.; Ribeiro, M.M.; Mossini, S.A.; Bando, E.; da Silva Bomfim, N.; Nerilo, S.B.; Rocha, G.H.; Grespan, R.; Mikcha, J.M.; Machinski, M., Jr. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link. Food Chem. 2015, 173, 1006–1010. [Google Scholar] [CrossRef] [Green Version]
- Puškárová, A.; Bučková, M.; Kraková, L.; Pangallo, D.; Kozics, K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep. 2017, 7, 8211. [Google Scholar] [CrossRef] [Green Version]
- Božik, M.; Cisarova, M.; Tančinová, D.; Kouřimská, L.; Hleba, L.; Klouček, P. Selected essential oil vapours inhibit growth of Aspergillus spp. in oats with improved consumer acceptability. Ind. Crop. Prod. 2017, 98, 146–152. [Google Scholar] [CrossRef]
- Saija, A.; Speciale, A.; Trombetta, D.; Leto, C.; Tuttolomondo, T.; La Bella, S.; Licata, M.; Virga, G.; Bonsangue, G.; Gennaro, M.C.; et al. Phytochemical, Ecological and Antioxidant Evaluation of Wild Sicilian Thyme: Thymbra capitata (L.) Cav. Chem. Biodivers. 2016, 13, 1641–1655. [Google Scholar] [CrossRef] [PubMed]
- Napoli, E.; Siracusa, L.; Ruberto, G. New tricks for old guys: Recent developments in the chemistry, biochemistry, appli-cations and exploitation of selected species from the Lamiaceae family. Chem. Biodiver. 2020, 17, e1900677. [Google Scholar] [CrossRef] [PubMed]
- György, Z.; Incze, N.; Pluhár, Z. Differentiating Thymus vulgaris chemotypes with ISSR molecular markers. Biochem. Syst. Ecol. 2020, 92, 104118. [Google Scholar] [CrossRef]
- Avola, R.; Granata, G.; Geraci, C.; Napoli, E.M.; Graziano, A.C.E.; Cardile, V. Oregano (Origanum vulgare L.) essential oil provides anti-inflammatory activity and facilitates wound healing in a human keratinocytes cell model. Food Chem. Toxicol. 2020, 144, 111586. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Consoli, G.M.L.; Cafiso, V.; Stefani, S.; Geraci, C. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem. 2018, 269, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Consoli, G.M.; Nigro, R.L.; Geraci, C. Hydroxycinnamic acids loaded in lipid-core nanocapsules. Food Chem. 2018, 245, 551–556. [Google Scholar] [CrossRef]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evid. Based Complement. Altern. Med. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, F.H.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceuticals 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, P.P.; Paese, K.; Guterres, S.S.; Pohlmann, A.R.; Costa, T.M.H.; Jablonski, A.; Flôres, S.H.; Rios, A.D.O. Development of lycopene-loaded lipid-core nanocapsules: Physicochemical characterization and stability study. J. Nanoparticle Res. 2015, 17, 1–11. [Google Scholar] [CrossRef]
- Lobato, K.B.D.S.; Paese, K.; Forgearini, J.C.; Guterres, S.S.; Jablonski, A.; Rios, A.D.O. Characterisation and stability evaluation of bixin nanocapsules. Food Chem. 2013, 141, 3906–3912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A.R.N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharamceutics 2020, 12, 669. [Google Scholar] [CrossRef] [PubMed]
- Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 2019, 275, 113–122. [Google Scholar] [CrossRef]
- Khalili, S.T.; Mohsenifar, A.; Beyki, M.; Zhaveh, S.; Rahmani-Cherati, T.; Abdollahi, A.; Bayat, M.; Tabatabaei, M. En-capsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Lebensm Wiss Technol. 2015, 60, 502–508. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Nirmal Ghosh, O.S.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsu-lated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar] [CrossRef] [Green Version]
- Bedoya-Serna, C.M.; Dacanal, G.C.; Fernandes, A.M.; Pinho, S.C. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: In vitro study and application in Minas Padrão cheese. Braz. J. Microbiol. 2018, 49, 929–935. [Google Scholar] [CrossRef]
- Estrada-Cano, C.; Castro, M.A.; Muñoz-Castellanos, L.N.; García-Triana, N.A.; Hernández-Ochoa, L. Antifungal activity of microcapsulated clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils against Fusarium ox-ysporum. J. Microb. Biochem. Technol. 2017, 9, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yin, C.; Cheng, X.; Li, G.; Yang, S.; Zhu, X. β-Cyclodextrin Inclusion Complex Containing Litsea cubeba Essential Oil: Preparation, Optimization, Physicochemical, and Antifungal Characterization. Coatings 2020, 10, 850. [Google Scholar] [CrossRef]
- Weisany, W.; Amini, J.; Samadi, S.; Hossaini, S.; Yousefi, S.; Struik, P.C. Nano silver-encapsulation of Thymus daenensis and Anethum graveolens essential oils enhances antifungal potential against strawberry anthracnose. Ind. Crop. Prod. 2019, 141, 111808. [Google Scholar] [CrossRef]
- Weisany, W.; Samadi, S.; Amini, J.; Hossaini, S.; Yousefi, S.; Maggi, F. Enhancement of the antifungal activity of thyme and dill essential oils against Colletotrichum nymphaeae by nano-encapsulation with copper NPs. Ind. Crop. Prod. 2019, 132, 213–225. [Google Scholar] [CrossRef]
- Jummes, B.; Sganzerla, W.G.; Da Rosa, C.G.; Noronha, C.M.; Nunes, M.R.; Bertoldi, F.C.; Barreto, P.L.M. Antioxidant and antimicrobial poly-ε-caprolactone nanoparticles loaded with Cymbopogon martinii essential oil. Biocatal. Agric. Biotechnol. 2020, 23, 101499. [Google Scholar] [CrossRef]
- da Silva, N.P.; Pereira, E.D.; Duarte, L.M.; de Oliveira Freitas, J.C.; de Almeida, C.G.; da Silva, T.P.; Melo, R.C.; Apolônio, A.C.; de Oliveira, M.A.; de Mello Brandão, H.; et al. Improved an-ti-Cutibacterium acnes activity of tea tree oil-loaded chitosan-poly (ε-caprolactone) core-shell nanocapsules. Colloids Surf. B Biointerfaces 2020, 196, 111371. [Google Scholar] [CrossRef] [PubMed]
- Kalita, S.; Kandimalla, R.; Devi, B.; Kalita, B.; Kalita, K.; Deka, M.; Kataki, A.C.; Sharma, A.; Kotoky, J. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–Pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC Adv. 2017, 7, 1749–1758. [Google Scholar] [CrossRef] [Green Version]
- Flores, F.C.; De Lima, J.A.; Ribeiro, R.F.; Alves, S.H.; Rolim, C.M.B.; Beck, R.C.R.; Da Silva, C.B. Antifungal Activity of Nanocapsule Suspensions Containing Tea Tree Oil on the Growth of Trichophyton rubrum. Mycropatology 2013, 175, 281–286. [Google Scholar] [CrossRef]
- Napoli, E.M.; Curcuruto, G.; Ruberto, G. Screening of the essential oil composition of wild Sicilian thyme. Biochem. Syst. Ecol. 2010, 38, 816–822. [Google Scholar] [CrossRef]
- NIST, National Institute of Standard and Technology, Mass Spectral Library. 1998. Available online: http://chemdata.nist.gov (accessed on 6 December 2019).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatographic/Quadrupole Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mota, K.S.D.L.; Pereira, F.D.O.; De Oliveira, W.A.; Lima, I.O.; Lima, E.D.O. Antifungal Activity of Thymus vulgaris L. Essential Oil and Its Constituent Phytochemicals against Rhizopus oryzae: Interaction with Ergosterol. Molecules 2012, 17, 14418–14433. [Google Scholar] [CrossRef] [Green Version]
# a | RI Lit b | RI Exp c | Class or Compound d | O. vulgaree % f | T. capitatus % f |
---|---|---|---|---|---|
Monoterpene Hydrocarbons | 27.99 | 22.26 | |||
1 | 930 | 924 | α-Thujene | 0.07 | 0.61 |
2 | 939 | 931 | α-Pinene | 1.37 | 0.79 |
3 | 954 | 947 | Camphene | 0.56 | 0.16 |
4 | 979 | 974 | β-Pinene | 0.43 | N.D. |
7 | 991 | 986 | β-Myrcene | 0.66 | 1.29 |
9 | 1002 | 999 | Δ2-Carene | 0.06 | N.D. |
10 | 1003 | 1003 | α-Phellandrene | N.D. | 0.18 |
11 | 1004 | 1009 | p-Mentha-1(7),8-diene | N.D. | 0.07 |
12 | 1017 | 1013 | α-Terpinene | 0.36 | 1.03 |
13 | 1025 | 1027 | p-Cymene | 21.54 | 9.26 |
14 | 1029 | 1029 | Limonene | 0.78 | 0.46 |
16 | 1060 | 1058 | γ-Terpinene | 2.16 | 8.22 |
18 | 1089 | 1085 | Terpinolene | N.D. | 0.19 |
Oxygenated Monoterpenes | 68.66 | 72.88 | |||
15 | 1031 | 1031 | 1,8-Cineole | 0.84 | 0.13 |
17 | 1070 | 1067 | cis Sabinene hydrate | N.D. | 0.14 |
19 | 1097 | 1098 | Linalool | 4.26 | 0.86 |
20 | 1146 | 1144 | Camphor | 0.36 | N.D. |
21 | 1156 | 1158 | Isoborneol | 0.27 | N.D. |
22 | 1169 | 1167 | Borneol | 0.90 | 0.41 |
23 | 1177 | 1177 | Terpinen-4-ol | 0.35 | 0.59 |
24 | 1189 | 1190 | α-Terpineol | 0.61 | N.D. |
25 | 1208 | 1238 | trans-Piperitol | N.D. | 0.06 |
26 | 1245 | 1243 | Carvacrol methyl ether | 0.16 | 0.06 |
27 | 1253 | 1259 | Geraniol | N.D. | 0.08 |
28 | 1290 | 1303 | Thymol | 25.02 | 0.58 |
29 | 1299 | 1319 | Carvacrol | 35.95 | 69.91 |
31 | 1373 | 1364 | Carvacrol acetate | N.D. | 0.06 |
Sesquiterpenes | 1.94 | 3.19 | |||
32 | 1419 | 1425 | β-Caryophyllene | 1.70 | 2.56 |
33 | 1455 | 1459 | α-Humulene | 0.24 | 0.10 |
34 | 1506 | 1492 | β-Bisabolene | N.D. | 0.20 |
35 | 1507 | 1525 | (Z)-α-Bisabolene | N.D. | 0.16 |
36 | 1583 | 1569 | Caryophyllene oxide | N.D. | 0.23 |
Others | 0.47 | 0.22 | |||
5 | 979 | 976 | 1-Octen-3-ol | 0.21 | 0.16 |
6 | 984 | 982 | 3-Octanone | 0.10 | N.D. |
8 | 978 | 993 | 3-Octanol | 0.05 | N.D. |
30 | 1359 | 1361 | Eugenol | 0.11 | 0.06 |
TOTAL | 99.06 | 98.55 |
EO-NCs | Z-Average (nm) | PDI | ζ (mV) | EE% | LC% |
---|---|---|---|---|---|
TC-NCs | 198 ± 3 | 0.09 ± 0.02 | −11 ± 1 | 84 ± 6 | 52 ± 3 |
OV-NCs | 200 ± 3 | 0.05 ± 0.03 | −10 ± 2 | 80 ± 9 | 51 ± 4 |
Fungal Strain | Environment of Isolation | Source |
---|---|---|
Aspergillus fumigatus | Indoor air | IMB-SAS |
Aspergillus flavus | Indoor air | IMB-SAS |
Penicillium rubens | Indoor air | IMB-SAS |
Penicillium citrinum | Fruit | IMB-SAS |
Cladosporium aggregatocicatricatum | Wax seal | IMB-SAS |
Cladosporium herbarum | Wax seal | IMB-SAS |
Fusarium oxysporum | Cheese | IMB-SAS |
Geotrichum candidum | Cheese | IMB-SAS |
Mucor circinelloides | Cheese | IMB-SAS |
Exophiala xenobiotica | Soil | IMB-SAS |
Purpureocillium lilacinum | Stone | IMB-SAS |
Pleurotus eryngii | Tree | CCBAS |
Bjerkandera adusta | Tree | CCBAS |
Phanerochaete chrysosporium | Tree | CCBAS |
Fungal Strain | TC-NCs | OV-NCs | TC-EO | OV-EO | ||||
---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
Aspergillus fumigatus | 0.125 | 0.25 | 0.125 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 |
Aspergillus flavus | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Penicillium rubens | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Penicillium citrinum | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Cladosporium aggregatocicatricatum | 0.125 | 0.25 | 0.125 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 |
Cladosporium herbarum | 0.125 | 0.25 | 0.125 | 0.25 | 0.5 | 1 | 0.25 | 0.5 |
Fusarium oxysporum | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Geotrichum candidum | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Mucor circinelloides | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Exophiala xenobiotica | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Purpureocillium lilacinum | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Pleurotus eryngii | 0.125 | 0.25 | 0.125 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 |
Bjerkandera adusta | 0.25 | 0.5 | 0.125 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Phanerochaete chrysosporium | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 1 | 0.5 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapustová, M.; Granata, G.; Napoli, E.; Puškárová, A.; Bučková, M.; Pangallo, D.; Geraci, C. Nanoencapsulated Essential Oils with Enhanced Antifungal Activity for Potential Application on Agri-Food, Material and Environmental Fields. Antibiotics 2021, 10, 31. https://doi.org/10.3390/antibiotics10010031
Kapustová M, Granata G, Napoli E, Puškárová A, Bučková M, Pangallo D, Geraci C. Nanoencapsulated Essential Oils with Enhanced Antifungal Activity for Potential Application on Agri-Food, Material and Environmental Fields. Antibiotics. 2021; 10(1):31. https://doi.org/10.3390/antibiotics10010031
Chicago/Turabian StyleKapustová, Magdaléna, Giuseppe Granata, Edoardo Napoli, Andrea Puškárová, Mária Bučková, Domenico Pangallo, and Corrada Geraci. 2021. "Nanoencapsulated Essential Oils with Enhanced Antifungal Activity for Potential Application on Agri-Food, Material and Environmental Fields" Antibiotics 10, no. 1: 31. https://doi.org/10.3390/antibiotics10010031
APA StyleKapustová, M., Granata, G., Napoli, E., Puškárová, A., Bučková, M., Pangallo, D., & Geraci, C. (2021). Nanoencapsulated Essential Oils with Enhanced Antifungal Activity for Potential Application on Agri-Food, Material and Environmental Fields. Antibiotics, 10(1), 31. https://doi.org/10.3390/antibiotics10010031