Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Area and Sampling
4.2. Escherichia coli Isolation
4.3. Identification of Colonies by MALDI-TOF-MS
4.4. Genes Encoding VF Detection by Polymerase Chain Reaction
4.5. Antimicrobial Susceptibility Testing
4.6. Phenotypic Confirmation of ESBL Production
4.7. ESBL Gene Identification by PCR
4.8. Putative Enteroaggregative Gene Detection by PCR
4.9. Biofilm Formation Assay
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Das, Q.; Islam, R.; Marcone, M.; Warriner, K.; Diarra, M. Potential of berry extracts to control foodborne pathogens. Food Control 2017, 73, 650–662. [Google Scholar] [CrossRef]
- Gordon, D.M.; Cowling, A. The distribution and genetic structure of Escherichia coli in Australian vertebrates: Host and geographic effects. Microbiology 2003, 149, 3575–3586. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.M.; Stegger, M.; Aziz, M.; Johnson, T.J.; Waits, K.; Nordstrom, L.; Gauld, L.; Weaver, B.; Rolland, D.; Statham, S.; et al. Escherichia coli ST131-H22 as a Foodborne Uropathogen. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, K.M.; Kappell, A.D.; Elhadidy, M.; ElMougy, F.; El-Ghany, W.A.A.; Orabi, A.; Mubarak, A.S.; Dawoud, T.M.; Hemeg, H.A.; Moussa, I.M.I.; et al. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Sci. Rep. 2018, 8, 5859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, S.; Silva, V.; Dapkevicius, M.L.E.; Canica, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum beta-lactamase (ESBL) Production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, M.S. Escherichia coli Virulence Mechanisms of a Versatile Pathogen; Academic press: Baltimore, MD, USA; Elsevier Science: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Johnson, J.R.; Porter, S.B.; Zhanel, G.; Kuskowski, M.A.; Denamur, E. Virulence of Escherichia coli clinical isolates in a murine sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence genotype. Infect. Immun. 2012, 80, 1554–1562. [Google Scholar] [CrossRef] [Green Version]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Mohamed, J.A.; Huang, D.B.; Jiang, Z.D.; DuPont, H.L.; Nataro, J.P.; Belkind-Gerson, J.; Okhuysen, P.C. Association of putative enteroaggregative Escherichia coli virulence genes and biofilm production in isolates from travelers to developing countries. J. Clin. Microbiol. 2007, 45, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.; Yin, H.B.; Bauchan, G.; Mowery, J. Inhibition of Escherichia coli O157:H7 and Salmonella enterica virulence factors by benzyl isothiocyanate. Food Microbiol. 2020, 86, 103303. [Google Scholar] [CrossRef]
- Hacker, J.; Kaper, J.B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 2000, 54, 641–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huddleston, J.R. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infect. Drug Resist. 2014, 7, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Arabi, S.; Jafarpour, M.; Mirinargesi, M.; Asl, S.B.; Naghshbandi, R.; Shabanpour, M. Molecular characterization of avian pathogenic Escherichia coli in broilers bred in northern Iran. Glob. Vet. 2013, 10, 382–386. [Google Scholar]
- Dissanayake, D.R.; Octavia, S.; Lan, R. Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka. Vet. Microbiol. 2014, 168, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, B.A.; Finton, M.D.; Porcellato, D.; Brandal, L.T. High frequency of hybrid Escherichia coli strains with combined Intestinal Pathogenic Escherichia coli (IPEC) and Extraintestinal Pathogenic Escherichia coli (ExPEC) virulence factors isolated from human faecal samples. BMC Infect. Dis. 2018, 18, 544. [Google Scholar] [CrossRef] [PubMed]
- Maloo, A.; Fulke, A.B.; Khade, K.; Sharma, A.; Sukumaran, S. Virulence gene and antibiogram profile as markers of pathogenic Escherichia coli in tropical beaches of North Western India: Implications for water quality and human health. Estuar. Coast. Shelf Sci. 2018, 208, 118–130. [Google Scholar] [CrossRef]
- Beninati, C.; Reich, F.; Muscolino, D.; Giarratana, F.; Panebianco, A.; Klein, G.; Atanassova, V. ESBL-Producing Bacteria and MRSA Isolated from Poultry and Turkey Products Imported from Italy. Czech J. Food Sci. 2015, 33, 2015–2097. [Google Scholar] [CrossRef] [Green Version]
- Marotta, S.M.; Giarratana, F.; Calvagna, A.; Ziino, G.; Giuffrida, A.; Panebianco, A. Study on microbial communities in domestic kitchen sponges: Evidence of Cronobacter sakazakii and Extended Spectrum Beta Lactamase (ESBL) producing bacteria. Ital. J. Food Saf. 2019, 7, 7672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Overdevest, I.; Willemsen, I.; Rijnsburger, M.; Eustace, A.; Xu, L.; Hawkey, P.; Heck, M.; Savelkoul, P.; Vandenbroucke-Grauls, C.; van der Zwaluw, K.; et al. Extended-spectrum beta-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg. Infect. Dis. 2011, 17, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- van den Bogaard, A.E.; Stobberingh, E.E. Epidemiology of resistance to antibiotics. Links between animals and humans. Int. J. Antimicrob. Agents 2000, 14, 327–335. [Google Scholar] [CrossRef]
- Arias, C.A.; Murray, B.E. Antibiotic-resistant bugs in the 21st century—A clinical super-challenge. N. Engl. J. Med. 2009, 360, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J.D.D.; Laupland, K.B. Extended-spectrum β-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Chong, Y.; Ito, Y.; Kamimura, T. Genetic evolution and clinical impact in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2011, 11, 1499–1504. [Google Scholar] [CrossRef]
- Sanjit Singh, A.; Lekshmi, M.; Prakasan, S.; Nayak, B.B.; Kumar, S. Multiple Antibiotic-Resistant, Extended Spectrum-beta-Lactamase (ESBL)-Producing Enterobacteria in Fresh Seafood. Microorganisms 2017, 5, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, M.; Benoliel, C.; Drider, D.; Dhulster, P.; Chihib, N.E. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch. Microbiol. 2014, 196, 453–472. [Google Scholar] [CrossRef] [PubMed]
- Colagiorgi, A.; Bruini, I.; Di Ciccio, P.A.; Zanardi, E.; Ghidini, S.; Ianieri, A. Listeria monocytogenes Biofilms in the Wonderland of Food Industry. Pathogens 2017, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Galie, S.; Garcia-Gutierrez, C.; Miguelez, E.M.; Villar, C.J.; Lombo, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef]
- Mellata, M.; Johnson, J.R.; Curtiss, R., 3rd. Escherichia coli isolates from commercial chicken meat and eggs cause sepsis, meningitis and urinary tract infection in rodent models of human infections. Zoonoses Public Health 2018, 65, 103–113. [Google Scholar] [CrossRef]
- Stromberg, Z.R.; Johnson, J.R.; Fairbrother, J.M.; Kilbourne, J.; Van Goor, A.; Curtiss, R.R.; Mellata, M. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PLoS ONE 2017, 12, e0180599. [Google Scholar] [CrossRef] [Green Version]
- Rouger, A.; Tresse, O.; Zagorec, M. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms 2017, 5, 50. [Google Scholar] [CrossRef]
- Alloui, N.; Bennoune, O. Poultry production in Algeria: Current situation and future prospects. Worlds Poult. Sci. J. 2013, 69, 613–620. [Google Scholar] [CrossRef]
- Baliere, C.; Rince, A.; Delannoy, S.; Fach, P.; Gourmelon, M. Molecular Profiling of Shiga Toxin-Producing Escherichia coli and Enteropathogenic E. coli Strains Isolated from French Coastal Environments. Appl. Environ. Microbiol. 2016, 82, 3913–3927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhao, G.; Gao, Y.; Xu, H.; Mohamed, L.; Zhao, J.; Gai, W.; Zou, M.; Cui, Z.; Yan, S.; et al. Virulence and Antimicrobial Characteristics of Escherichia coli Isolated from Diseased Chickens in China and Algeria. J. Adv. Agric. 2019, 10, 1821–1833. [Google Scholar] [CrossRef]
- Mellata, M.; Bakour, R.; Jacquemin, E.; Mainil, J.G. Genotypic and phenotypic characterization of potential virulence of intestinal avian Escherichia coli strains isolated in Algeria. Avian Dis. 2001, 45, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Doane, C.A.; Pangloli, P.; Richards, H.A.; Mount, J.R.; Golden, D.A.; Draughon, F.A. Occurrence of Escherichia coli O157:H7 in diverse farm environments. J. Food Prot. 2007, 70, 6–10. [Google Scholar] [CrossRef]
- Ferens, W.A.; Hovde, C.J. Escherichia coli O157:H7: Animal reservoir and sources of human infection. Foodborne Pathog. Dis. 2011, 8, 465–487. [Google Scholar] [CrossRef] [Green Version]
- Koochakzadeh, A.; Badouei, M.A.; Salehi, T.Z.; Aghasharif, S.; Soltani, M.; Ehsan, M.R. Prevalence of Shiga Toxin-Producing and Enteropathogenic Escherichia coli in Wild and Pet Birds in Iran. Braz. J. Poult. Sci. 2015, 14, 5. [Google Scholar] [CrossRef]
- Persad, A.K.; LeJeune, J.T. Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr. 2014, 2, EHEC-0027-2014. [Google Scholar] [CrossRef]
- Poole, T.; Sheffield, C. Use and misuse of antimicrobial drugs in poultry and livestock: Mechanisms of antimicrobial resistance. Pak. Vet. J. 2013, 33, 266–271. [Google Scholar]
- Johnson, T.J.; Logue, C.M.; Johnson, J.R.; Kuskowski, M.A.; Sherwood, J.S.; Barnes, H.J.; DebRoy, C.; Wannemuehler, Y.M.; Obata-Yasuoka, M.; Spanjaard, L.; et al. Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog. Dis. 2012, 9, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Mellata, M. Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef] [Green Version]
- Castanon, J.I. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef]
- Agersø, Y.; Jensen, J.D.; Hasman, H.; Pedersen, K. Spread of extended spectrum cephalosporinase-producing Escherichia coli clones and plasmids from parent animals to broilers and to broiler meat in a production without use of cephalosporins. Foodborne Pathog. Dis. 2014, 11, 740–746. [Google Scholar] [CrossRef] [Green Version]
- Bondt, N.; Puister-Jansen, L.F. MARAN 2004: Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2004; CIDC-Lelystad, LEI Wageningen UR, VWA, RIVM: Lelystad, The Netherlands, 2005.
- Boutaiba Benklaouz, M.; Aggad, H.; Benameur, Q. Resistance to multiple first-line antibiotics among Escherichia coli from poultry in Western Algeria. Vet. World 2020, 13, 290–295. [Google Scholar] [CrossRef]
- Hussain, A.; Ranjan, A.; Nandanwar, N.; Babbar, A.; Jadhav, S.; Ahmed, N. Genotypic and phenotypic profiles of Escherichia coli isolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India. Antimicrob. Agents Chemother. 2014, 58, 7240–7249. [Google Scholar] [CrossRef] [Green Version]
- Nandanwar, N.; Hussain, A.; Ranjan, A.; Jadhav, S.; Ahmed, N. Population structure and molecular epidemiology of human clinical multi-drug resistant (MDR) Escherichia coli strains from Pune, India. Int. J. Infect. Dis. 2016, 45, 343–344. [Google Scholar] [CrossRef] [Green Version]
- Shaik, S.; Kumar, N.; Lankapalli, A.K.; Tiwari, S.K.; Baddam, R.; Ahmed, N. Contig-Layout-Authenticator (CLA): A Combinatorial Approach to Ordering and Scaffolding of Bacterial Contigs for Comparative Genomics and Molecular Epidemiology. PLoS ONE 2016, 11, e0155459. [Google Scholar] [CrossRef] [PubMed]
- Dierikx, C.M.; van der Goot, J.A.; Smith, H.E.; Kant, A.; Mevius, D.J. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: A descriptive study. PLoS ONE 2013, 8, e79005. [Google Scholar] [CrossRef]
- Mo, S.S.; Slettemeås, J.S.; Berg, E.S.; Norström, M.; Sunde, M. Plasmid and Host Strain Characteristics of Escherichia coli Resistant to Extended-Spectrum Cephalosporins in the Norwegian Broiler Production. PLoS ONE 2016, 11, e0154019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmahdi, M.; Bakour, S.; Al Bayssari, C.; Touati, A.; Rolain, J.M. Molecular characterisation of extended-spectrum beta-lactamase- and plasmid AmpC-producing Escherichia coli strains isolated from broilers in Bejaia, Algeria. J. Glob. Antimicrob. Resist. 2016, 6, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Benameur, Q.; Tali-Maamar, H.; Assaous, F.; Guettou, B.; Rahal, K.; Ben-Mahdi, M.H. Detection of multidrug resistant Escherichia coli in the ovaries of healthy broiler breeders with emphasis on extended-spectrum beta-lactamases producers. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 163–167. [Google Scholar] [CrossRef]
- Meguenni, N.; Le Devendec, L.; Jouy, E.; Le Corvec, M.; Bounar-Kechih, S.; Rabah Bakour, D.; Kempf, I. First Description of an Extended-Spectrum Cephalosporin- and Fluoroquinolone- Resistant Avian Pathogenic Escherichia coli Clone in Algeria. Avian Dis. 2015, 59, 20–23. [Google Scholar] [CrossRef]
- Tekiner, I.H.; Ozpinar, H. Occurrence and characteristics of extended spectrum beta-lactamases-producing Enterobacteriaceae from foods of animal origin. Braz. J. Microbiol. 2016, 47, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Sah, R.S.P.; Dhungel, B.; Yadav, B.K.; Adhikari, N.; Thapa Shrestha, U.; Lekhak, B.; Banjara, M.R.; Adhikari, B.; Ghimire, P.; Rijal, K.R. Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. Diseases 2021, 9, 15. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, Y.-J.; Yu, J.K.; Jung, S.; Kim, Y.; Jeong, S.H.; Arakawa, Y. Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J. Antimicrob. Chemother. 2012, 67, 2843–2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, P.A. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef] [Green Version]
- Habeeb, M.A.; Haque, A.; Iversen, A.; Giske, C.G. Occurrence of virulence genes, 16S rRNA methylases, and plasmid-mediated quinolone resistance genes in CTX-M-producing Escherichia coli from Pakistan. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 399–409. [Google Scholar] [CrossRef]
- Projahn, M.; Daehre, K.; Semmler, T.; Guenther, S.; Roesler, U.; Friese, A. Environmental adaptation and vertical dissemination of ESBL-/pAmpC-producing Escherichia coli in an integrated broiler production chain in the absence of an antibiotic treatment. Microb. Biotechnol. 2018, 11, 1017–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R. Biofilms and Meat Safety: A Mini-Review. J. Food Prot. 2019, 82, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Reviews. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Reviews. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef]
- Gallant, C.V.; Daniels, C.; Leung, J.M.; Ghosh, A.S.; Young, K.D.; Kotra, L.P.; Burrows, L.L. Common beta-lactamases inhibit bacterial biofilm formation. Mol. Microbiol. 2005, 58, 1012–1024. [Google Scholar] [CrossRef] [Green Version]
- Sarantuya, J.; Nishi, J.; Wakimoto, N.; Erdene, S.; Nataro, J.P.; Sheikh, J.; Iwashita, M.; Manago, K.; Tokuda, K.; Yoshinaga, M.; et al. Typical enteroaggregative Escherichia coli is the most prevalent pathotype among E. coli strains causing diarrhea in Mongolian children. J. Clin. Microbiol. 2004, 42, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, J.; Hicks, S.; Dall’Agnol, M.; Phillips, A.D.; Nataro, J.P. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol. Microbiol. 2001, 41, 983–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabashsum, Z.; Nazneen, M.; Ahsan, C.R.; Bari, M.L.; Yasmin, M. Influence of Detection Methods in Characterizing Escherichia coli O157:H7 in Raw Goat Meat Using Conventional and Molecular Methods. Biocontrol Sci. 2016, 21, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, 27th ed.; Approved Standard; CLSI standard: Wayne, PA, USA, 2017. [Google Scholar]
- Arlet, G.; Rouveau, M.; Philippon, A. Substitution of alanine for aspartate at position 179 in the SHV-6 extended-spectrum beta-lactamase. FEMS Microbiol. Lett. 1997, 152, 163–167. [Google Scholar] [CrossRef]
- Mabilat, C.; Goussard, S. PCR detection and identification of genes for extended-spectrum beta-lactamases. In Diagnostic Molecular Microbiology: Principles and Applications. American Society for Microbiology; Persing, D.H., Smith, T.F., Tenover, T.C., White, T.J., Eds.; American Society for Microbiology: Washington, DC, USA, 1993; pp. 553–559. [Google Scholar]
- Cramton, S.E.; Gerke, C.; Schnell, N.F.; Nichols, W.W.; Götz, F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 1999, 67, 5427–5433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, C.; Gilbert, E.S. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl. Environ. Microbiol. 2004, 70, 6951–6956. [Google Scholar] [CrossRef] [Green Version]
- Naves, P.; del Prado, G.; Huelves, L.; Gracia, M.; Ruiz, V.; Blanco, J.; Rodriguez-Cerrato, V.; Ponte, M.C.; Soriano, F. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J. Appl. Microbiol. 2008, 105, 585–590. [Google Scholar] [CrossRef] [PubMed]
Strains | Algerian Area | Virulence Gene 1 | MALDI-TOF Mean Value | bla Gene 2 | AMR 3 |
---|---|---|---|---|---|
S13/15 | Oran | astA | 90.0% | None | NA, CIP, AML, SXT, TE, N |
S14/15 | Oran | irp2 | 87.4% | CTX-M-1, TEM | NA, CIP, AUG, SXT, TE, N, CTX |
S2/15 | Oran | irp2 | 85.1% | TEM | NA, CIP, AML, AUG, SXT, TE, N, CTX |
S4/15 | Mostaganem | stx2 | 87.5% | None | NA, AML, AUG, SXT, TE, N |
S19/15 | Mostaganem | None | 93.0% | CTX-M-1, TEM | NA, CIP, AML, AUG, SXT, TE, C, N, CTX |
S12/15 | Mostaganem | aggR, astA, irp2 | 85.8% | TEM | NA, CIP, AML, AUG, SXT, TE, N, CTX |
S25a/16 | Mostaganem | astA | 88.7% | None | NA, CIP, AUG, TE, N |
S1/16 | Mostaganem | astA, irp2 | 97.7% | TEM | NA, CIP, AML, AUG, SXT, TE, N, CTX |
S22/15 | Mostaganem | astA, irp2 | 89.4% | TEM | NA, CIP, AML, AUG, SXT, TE, N, CTX |
S16/15 | Mostaganem | irp2 | 92.6% | None | NA, CIP, AML, AUG, SXT, TE, N |
S34/16 | Relizane | irp2 | 93.3% | None | NA, CIP, N |
S31/16 | Relizane | None | 91.2% | None | NA, CIP, TE, N |
S33/16 | Relizane | aggR, astA, irp2 | 90.3% | None | NA, CIP, AML, AUG, SXT, TE, C, N |
S47/16 | Tiaret | irp2 | 95.2% | TEM | NA, CIP, AML, AUG, SXT, TE, N, CTX |
S6/15 | Tiaret | None | 96.5% | None | NA, CIP, AML, AUG, TE, N |
S48a/16 | Tiaret | astA | 93.4% | TEM | NA, CIP, AML, AUG, SXT, TE, C, N, CTX |
S19a/16 | Mascara | None | 92.7% | TEM | NA, CIP, AML, AUG, SXT, TE, N, CTX |
S61a/16 | Mascara | None | 95.0% | SHV | NA, AUG, SXT, TE, N |
E. coli ATCC 259222 | 99.9% | AML, AUG |
Strains | aggR | irp2 | astA | TEM | CTX-M-1 | SHV | SBF | Biofilm Grade |
---|---|---|---|---|---|---|---|---|
S13/15 | + | 0.81 | M | |||||
S14/15 | + | + | + | 0.16 | N | |||
S2/15 | + | + | 0.26 | N | ||||
S4/15 stx2 | 0.76 | M | ||||||
S19/15 | + | + | 0.20 | N | ||||
S12/15 | + | + | + | + | 0.18 | N | ||
S25a/16 | + | 0.62 | W | |||||
S1/16 | + | + | + | 0.19 | N | |||
S22/15 | + | + | + | 0.29 | N | |||
S16/15 | + | 0.45 | W | |||||
S34/16 | + | 0.52 | W | |||||
S31/16 | 0.84 | M | ||||||
S33/16 | + | + | + | 0.65 | W | |||
S47/16 | + | + | 0.39 | W | ||||
S6/15 | 0.59 | W | ||||||
S48a/16 | + | + | 0.22 | N | ||||
S19a/16 | + | 0.24 | N | |||||
S61a/16 | + | 0.27 | N | |||||
E. coli ATCC 25922 | 0.76 | M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benameur, Q.; Gervasi, T.; Giarratana, F.; Vitale, M.; Anzà, D.; La Camera, E.; Nostro, A.; Cicero, N.; Marino, A. Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria. Antibiotics 2021, 10, 1157. https://doi.org/10.3390/antibiotics10101157
Benameur Q, Gervasi T, Giarratana F, Vitale M, Anzà D, La Camera E, Nostro A, Cicero N, Marino A. Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria. Antibiotics. 2021; 10(10):1157. https://doi.org/10.3390/antibiotics10101157
Chicago/Turabian StyleBenameur, Qada, Teresa Gervasi, Filippo Giarratana, Maria Vitale, Davide Anzà, Erminia La Camera, Antonia Nostro, Nicola Cicero, and Andreana Marino. 2021. "Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria" Antibiotics 10, no. 10: 1157. https://doi.org/10.3390/antibiotics10101157
APA StyleBenameur, Q., Gervasi, T., Giarratana, F., Vitale, M., Anzà, D., La Camera, E., Nostro, A., Cicero, N., & Marino, A. (2021). Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria. Antibiotics, 10(10), 1157. https://doi.org/10.3390/antibiotics10101157