Prevalence and Characterization of Coagulase Positive Staphylococci from Food Products and Human Specimens in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Area
2.3. Collection of Samples and Preparation
2.4. Phenotypic Isolation and Identification of Staphylococcus aureus
2.5. Antibiogram Profile of Staphylococcus aureus Isolates
2.6. Molecular Characterization of Staphylococcus aureus Isolates
2.7. Sequencing and Analysis of Staphylococcus aureus mecA Gene
2.8. Statistical Analysis
3. Results
3.1. Prevalence of Coagulase-positive Staphylococci Isolated from Food Products and Human Samples
3.2. Biochemical Activity and Virulence Factors of the Coagulase-positive Staphylococci (CPS) Isolates
3.3. Antimicrobial Resistance of the Coagulase-positive Staphylococci (CPS) Isolates
3.4. Multidrug Resistance (MDR) Profiles of Methicillin-Resistant Staphylococcus aureus (MRSA) Strains from Animal Food Products and Human Samples
3.5. Molecular Characterization of the Staphylococcus aureus Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mousa, W.S.; Abdeen, E.; Hussein, H.; Hadad, G. Prevalence and multiplex PCR for enterotoxin genes of Staphylococcus aureus isolates from subclinical mastitis and Kareish cheese. J. Anc. Dis. Prev. Remedies 2017, 5. [Google Scholar] [CrossRef]
- Velázquez-Ordoñez, V.; Valladares-Carranza, B.; Tenorio-Borroto, E.; Talavera-Rojas, M.; Antonio Varela-Guerrero, J.; Acosta-Dibarrat, J.; Puigvert, F.; Grille, L.; González Revello, Á.; Pareja, L. Microbial contamination in milk quality and health risk of the consumers of raw milk and dairy products. In Nutrition in xHealth and Disease—Our Challenges Now and Forthcoming Time; Mózsik, G., Figler, M., Eds.; IntechOpen: London, UK, 2019; ISBN1 978-1-78984-007-0. ISBN2 978-1-78984-008-7. [Google Scholar]
- Paterson, G.K.; Morgan, F.J.E.; Harrison, E.M.; Peacock, S.J.; Parkhill, J.; Zadoks, R.N.; Holmes, M.A. Prevalence and properties of mecc methicillin-resistant Staphylococcus aureus (mrsa) in bovine bulk tank milk in great britain. J. Antimicrob. Chemother. 2014, 69, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, E.E.; Mousa, W.S.; Abdel Salam, S.Y.; Al-Maary, K.S.; Mubarak, A.S.; Moussa, I.M.; Hemeg, H.A.; Almuzaini, A.M.; Alajaji, A.I.; Alsubki, R.A.; et al. Antibiogram and phylogenetic diversity of enterotoxigenic Staphylococcus aureus strains from milk products and public health implications. Saudi J. Biol. Sci. 2020, 27, 1968–1974. [Google Scholar] [CrossRef] [PubMed]
- Akabanda, F.; Hlortsi, E.H.; Owusu-Kwarteng, J. Food safety knowledge, attitudes and practices of institutional food-handlers in Ghana. BMC Public Health 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Kalorey, D.R.; Shanmugam, Y.; Kurkure, N.V.; Chousalkar, K.K.; Barbuddhe, S.B. PCR-based detection of genes encoding virulence determinants in Staphylococcus aureus from bovine subclinical mastitis cases. J. Vet. Sci. 2007, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Zecconi, A.; Scali, F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol. Lett. 2013, 150, 12–22. [Google Scholar] [CrossRef]
- Dallal, M.M.S.; Khoramizadeh, M.R.; Amiri, S.A.; Yaraghi, A.A.S.; Fard, R.M.N. Coagulase gene polymorphism of Staphylococcus aureus isolates: A study on dairy food products and other foods in Tehran, Iran. Food Sci. Hum. Wellness 2016, 5, 186–190. [Google Scholar] [CrossRef] [Green Version]
- van Cleef, B.A.G.L.; Monnet, D.L.; Voss, A.; Krziwanek, K.; Allerberger, F.; Struelens, M.; Zemlickova, H.; Skov, R.L.; Vuopio-Varkila, J.; Cuny, C.; et al. Livestock-associated methicillin-resistant staphylococcus aureu s in humans, Europe. Emerg. Infect. Dis. 2011, 17, 502–505. [Google Scholar] [CrossRef]
- Thapaliya, D.; Forshey, B.M.; Kadariya, J.; Quick, M.K.; Farina, S.; O’ Brien, A.; Nair, R.; Nworie, A.; Hanson, B.; Kates, A.; et al. Prevalence and molecular characterization of Staphylococcus aureus in commercially available meat over a one-year period in Iowa, USA. Food Microbiol. 2017, 65, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Maksoud, M.; El-Shokry, M.; Ismail, G.; Hafez, S.; El-Kholy, A.; Attia, E.; Talaat, M. Methicillin-resistant Staphylococcus aureus recovered from healthcare- and community-associated infections in Egypt. Int. J. Bacteriol. 2016, 2016, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, K.; Wang, X.; Donabedian, S.; Zervos, M.; da Rocha, L.; Zhang, Y. Methicillin-resistant Staphylococcus aureus in retail meat, Detroit, Michigan, USA. Emerg. Infect. Dis. 2011, 17, 1135–1137. [Google Scholar] [CrossRef] [PubMed]
- Jans, C.; Merz, A.; Johler, S.; Younan, M.; Tanner, S.A.; Kaindi, D.W.M.; Wangoh, J.; Bonfoh, B.; Meile, L.; Tasara, T. East and west African milk products are reservoirs for human and livestock-associated Staphylococcus aureus. Food Microbiol. 2017, 65, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, U.; Sulaiman, S.A.S. Prevalence, trend and antimicrobial susceptibility of Methicillin Resistant Staphylococcus aureus in Nigeria: A systematic review. J. Infect. Public Health 2018, 11, 763–770. [Google Scholar] [CrossRef]
- Okorie-Kanu, O.J.; Anyanwu, M.U.; Ezenduka, E.V.; Mgbeahuruike, A.C.; Thapaliya, D.; Gerbig, G.; Ugwuijem, E.E.; Okorie-Kanu, C.O.; Agbowo, P.; Olorunleke, S.; et al. Molecular epidemiology, genetic diversity and antimicrobial resistance of Staphylococcus aureus isolated from chicken and pig carcasses, and carcass handlers. PLoS ONE 2020, 15. [Google Scholar] [CrossRef]
- Arsic, B.; Zhu, Y.; Heinrichs, D.E.; McGavin, M.J. Induction of the Staphylococcal proteolytic cascade by antimicrobial fatty acids in community acquired methicillin resistant Staphylococcus aureus. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Maes, N.; Magdalena, J.; Rottiers, S.; De Gheldre, Y.; Struelens, M.J. Evaluation of a triplex PCR assay to discriminate Staphylococcus aureus from coagulase-negative staphylococci and determine methicillin resistance from blood cultures. J. Clin. Microbiol. 2002, 40, 1514–1517. [Google Scholar] [CrossRef] [Green Version]
- García-Álvarez, L.; Holden, M.T.G.; Lindsay, H.; Webb, C.R.; Brown, D.F.J.; Curran, M.D.; Walpole, E.; Brooks, K.; Pickard, D.J.; Teale, C.; et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. Lancet Infect. Dis. 2011, 11, 595–603. [Google Scholar] [CrossRef] [Green Version]
- CAPMAS. The Result of Fifth Economic Census 2017–2018 the Total Egypt to Economic Activity and Governorates; CAPMAS: Cairo, Egypt, 2018. [Google Scholar]
- APHA. Standard Methods for the Examination of Dairy Products, 15th ed.; Americana Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- Rice, M.; Turner-Henson, A.; Park, N.-J.; Azuero, A.; Amiri, A.; Feeley, C.A.; Johnson, A.; Lam, T.; Huntington-Moskos, L.; Rodriguez, J.; et al. Child and maternal factors that influence child blood pressure in preschool children: An exploratory study. Appl. Nurs. Res. 2016, 31, 117–120. [Google Scholar] [CrossRef]
- Murray, D.P.R.; Baron, E.J.; Jorgensen, J.H. Manual of Clinical Microbiology, 8th ed.; American Society for Microbiology: Washington, DC, USA, 2003. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Tucson, AZ, USA, 2017; ISBN 978-1-56238-804-1. [Google Scholar]
- Azimian, A.; Havaei, S.A.; Fazeli, H.; Naderi, M.; Ghazvini, K.; Samiee, S.M.; Soleimani, M.; Peerayeh, S.N. Genetic characterization of a vancomycin-resistant Staphylococcus aureus isolate from the respiratory tract of a patient in a University Hospital in Northeastern Iran. J. Clin. Microbiol. 2012, 50, 3581–3585. [Google Scholar] [CrossRef] [Green Version]
- Aarestrup, F.M.; Dangler, C.A.; Sordillo, L.M. Prevalence of coagulase gene polymorphism in Staphylococcus aureus Isolates causing bovine mastitis. Can. J. Vet. Res. 1995, 59, 124–128. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Higgins, D.G.; Sharp, P.M. Fast and sensitive multiple sequence alignments on a microcomputer. Bioinformatics 1989, 5, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 2004, 5, 150–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougal, L.K.; Steward, C.D.; Killgore, G.E.; Chaitram, J.M.; McAllister, S.K.; Tenover, F.C. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: Establishing a national database. J. Clin. Microbiol. 2003, 41, 5113–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Larsen, J.; Kjeldgaard, J.; Andersen, P.S.; Skov, R.; Ingmer, H. Methicillin-resistant and -susceptible Staphylococcus aureus from retail meat in Denmark. Int. J. Food Microbiol. 2017, 249, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Huang, J.; Wu, Q.; Zhang, J.; Zhang, F.; Yang, X.; Wu, H.; Zeng, H.; Chen, M.; Ding, Y.; et al. Staphylococcus aureusisolated from retail meat and meat products in China: Incidence, antibiotic resistance and genetic diversity. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Mohammed, G.M.O.; Hafez, T.A. Detection of mecA gene in methicillin-resistance Staphylococcus aureus (MRSA) strains isolated from beef meat using polymerase chain reaction. Assiut Vet. Med. J. 2016, 62, 64–70. [Google Scholar]
- Ge, B.; Mukherjee, S.; Hsu, C.-H.; Davis, J.A.; Tran, T.T.T.; Yang, Q.; Abbott, J.W.; Ayers, S.L.; Young, S.R.; Crarey, E.T.; et al. MRSA and multidrug-resistant Staphylococcus aureus in U.S. retail meats, 2010–2011. Food Microbiol. 2017, 62, 289–297. [Google Scholar] [CrossRef]
- El-Malt, L.M. Occurrence of enterotoxigenic staphylococcus aureus in some cheese varieties in Aswan city —Upper Egypt. Assiut Vet. Med. J. 2013, 59, 62–70. [Google Scholar]
- Salem, H.; El-Attar, L.; Omran, E. Microbiological Assessment of some parameters of Kariesh cheese sold by supermarkets and street vendors in Alexandria, Egypt. J. High Inst. Public Health 2016, 46, 77–85. [Google Scholar] [CrossRef]
- Elmaghraby, M.; Abdeen, E.; AbouElros, N.; Bagory, A. Molecular identification of virulence genes of Staphylococcus aureus isolated from milk products. Alex. J. Vet. Sci. 2018, 59, 57. [Google Scholar] [CrossRef]
- Metersky, M.L.; Aksamit, T.R.; Barker, A.; Choate, R.; Daley, C.L.; Daniels, L.A.; DiMango, A.; Eden, E.; Griffith, D.; Johnson, M.; et al. The prevalence and significance of Staphylococcus aureus in patients with non-cystic fibrosis bronchiectasis. Ann. Am. Thorac. Soc. 2018, 15, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mahmoud, H.; Sameh, A.; Zaky, S.; Elsayed, A. Antibiotic resistance profile of coagulase positive Staphylococcal infection in dairy buffaloe. Worlds Vet. J. 2015, 6, 46. [Google Scholar] [CrossRef]
- Abdel All, A.; Bashandy, M.M.; Yasin, M.H.; Ibrahim, A.K. Assessment of conventional and molecularfeatures of Staphylococcus aureus isolated from bovine milk samples and contact dairy workers. Glob. Vet. 2010, 4, 168–175. [Google Scholar]
- Abdeen E., E.; Walid, M.; Hussien, H.; Roshdy, S. PCR for detection of virulence and antibiotic resistance genes of coagulase positive staphylococcus aureus from clinical mastitis in Egypt. Int. J. Basic Appl. Sci. 2015, 4, 315. [Google Scholar] [CrossRef] [Green Version]
- Javid, F.; Taku, A.; Bhat, M.A.; Badroo, G.A.; Mudasir, M.; Sofi, T.A. Molecular typing of Staphylococcus aureus based on coagulase gene. Vet. World 2018, 11, 423–430. [Google Scholar] [CrossRef]
- McCallum, N.; Berger-Bächi, B.; Senn, M.M. Regulation of antibiotic resistance in Staphylococcus aureus. Int. J. Med. Microbiol. 2010, 300, 118–129. [Google Scholar] [CrossRef]
- Basanisi, M.G.; La Bella, G.; Nobili, G.; Franconieri, I.; La Salandra, G. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol. 2017, 62, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Sun, H.; Yao, K.; Cai, J.; Ren, Y.; Chi, Y. The prevalence, antibiotic resistance and biofilm formation of Staphylococcus aureus in bulk ready- to-eat foods. Biomolecules 2019, 9, 524. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, P.; Papadopoulos, T.; Angelidis, A.S.; Kotzamanidis, C.; Zdragas, A.; Papa, A.; Filioussis, G.; Sergelidis, D. Prevalence, antimicrobial susceptibility and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated from dairy industries in north-central and north-eastern Greece. Int. J. Food Microbiol. 2019, 291, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-K.; Nam, H.-M.; Jang, G.-C.; Lee, H.-S.; Jung, S.-C.; Kim, T.-S. Transmission and persistence of methicillin-resistant Staphylococcus aureus in milk, environment, and workers in dairy cattle farms. Foodborne Pathog. Dis. 2013, 10, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Al-Abbas, M.J.A. Antimicrobial susceptibility of Enterococcus faecalis and a novel Planomicrobium isolate of bacterimia. Int. J. Med. Med. Sci. 2012, 4. [Google Scholar] [CrossRef]
- Ibadin, E.E.; Enabulele, I.O.; Muinah, F. Prevalence of mecA gene among staphylococci from clinical samples of a tertiary hospital in Benin City, Nigeria. Afr. Health Sci. 2018, 17, 1000. [Google Scholar] [CrossRef] [PubMed]
- El Seedy, F.R.; Salam, H.S.H.; Aa, S.; Khairy, E.A.; Omara, S.T. Phenotypic and genotypic characterization of methicillin resistant Staphylococcus aureus. J. Vet. Med. Res. 2017, 24, 186–193. [Google Scholar] [CrossRef]
- Awad, A.; Ramadan, H.; Nasr, S.; Ateya, A.; Atwa, S. Genetic characterization, antimicrobial resistance patterns and virulence determinants of Staphylococcus aureus isolated form bovine mastitis. Pakistan J. Biol. Sci. 2017, 20, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Haran, K.P.; Godden, S.M.; Boxrud, D.; Jawahir, S.; Bender, J.B.; Sreevatsan, S. Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from Minnesota dairy farms. J. Clin. Microbiol. 2012, 50, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Peng, H.; Barton, M.D. Partial nucleotide sequencing of the mecA genes of Staphylococcus aureus isolates from cats and dogs. J. Clin. Microbiol. 2006, 44, 413–416. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.C.C.; Guimarães, F.F.; Manzi, M.P.; Júnior, A.F.; Gómez-Sanz, E.; Gómez, P.; Langoni, H.; Rall, V.L.M.; Torres, C. Methicillin-resistant Staphylococcus aureus of lineage ST398 as cause of mastitis in cows. Lett. Appl. Microbiol. 2014, 59, 665–669. [Google Scholar] [CrossRef]
- Katayama, Y.; Ito, T.; Hiramatsu, K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2000, 44, 1549–1555. [Google Scholar] [CrossRef] [Green Version]
- Velasco, V.; Buyukcangaz, E.; Sherwood, J.S.; Stepan, R.M.; Koslofsky, R.J.; Logue, C.M. Characterization of Staphylococcus aureus from humans and a comparison with isolates of animal origin in North Dakota, United States. PLoS ONE 2015, 10, e0140497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buyukcangaz, E.; Velasco, V.; Sherwood, J.S.; Stepan, R.M.; Koslofsky, R.J.; Logue, C.M. Molecular typing of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) isolated from animals and retail meat in North Dakota, United States. Foodborne Pathog. Dis. 2013, 10, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.M.L.; Lloyd, D.H.; Lindsay, J.A. Staphylococcus aureus host specificity: Comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 2008, 154, 1949–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, A.J.; Lindsay, J.A.; Loeffler, A. Are all meticillin-resistant Staphylococcus aureus (MRSA) equal in all hosts? Epidemiological and genetic comparison between animal and human MRSA: Evolution of meticillin-resistant Staphylococcus aureus. Vet. Dermatol. 2012, 23, 267-e54. [Google Scholar] [CrossRef]
- Neamah, A.J.; Ayyez, H.N.; Klaif, S.F.; Khudhair, Y.I.; Hussain, M.H. Molecular and phylogenetic study of Staphylococcus aureus isolated from human and cattle of Al-Qadisiyah Governorate, Iraq. Vet. World 2019, 12, 1378–1382. [Google Scholar] [CrossRef] [Green Version]
Human Swabs (n = 50) | Karish Cheese (n = 50) | Beef Luncheon (n = 50) | Minced Meat (n = 50) | ||||
---|---|---|---|---|---|---|---|
CPS | CPS | CPS | CPS | ||||
% | No. | % | No. | % | No. | % | No. |
38 | 19 | 76 | 38 | 84 | 42 | 48 | 24 |
Antibiotics | Antimicrobial Classes | Resistant | Intermediate | Sensitive | |||
---|---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | ||
Penicillin (P) 1 IU | β-lactams | 68 | 97.1 | 0 | 0 | 2 | 2.9 |
Amoxicillin (AX) 25 µg | β-lactams | 64 | 91.4 | 0 | 0 | 6 | 8.6 |
Cefoxitin (FOX) 30 µg | β-lactams | 60 | 85.7 | 0 | 0 | 10 | 14.3 |
Vancomycin (VA) 30 µg | Glycopeptides | 10 | 14.3 | 1 | 1.4 | 59 | 84.3 |
Gentamicin (CN) 10 µg | Aminoglycosides | 30 | 42.8 | 9 | 12.9 | 31 | 44.3 |
Erythromycin (E) 15 µg | Macrolides | 37 | 52.8 | 30 | 42.9 | 3 | 4.3 |
Tetracycline (TE) 30 µg | Tetracyclines | 40 | 57.2 | 8 | 11.4 | 22 | 31.4 |
Ciprofloxacin (CIP) 5 µg | Fluoroquinolones | 23 | 32.9 | 17 | 24.3 | 30 | 42.8 |
Norfloxacin (NOR) 10 µg | Fluoroquinolones | 17 | 24.3 | 14 | 20 | 39 | 55.7 |
Trimethoprim-Sulfamethoxazole (SXT) 1.25/23.75 µg | Sulfonamides | 29 | 41.4 | 6 | 8.6 | 35 | 50 |
Chloramphenicol (C) 30 µg | Chloramphenicol | 18 | 25.7 | 3 | 4.3 | 49 | 70 |
Cephradine (CE) 30 µg | β-lactams | 58 | 82.9 | 0 | 0 | 12 | 17.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdeen, E.E.; Mousa, W.S.; Abdelsalam, S.Y.; Heikal, H.S.; Shawish, R.R.; Nooruzzaman, M.; Soliman, M.M.; Batiha, G.E.; Hamad, A.; Abdeen, A. Prevalence and Characterization of Coagulase Positive Staphylococci from Food Products and Human Specimens in Egypt. Antibiotics 2021, 10, 75. https://doi.org/10.3390/antibiotics10010075
Abdeen EE, Mousa WS, Abdelsalam SY, Heikal HS, Shawish RR, Nooruzzaman M, Soliman MM, Batiha GE, Hamad A, Abdeen A. Prevalence and Characterization of Coagulase Positive Staphylococci from Food Products and Human Specimens in Egypt. Antibiotics. 2021; 10(1):75. https://doi.org/10.3390/antibiotics10010075
Chicago/Turabian StyleAbdeen, Eman E., Walid S. Mousa, Sarah Y. Abdelsalam, Hanim S. Heikal, Reyad R. Shawish, Mohammed Nooruzzaman, Mohamed M. Soliman, Gaber E. Batiha, Ahmed Hamad, and Ahmed Abdeen. 2021. "Prevalence and Characterization of Coagulase Positive Staphylococci from Food Products and Human Specimens in Egypt" Antibiotics 10, no. 1: 75. https://doi.org/10.3390/antibiotics10010075
APA StyleAbdeen, E. E., Mousa, W. S., Abdelsalam, S. Y., Heikal, H. S., Shawish, R. R., Nooruzzaman, M., Soliman, M. M., Batiha, G. E., Hamad, A., & Abdeen, A. (2021). Prevalence and Characterization of Coagulase Positive Staphylococci from Food Products and Human Specimens in Egypt. Antibiotics, 10(1), 75. https://doi.org/10.3390/antibiotics10010075