The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Susceptibility Test
2.2. Genetic Investigation
2.3. Antibacterial Activity
2.4. Relative Expression of marR and sdiA Genes
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Determination of Minimum Inhibitory Concentrations by Microdilution Method
4.3. Disk Diffusion
4.4. Bacterial DNA Purification
4.5. Gene Targets
4.6. Primers
4.7. PCR Conditions
4.8. Bacterial RNA Purification
4.9. Relative Gene Expression Analyses by Real-Time Reverse Transcriptase Quantitative Polymerase Chain Reaction (RT-qPCR)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Kot, B. Virulence Factors and Innovative Strategies for the Treatment and Control of Uropathogenic Escherichia Coli; IntechOpen: London, UK, 2017; ISBN 978-953-51-3330-8. [Google Scholar]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.G.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Bhadelia, N. Management of Urinary Tract Infections from Multidrug-Resistant Organisms. Infect. Dis. Clin. N. Am. 2014, 28, 49–59. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, V.P.; Hannan, T.J.; Nielsen, H.V.; Hultgren, S.J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. Microbiol. Spectr. 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Poey, N.; Madhi, F.; Biscardi, S.; Béchet, S.; Cohen, R. Aminoglycosides Monotherapy as First-Line Treatment for Febrile Urinary Tract Infection in Children. Pediatr. Infect. Dis. J. 2017, 36, 1104–1107. [Google Scholar] [CrossRef]
- Goodlet, K.J.; Benhalima, F.Z.; Nailor, M.D. A Systematic Review of Single-Dose Aminoglycoside Therapy for Urinary Tract Infection: Is It Time to Resurrect an Old Strategy? Antimicrob. Agents Chemother. 2019, 63, e02165-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasfi, R.; Abdellatif, G.R.; Elshishtawy, H.M.; Ashour, H.M. First-time characterization of viable but non-culturable Proteus mirabilis: Induction and resuscitation. J. Cell. Mol. Med. 2020, 24, 2791–2801. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, M.; El-Rahman, O.A.A.; Al-Qaidi, B.; Ashour, H.M. Antimicrobial and Antibiofilm Activities of Probiotic Lactobacilli on Antibiotic-Resistant Proteus mirabilis. Microorganisms 2020, 8, 960. [Google Scholar] [CrossRef]
- Yang, L.; Wang, K.; Li, H.; Denstedt, J.D.; Cadieux, P.A. The Influence of Urinary pH on Antibiotic Efficacy against Bacterial Uropathogens. Urology 2014, 84, 731.e1–731.e7. [Google Scholar] [CrossRef]
- Shields-Cutler, R.R.; Crowley, J.R.; Hung, C.S.; Stapleton, A.E.; Aldrich, C.C.; Marschall, J.; Henderson, J.P. Human Urinary Composition Controls Antibacterial Activity of Siderocalin. J. Biol. Chem. 2015, 290, 15949–15960. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Joshi, Y.; Rawat, K.; Bisht, R. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms. Indian J. Microbiol. 2018, 59, 3–12. [Google Scholar] [CrossRef]
- Kumar, R.; Chhibber, S.; Harjai, K. Quorum sensing is necessary for the virulence of Pseudomonas aeruginosa during urinary tract infection. Kidney Int. 2009, 76, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.J.; Hall, C.L.; Schniederberend, M.; Iii, J.M.F.; Goodson, J.R.; Pesci, E.C.; Kazmierczak, B.I.; Lee, V.T. Host suppression of quorum sensing during catheter-associated urinary tract infections. Nat. Commun. 2018, 9, 4436. [Google Scholar] [CrossRef]
- Alav, I.; Sutton, J.M.; Rahman, K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother. 2018, 73, 2003–2020. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 7.1. 2017. Available online: http://www.eucast.org (accessed on 1 September 2021).
- Kim, Y.-T.; Jang, J.-H.; Kim, H.-C.; Kim, H.-G.; Lee, K.-R.; Park, K.-S.; Lee, H.-J.; Kim, Y.-J. Identification of strain harboring both aac(6′)-Ib and aac(6′)-Ib-cr variant simultaneously in Escherichia coli and Klebsiella pneumoniae. BMB Rep. 2011, 44, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, H.; Ning, J.; Sajid, A.; Cheng, G.; Yuan, Z.; Hao, H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob. Resist. Infect. Control 2019, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shelburne, S.A.; Kim, J.; Munita, J.M.; Sahasrabhojane, P.; Shields, R.K.; Press, E.G.; Li, X.; Arias, C.A.; Cantarel, B.; Jiang, Y.; et al. Whole-Genome Sequencing Accurately Identifies Resistance to Extended-Spectrum β-Lactams for Major Gram-Negative Bacterial Pathogens. Clin. Infect. Dis. 2017, 65, 738–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nové, M.; Kincses, A.; Molnár, J.; Amaral, L.; Spengler, G. The Role of Efflux Pumps and Environmental pH in Bacterial Multidrug Resistance. In Vivo 2019, 34, 65–71. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Annapolis, MD, USA, 2018. [Google Scholar]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, M.; Pimkin, M.; Palagin, I.; Stratchounski, L. Prevalence and Molecular Epidemiology of CTX-MExtended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Russian Hospitals. Antimicrob. Agents Chemother. 2003, 47, 3724–3732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciesielczuk, H.; Hornsey, M.; Choi, V.; Woodford, N.; Wareham, D. Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J. Med. Microbiol. 2013, 62, 1823–1827. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yang, X.; Jiao, S.; Zhang, J.; Ye, B.; Gao, S. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China. PLoS ONE 2014, 9, e112626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viveiros, M.; Dupont, M.; Rodrigues, L.; Couto, I.; Davin-Regli, A.; Martins, M.; Pages, J.-M.; Amaral, L. Antibiotic Stress, Genetic Response and Altered Permeability of E. coli. PLoS ONE 2007, 2, e365. [Google Scholar] [CrossRef] [PubMed]
- Kincses, A.; Szabó, Á.M.; Saijo, R.; Watanabe, G.; Kawase, M.; Molnár, J.; Spengler, G. Fluorinated Beta-diketo Phosphorus Ylides Are Novel Efflux Pump Inhibitors in Bacteria. In Vivo 2016, 30, 813–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibiotic | E. coli 32313 | E. coli 33504 | K. pneumoniae 33443 | K. pneumoniae 33163 | P. mirabilis 33877 | P. mirabilis 32470 |
---|---|---|---|---|---|---|
Ampicillin | 22 mm S | 25 mm S | 6 mm R | 0 mm R | 0 mm R | 0 mm R |
AMC | 22 mm S | 25 mm S | 23 mm S | 8 mm R | 28 mm S | 0 mm R |
Cefuroxime | 22 mm S | 25 mm S | 20 mm S | 0 mm R | 28 mm S | 0 mm R |
Ceftriaxone | 30 mm S | 34 mm S | 24 mm S | 8 mm R | 30 mm S | 15 mm R |
Ceftazidime | 27 mm S | 30 mm S | 24 mm S | 8 mm R | 30 mm S | 8 mm R |
CZA | 26 mm S | 28 mm S | 24 mm S | 24 mm S | 30 mm S | 28 mm S |
TMP/SMX | 0 mm R | 30 mm S | 18 mm S | 0 mm R | 0 mm R | 0 mm R |
Ertapenem | 35 mm S | 35 mm S | 30 mm S | 30 mm S | 30 mm S | 30 mm S |
Imipenem | 30 mm S | 30 mm S | 30 mm S | 30 mm S | 30 mm S | 30 mm S |
Meropenem | 30 mm S | 30 mm S | 30 mm S | 30 mm S | 30 mm S | 30 mm S |
Gentamicin | 13 mm R | 22 mm S | 20 mm S | 0 mm R | 24 mm S | 15 mm R |
Tobramycin | 20 mm S | 22 mm S | 20 mm S | 15 mm I | 24 mm S | 14 mm R |
Amikacin | 20 mm S | 22 mm S | 20 mm S | 25 mm I | 24 mm S | 22 mm I |
Ciprofloxacin | 0 mm R | 30 mm S | 16 mm R | 0 mm R | 35 mm S | 0 mm R |
Norfloxacin | 0 mm R | 30 mm S | 16 mm R | 0 mm R | 35 mm S | 0 mm R |
Resistance Type | Gene | Escherichia coli | Proteus mirabilis | Klebsiella pneumoniae | |||
---|---|---|---|---|---|---|---|
32313 | 33504 | 32470 | 33877 | 33163 | 33443 | ||
ESBL | tem | − | − | + | − | + | + |
shv | − | − | + | + | − | − | |
oxa | − | − | + | − | − | − | |
ctx-m | − | − | + | − | − | − | |
Fluoroquinolones | qnrA | − | − | − | − | − | − |
qnrD | − | − | − | − | − | − | |
qnrB | − | − | − | − | − | − | |
qnrS | − | − | − | − | − | − | |
oqxAB | − | − | + | + | + | + | |
aac(69)-Ib-cr | + | − | + | − | + | − | |
qepA | − | − | − | − | − | − | |
qnrC | − | − | − | − | − | − | |
Resistance type | sul1 | − | − | − | − | − | − |
sul2 | + | − | + | + | + | + | |
sul3 | − | − | − | + | − | − |
MIC (µg/mL) | Erythromycin | Ampicillin | Ciprofloxacin | Gentamicin | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | pH | pH | pH | |||||||||||||
5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 | |
E. coli 33504 | >100 | >100 | 12.5 | 3.125 | 12.5 | 12.5 | 12.5 | 25 | 3.125 | 0.39 | 0.05 | <0.05 | 25 | 6.25 | 1.56 | 0.05 |
E. coli 32313 | >100 | >100 | >100 | >100 | >25 | >25 | >25 | >25 | >25 | >25 | 25 | >25 | 25 | 12.5 | 1.56 | 1.56 |
K. pneumoniae 33443 | >100 | >100 | 25 | 12.5 | >25 | >25 | >25 | >25 | 25 | 6.25 | 0.78 | 0.19 | 25 | 6.25 | 0.78 | <0.05 |
K. pneumoniae 33163 | >100 | >100 | >100 | 25 | >25 | >25 | >25 | >25 | >25 | >25 | >25 | 12.5 | >25 | >25 | >25 | 12.5 |
P. mirabilis 33877 | >100 | >100 | >100 | 50 | >25 | >25 | >25 | >25 | 0.78 | <0.05 | <0.05 | <0.05 | >25 | >25 | 6.25 | 0.39 |
P. mirabilis 32470 | >100 | >100 | 100 | 25 | >25 | >25 | >25 | >25 | >25 | >25 | >25 | >25 | >25 | >25 | 12.5 | 3.125 |
Gene | Primer | Sequence (5′-3′) | Amplicon Size (bp) | Reference |
---|---|---|---|---|
TEM | F | CATTTCCGTGTCGCCCTTATTC | 800 | [22] |
R | CGTTCATCCATAGTTGCCTGAC | |||
SHV | F | AGCCGCTTGAGCAAATTAAAC | 713 | |
R | ATCCCGCAGATAAATCACCAC | |||
OXA | F | GGCACCAGATTCAACTTTCAAG | 564 | |
R | GACCCCAAGTTTCCTGTAAGTG | |||
CTX-M | F | TTTGCGATGTGCAGTACCAGTAA | 544 | [23] |
R | CGATATCGTTGGTGGTGCCATA |
Gene | Primer | Sequence (5′-3′) | Amplicon Size (bp) |
---|---|---|---|
qnrA | F | CAGCAAGAGGATTTCTCACG | 630 |
R | AATCCGGCAGCACTATTACTC | ||
qnrD | F | CGAGATCAATTTACGGGGAATA | 581 |
R | AACAAGCTGAAGCGCCTG | ||
qnrB | F | GGCTGTCAGTTCTATGATCG | 488 |
R | GAGCAACGATGCCTGGTAG | ||
degR | SAKCAACGATGCCTGGTAG | ||
qnrS | F | GCAAGTTCATTGAACAGGGT | 428 |
R | TCTAAACCGTCGAGTTCGGCG | ||
oqxAB | F | CCGCACCGATAAATTAGTCC | 313 |
R | GGCGAGGTTTTGATAGTGGA | ||
aac(6′)-Ib-cr | F | TTGGAAGCGGGGACGGAM | 260 |
R | ACACGGCTGGACCATA | ||
qepA | F | GCAGGTCCAGCAGCGGGTAG | 218 |
R | CTTCCTGCCCGAGTATCGTG | ||
qnrC | F | GCAGAATTCAGGGGTGTGAT | 118 |
R | AACTGCTCCAAAAGCTGCTC |
Gene | Primer | Sequence (5′-3′) | Amplicon Size (bp) |
---|---|---|---|
sul1 | qF | TGTCGAACCTTCAAAAGCTG | 113 |
qR | TGGACCCAGATCCTTTACAG | ||
sul2 | qF | ATCTGCCAAACTCGTCGTTA | 89 |
qR | CAATGTGATCCATGATGTCG | ||
sul3 | qF | GGTTGAAGATGGAGCAGATG | 111 |
qR | GCCTTAATGACAGGTTTGAGTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kincses, A.; Rácz, B.; Baaity, Z.; Vásárhelyi, O.; Kristóf, E.; Somogyvári, F.; Spengler, G. The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Antibiotics 2021, 10, 1431. https://doi.org/10.3390/antibiotics10121431
Kincses A, Rácz B, Baaity Z, Vásárhelyi O, Kristóf E, Somogyvári F, Spengler G. The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Antibiotics. 2021; 10(12):1431. https://doi.org/10.3390/antibiotics10121431
Chicago/Turabian StyleKincses, Annamária, Bálint Rácz, Zain Baaity, Orsolya Vásárhelyi, Erzsébet Kristóf, Ferenc Somogyvári, and Gabriella Spengler. 2021. "The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria" Antibiotics 10, no. 12: 1431. https://doi.org/10.3390/antibiotics10121431
APA StyleKincses, A., Rácz, B., Baaity, Z., Vásárhelyi, O., Kristóf, E., Somogyvári, F., & Spengler, G. (2021). The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Antibiotics, 10(12), 1431. https://doi.org/10.3390/antibiotics10121431