Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Sample Collection
2.2. Bacterial Isolation, Enrichment, and Growth Conditions
2.3. DNA Extraction and PCR Analysis for Bacterial Species Identification
2.4. Antimicrobial Susceptibility Testing
2.5. Detection of Antibiotic Resistance Genes (ARGs)
2.6. Statistical Analysis
3. Results
3.1. Prevalence and Distribution of Campylobacter, E. coli O157, Salmonella, and L. monocytogenes
3.2. Antimicrobial Resistance Phenotypical Profile of E. coli O157, Salmonella, L. monocytogenes and Campylobacter
3.3. Genotypic Profile of Antimicrobial Resistance in E. coli O157, Salmonella L. monocytogenes and Campylobacter Isolates
3.4. Correlation between Phenotypic and Genotypic Resistance of the Foodborne Pathogens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC. Burden of Foodborne Illness: Findings. Centers for Disease Control and Prevention, United States Department of Health and Human Services. Available online: https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html (accessed on 23 November 2021).
- CDC. Antibiotic Resistance Threats in the United States, 2013. Centers for Disease Control and Prevention, United States Department of Health and Human Services. Available online: http://www.cdc.gov/drugresistance/threat-report-2013/ (accessed on 23 November 2021).
- Scharff, R.L. Economic burden from health losses due to foodborne illness in the United States. J. Food Prot. 2012, 75, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Scharff, R.L. Food Attribution and Economic Cost Estimates for Meat- and Poultry-Related Illnesses. J. Food Prot. 2020, 83, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Hoffman, S.; Maculloch, B.; Batz, M. Economic Burden of Major Foodborne Illnesses Acquired in the United States; United States Department of Agriculture: Washington, DC, USA, 2015. [Google Scholar]
- Lomonaco, S.; Nucera, D.; Filipello, V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infect. Genet. Evol. 2015, 35, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Henao, O.L.; Jones, T.F.; Vugia, D.J.; Griffin, P.M. Foodborne Diseases Active Surveillance Network-2 Decades of Achievements, 1996–2015. Emerg. Infect. Dis. 2015, 21, 1529–1536. [Google Scholar] [CrossRef] [Green Version]
- Iwu, C.D.; Okoh, A.I. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. Int. J. Environ. Res. Public Health 2019, 16, 4407. [Google Scholar] [CrossRef] [Green Version]
- Kassem, I.I.; Kehinde, O.O.; Helmy, Y.A.; Kumar, A.; Chandrashekhar, K.; Pina-Mimbela, R.; Rajashekara, G. Campylobacter in poultry: The conundrums of highly adaptable and ubiquitous foodborne pathogens. In Foodborne Diseases: Case Studies of Outbreaks in the Agri-Food Industries; Soon, J.M., Manning, L., Wallace, C.A., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kassem, I.; Helmy, Y.A.; Kashoma, I.P.; Rajashekara, G. The emergence of antibiotic resistance on poultry farms. In Achieving Sustainable Production of Poultry Meat Volume 1: Safety, Quality and Sustainability; Ricke, S., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2016; ISBN 978-1-78676-064-7. [Google Scholar]
- CSPI. Antibiotic Resistance in Foodborne Pathogens. Available online: https://cspinet.org/sites/default/files/attachment/outbreaks_antibiotic_resistance_in_foodborne_pathogens_2013.pdf (accessed on 23 November 2021).
- Dewey-Mattia, D.; Manikonda, K.; Hall, A.J.; Wise, M.E.; Crowe, S.J. Surveillance for Foodborne Disease Outbreaks—United States, 2009–2015. MMWR Surveill. Summ. 2018, 67, 1–11. Available online: https://doi.org/10.15585/mmwr.ss6710a1 (accessed on 23 November 2021). [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2019. Centers for Disease. Control and Prevention, United States Department of Health and Human Services. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 23 November 2021).
- Levy, S.B. Active efflux, a common mechanism for biocide and antibiotic resistance. J. Appl. Microbiol. 2002, 92, 65S–71S. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 23 November 2021).
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2018, 36, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Hamer, D.H.; Gill, C.J. From the farm to the kitchen table: The negative impact of antimicrobial use in animals on humans. Nutr. Rev. 2002, 60, 261–264. [Google Scholar] [PubMed]
- Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef] [PubMed]
- White, D.G.; Zhao, S.; Simjee, S.; Wagner, D.D.; McDermott, P.F. Antimicrobial resistance of foodborne pathogens. Microbes Infect. 2002, 4, 405–412. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Hu, H.-W.; Chen, Q.-L.; Singh, B.K.; Yan, H.; Chen, D.; He, J.-Z. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ. Int. 2019, 130, 104912. [Google Scholar] [CrossRef]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Nnadozie, C.F.; Odume, O.N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environ. Pollut. 2019, 254, 113067. [Google Scholar] [CrossRef]
- Westphal-Settele, K.; Konradi, S.; Balzer, F.; Schönfeld, J.; Schmithausen, R. Die Umwelt als Reservoir für Antibiotikaresistenzen. Bundesgesundheitsblatt-Gesundh.-Gesundh. 2018, 61, 533–542. [Google Scholar] [CrossRef]
- Rajwar, A.; Srivastava, P.; Sahgal, M. Microbiology of Fresh Produce: Route of Contamination, Detection Methods, and Remedy. Crit. Rev. Food Sci. Nutr. 2016, 56, 2383–2390. [Google Scholar] [CrossRef]
- Litt Pushpinder, K.; Kelly, A.; Omar, A.; Johnson, G.; Vinyard Bryan, T.; Kniel Kalmia, E.; Sharma, M.; Dudley Edward, G. Temporal and Agricultural Factors Influence Escherichia coli Survival in Soil and Transfer to Cucumbers. Appl. Environ. Microbiol. 2021, 87, e02418–e02420. [Google Scholar] [CrossRef]
- Wang, F.-H.; Qiao, M.; Chen, Z.; Su, J.-Q.; Zhu, Y.-G. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J. Hazard. Mater. 2015, 299, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Neher, D.A.; Cutler, A.J.; Weicht, T.R.; Sharma, M.; Millner, P.D. Composts of poultry litter or dairy manure differentially affect survival of enteric bacteria in fields with spinach. J. Appl. Microbiol. 2019, 126, 1910–1922. [Google Scholar] [CrossRef] [PubMed]
- FDA. Guidance for Industry. Available online: www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM299624.pdf (accessed on 12 April 2016).
- FDA. Timeline of FDA Action on Antimicrobial Resistance. Available online: https://www.fda.gov/animal-veterinary/antimicrobial-resistance/timeline-fda-action-antimicrobial-resistance (accessed on 23 November 2021).
- LeJeune, J.T.; Hancock, D.D.; Besser, T.E. Sensitivity of Escherichia coli O157 detection in bovine feces assessed by broth enrichment followed by immunomagnetic separation and direct plating methodologies. J. Clin. Microbiol. 2006, 44, 872–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, V.; Nam, H.M.; Nguyen, L.T.; Tamilselvam, B.; Murinda, S.E.; Oliver, S.P. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog. Dis. 2005, 2, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Kersting, A.L.; Medeiros, L.C.; LeJeune, J.T. Differences in Listeria monocytogenes contamination of rural Ohio residences with and without livestock. Foodborne Pathog. Dis. 2010, 7, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Rybolt, M.L.; Wills, R.W.; Bailey, R.H. Use of secondary enrichment for isolation of Salmonella from naturally contaminated environmental samples. Poult. Sci. 2005, 84, 992–997. [Google Scholar] [CrossRef]
- Kassem, I.I.; Helmy, Y.A.; Kathayat, D.; Candelero-Rueda, R.A.; Kumar, A.; Deblais, L.; Huang, H.C.; Sahin, O.; Zhang, Q.; Rajashekara, G. Nonculturability Might Underestimate the Occurrence of Campylobacter in Broiler Litter. Foodborne Pathog. Dis. 2017, 14, 472–477. [Google Scholar] [CrossRef]
- Kashoma, I.P.; Kassem, I.I.; John, J.; Kessy, B.M.; Gebreyes, W.; Kazwala, R.R.; Rajashekara, G. Prevalence and Antimicrobial Resistance of Campylobacter Isolated from Dressed Beef Carcasses and Raw Milk in Tanzania. Microb. Drug Resist. 2016, 22, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Helmy, Y.A.; Kassem, I.I.; Kumar, A.; Rajashekara, G. In Vitro Evaluation of the Impact of the Probiotic E. coli Nissle 1917 on Campylobacter jejuni’s Invasion and Intracellular Survival in Human Colonic Cells. Front. Microbiol. 2017, 8, 1588. [Google Scholar] [CrossRef] [Green Version]
- Deblais, L.; Helmy, Y.A.; Kumar, A.; Antwi, J.; Kathayat, D.; Acuna, U.M.; Huang, H.C.; de Blanco, E.C.; Fuchs, J.R.; Rajashekara, G. Novel narrow spectrum benzyl thiophene sulfonamide derivatives to control Campylobacter. J. Antibiot. 2019, 72, 555–565. [Google Scholar] [CrossRef]
- Zhai, L.; Yu, Q.; Bie, X.; Lu, Z.; Lv, F.; Zhang, C.; Kong, X.; Zhao, H. Development of a PCR test system for specific detection of Salmonella Paratyphi B in foods. FEMS Microbiol. Lett. 2014, 355, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, H.; Wang, W. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli. BMC Microbiol. 2017, 17, 215. [Google Scholar] [CrossRef] [Green Version]
- Meghdadi, H.; Khosravi, A.D.; Sheikh, A.F.; Alami, A.; Nassirabady, N. Isolation and characterization of Listeria monocytogenes from environmental and clinical sources by culture and PCR-RFLP methods. Iran. J. Microbiol. 2019, 11, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Ge, B.; Wang, F.; Sjolund-Karlsson, M.; McDermott, P.F. Antimicrobial resistance in Campylobacter: Susceptibility testing methods and resistance trends. J. Microbiol. Methods 2013, 95, 57–67. [Google Scholar] [CrossRef] [PubMed]
- NARMS. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS). Available online: https://www.cdc.gov/narms/antibiotics-tested.html (accessed on 23 November 2021).
- Obaidat, M.M. Prevalence and antimicrobial resistance of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in imported beef cattle in Jordan. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101447. [Google Scholar] [CrossRef] [PubMed]
- Helmy, Y.A.; Kassem, I.I.; Rajashekara, G. Immuno-modulatory effect of probiotic E. coli Nissle 1917 in polarized human colonic cells against Campylobacter jejuni infection. Gut Microbes 2021, 13, 1–16. [Google Scholar] [CrossRef]
- Terefe, Y.; Deblais, L.; Ghanem, M.; Helmy, Y.A.; Mummed, B.; Chen, D.; Singh, N.; Ahyong, V.; Kalantar, K.; Yimer, G.; et al. Co-occurrence of Campylobacter Species in Children from Eastern Ethiopia, and Their Association with Environmental Enteric Dysfunction, Diarrhea, and Host Microbiome. Front. Public Health 2020, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.S.; Tertuliano, M.; Rajeev, S.; Vellidis, G.; Levy, K. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia. J. Appl. Microbiol. 2018, 124, 910–921. [Google Scholar] [CrossRef]
- Gu, G.; Strawn, L.K.; Ottesen, A.R.; Ramachandran, P.; Reed, E.A.; Zheng, J.; Boyer, R.R.; Rideout, S.L. Correlation of Salmonella enterica and Listeria monocytogenes in Irrigation Water to Environmental Factors, Fecal Indicators, and Bacterial Communities. Front. Microbiol. 2021, 11, 3426. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Sant’Ana, A.S. Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int. J. Hyg. Environ. Health 2020, 227, 113524. [Google Scholar] [CrossRef]
- Pornsukarom, S.; Thakur, S.; Schaffner Donald, W. Horizontal Dissemination of Antimicrobial Resistance Determinants in Multiple Salmonella Serotypes following Isolation from the Commercial Swine Operation Environment after Manure Application. Appl. Environ. Microbiol. 2017, 83, e01503–e01517. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.-H.; Lee, J.-H.; Park, S.-H.; Song, M.-O.; Park, S.-H.; Jung, H.-W.; Park, G.-Y.; Choi, S.-M.; Kim, M.-S.; Chae, Y.-Z.; et al. Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods. Int. J. Food Microbiol. 2012, 159, 263–266. [Google Scholar] [CrossRef]
- Guruge, K.S.; Tamamura, Y.A.; Goswami, P.; Tanoue, R.; Jinadasa, K.B.S.N.; Nomiyama, K.; Ohura, T.; Kunisue, T.; Tanabe, S.; Akiba, M. The association between antimicrobials and the antimicrobial-resistant phenotypes and resistance genes of Escherichia coli isolated from hospital wastewaters and adjacent surface waters in Sri Lanka. Chemosphere 2021, 279, 130591. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, P.; Xiong, W.; Zhou, Q.; Wangxiao, J.; Zeng, Z.; Sun, Y. Fate of potential indicator antimicrobial resistance genes (ARGs) and bacterial community diversity in simulated manure-soil microcosms. Ecotoxicol. Environ. Saf. 2018, 147, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Feng, Y.; Wang, Y.; Guo, X.; Chu, H.; Lin, X. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years. J. Hazard. Mater. 2017, 340, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L.; Coque, T.M.; Baquero, F. Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat. Rev. Microbiol. 2015, 13, 396. [Google Scholar] [CrossRef]
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.S.; et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.D.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, S.; White, D.G.; Schroeder, C.M.; Lu, R.; Yang, H.; McDermott, P.F.; Ayers, S.; Meng, J. Characterization of multiple-antimicrobial-resistant salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 2004, 70, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtula, V.; Farrell, E.G.; Diarrassouba, F.; Rempel, H.; Pritchard, J.; Diarra, M.S. Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult. Sci. 2010, 89, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Oyarzabal, O.A. Prevalence of Campylobacter spp. in skinless, boneless retail broiler meat from 2005 through 2011 in Alabama, USA. BMC Microbiol. 2012, 12, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Biswas, S.; Aminabadi, P.; Stackhouse, J.W.; Jay-Russell, M.T.; Pandey, P.K. Prevalence of Escherichia coli O157 and Salmonella spp. in solid bovine manure in California using real-time quantitative PCR. Lett. Appl. Microbiol. 2019, 69, 23–29. [Google Scholar] [CrossRef]
- Benjamin, L.; Atwill, E.R.; Jay-Russell, M.; Cooley, M.; Carychao, D.; Gorski, L.; Mandrell, R.E. Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast. Int. J. Food Microbiol. 2013, 165, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Cooley, M.B.; Quiñones, B.; Oryang, D.; Mandrell, R.E.; Gorski, L. Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region. Front. Cell. Infect. Microbiol. 2014, 4, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, A.K.; Van Kessel, J.S.; Karns, J.S.; Wolfgang, D.R.; Hovingh, E.; Nelen, K.A.; Smith, J.M.; Whitlock, R.H.; Fyock, T.; Ladely, S.; et al. Dynamics of endemic infectious diseases of animal and human importance on three dairy herds in the northeastern United States. J. Dairy Sci. 2009, 92, 1811–1825. [Google Scholar] [CrossRef]
- Sonnier, J.L.; Karns, J.S.; Lombard, J.E.; Kopral, C.A.; Haley, B.J.; Kim, S.-W.; Van Kessel, J.A.S. Prevalence of Salmonella enterica, Listeria monocytogenes, and pathogenic Escherichia coli in bulk tank milk and milk filters from US dairy operations in the National Animal Health Monitoring System Dairy 2014 study. J. Dairy Sci. 2018, 101, 1943–1956. [Google Scholar] [CrossRef] [Green Version]
- Strawn Laura, K.; Gröhn Yrjo, T.; Warchocki, S.; Worobo Randy, W.; Bihn Elizabeth, A.; Wiedmann, M. Risk Factors Associated with Salmonella and Listeria monocytogenes Contamination of Produce Fields. Appl. Environ. Microbiol. 2013, 79, 7618–7627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, W.; Mosci, R.E.; Wengert, S.L.; Venegas Vargas, C.; Rust, S.R.; Bartlett, P.C.; Grooms, D.L.; Manning, S.D. Comparing the Genetic Diversity and Antimicrobial Resistance Profiles of Campylobacter jejuni Recovered from Cattle and Humans. Front. Microbiol. 2017, 8, 818. [Google Scholar] [CrossRef] [Green Version]
- Dodson, K.; LeJeune, J. Escherichia coli O157:H7, Campylobacter jejuni, and Salmonella Prevalence in cull dairy cows marketed in northeastern Ohio. J. Food Prot. 2005, 68, 927–931. [Google Scholar] [CrossRef]
- Cernicchiaro, N.; Pearl, D.L.; McEwen, S.A.; Harpster, L.; Homan, H.J.; Linz, G.M.; Lejeune, J.T. Association of wild bird density and farm management factors with the prevalence of E. coli O157 in dairy herds in Ohio (2007–2009). Zoonoses Public Health 2012, 59, 320–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.Z.; Musekiwa, A.; Islam, K.; Ahmed, S.; Chowdhury, S.; Ahad, A.; Biswas, P.K. Regional variation in the prevalence of E. coli O157 in cattle: A meta-analysis and meta-regression. PLoS ONE 2014, 9, e93299. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Rivera, L.D.; Cummings, K.J.; Loneragan, G.H.; Rankin, S.C.; Hanson, D.L.; Leone, W.M.; Edrington, T.S. Salmonella Prevalence and Antimicrobial Susceptibility Among Dairy Farm Environmental Samples Collected in Texas. Foodborne Pathog. Dis. 2016, 13, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Liljebjelke, K.A.; Hofacre, C.L.; Liu, T.; White, D.G.; Ayers, S.; Young, S.; Maurer, J.J. Vertical and horizontal transmission of salmonella within integrated broiler production system. Foodborne Pathog. Dis. 2005, 2, 90–102. [Google Scholar] [CrossRef]
- Alali, W.Q.; Thakur, S.; Berghaus, R.D.; Martin, M.P.; Gebreyes, W.A. Prevalence and distribution of Salmonella in organic and conventional broiler poultry farms. Foodborne Pathog. Dis. 2010, 7, 1363–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, A.; Lewis, M.A.; Rothrock, M.J., Jr. The Distribution of Listeria in Pasture-Raised Broiler Farm Soils Is Potentially Related to University of Vermont Medium Enrichment Bias toward Listeria innocua over Listeria monocytogenes. Front. Vet. Sci. 2017, 4, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, A.J.; Ivanek, R.; Grohn, Y.T.; Nightingale, K.K.; Wiedmann, M. Listeria monocytogenes fecal shedding in dairy cattle shows high levels of day-to-day variation and includes outbreaks and sporadic cases of shedding of specific L. monocytogenes subtypes. Prev. Vet. Med. 2007, 80, 287–305. [Google Scholar] [CrossRef]
- Nightingale, K.K.; Schukken, Y.H.; Nightingale, C.R.; Fortes, E.D.; Ho, A.J.; Her, Z.; Grohn, Y.T.; McDonough, P.L.; Wiedmann, M. Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl. Environ. Microbiol. 2004, 70, 4458–4467. [Google Scholar] [CrossRef] [Green Version]
- Sanad, Y.M.; Kassem, I.I.; Abley, M.; Gebreyes, W.; LeJeune, J.T.; Rajashekara, G. Genotypic and phenotypic properties of cattle-associated Campylobacter and their implications to public health in the USA. PLoS ONE 2011, 6, e25778. [Google Scholar] [CrossRef] [Green Version]
- Kassem, I.I.; Kehinde, O.; Kumar, A.; Rajashekara, G. Antimicrobial-Resistant Campylobacter in Organically and Conventionally Raised Layer Chickens. Foodborne Pathog. Dis. 2017, 14, 29–34. [Google Scholar] [CrossRef]
- Cui, S.; Ge, B.; Zheng, J.; Meng, J. Prevalence and antimicrobial resistance of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores. Appl. Environ. Microbiol. 2005, 71, 4108–4111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borucki, M.K.; Call, D.R. Listeria monocytogenes Serotype Identification by PCR. J. Clin. Microbiol. 2003, 41, 5537–5540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, O.; Kassem, I.I.; Shen, Z.; Lin, J.; Rajashekara, G.; Zhang, Q. Campylobacter in poultry: Ecology and potential interventions. Avian Dis. 2015, 59, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, T.; O’Brien, S.; Madsen, M. Campylobacters as zoonotic pathogens: A food production perspective. Int. J. Food Microbiol. 2007, 117, 237–257. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Makaka, G.; Simon, M.; Okoh, A.I. An Overview of the Control of Bacterial Pathogens in Cattle Manure. Int. J. Environ. Res. Public Health 2016, 13, 843. [Google Scholar] [CrossRef] [Green Version]
- Edrington, T.S.; Fox, W.E.; Callaway, T.R.; Anderson, R.C.; Hoffman, D.W.; Nisbet, D.J. Pathogen prevalence and influence of composted dairy manure application on antimicrobial resistance profiles of commensal soil bacteria. Foodborne Pathog. Dis. 2009, 6, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Resende, J.A.; Silva, V.L.; de Oliveira, T.L.; de Oliveira Fortunato, S.; da Costa Carneiro, J.; Otenio, M.H.; Diniz, C.G. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure. Bioresour. Technol. 2014, 153, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, D.A.; Bahnson, P.B.; Funk, J.A.; Thakur, S.; Morrow, W.E.M.; Wittum, T.; DeGraves, F.; Rajala-Schultz, P.; Gebreyes, W.A. Prevalence and Antimicrobial Resistance Profile of Campylobacter Spp. Isolated from Conventional and Antimicrobial-Free Swine Production Systems from Different U.S. Regions. Foodborne Pathog. Dis. 2010, 8, 367–374. [Google Scholar] [CrossRef] [Green Version]
- McConnel, C.S.; Stenkamp-Strahm, C.M.; Rao, S.; Linke, L.M.; Magnuson, R.J.; Hyatt, D.R. Antimicrobial Resistance Profiles in Escherichia coli O157 Isolates from Northern Colorado Dairies. J. Food Prot. 2016, 79, 484–487. [Google Scholar] [CrossRef]
- Cummings, K.J.; Perkins, G.A.; Khatibzadeh, S.M.; Warnick, L.D.; Altier, C. Antimicrobial Resistance Trends Among Salmonella Isolates Obtained from Dairy Cattle in the Northeastern United States, 2004–2011. Foodborne Pathog. Dis. 2013, 10, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M.; Wegener, H.C.; Collignon, P. Resistance in bacteria of the food chain: Epidemiology and control strategies. Expert Rev. Anti Infect. Ther. 2008, 6, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741–749. [Google Scholar] [CrossRef] [PubMed]
- FDA. 2016 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Available online: https://www.fda.gov/downloads/forindustry/userfees/animaldruguserfeeactadufa/ucm588085.pdf (accessed on 23 November 2021).
- Lundin, J.I.; Dargatz, D.A.; Wagner, B.A.; Lombard, J.E.; Hill, A.E.; Ladely, S.R.; Fedorka-Cray, P.J. Antimicrobial drug resistance of fecal Escherichia coli and Salmonella spp. isolates from United States dairy cows. Foodborne Pathog. Dis. 2008, 5, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, S.P.; Murinda, S.E.; Jayarao, B.M. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: A comprehensive review. Foodborne Pathog. Dis. 2011, 8, 337–355. [Google Scholar] [CrossRef]
- Blau, D.M.; McCluskey, B.J.; Ladely, S.R.; Dargatz, D.A.; Fedorka-Cray, P.J.; Ferris, K.E.; Headrick, M.L. Salmonella in dairy operations in the United States: Prevalence and antimicrobial drug susceptibility. J. Food Prot. 2005, 68, 696–702. [Google Scholar] [CrossRef]
- Antunes, P.; Reu, C.; Sousa, J.C.; Peixe, L.; Pestana, N. Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents. Int. J. Food Microbiol. 2003, 82, 97–103. [Google Scholar] [CrossRef]
- Liljebjelke, K.A.; Hofacre, C.L.; White, D.G.; Ayers, S.; Lee, M.D.; Maurer, J.J. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms. Front. Vet. Sci. 2017, 4, 96. [Google Scholar] [CrossRef]
- Michael, G.B.; Schwarz, S. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: An alarming trend? Clin. Microbiol. Infect. 2016, 22, 968–974. [Google Scholar] [CrossRef]
- Haberecht, H.B.; Nealon, N.J.; Gilliland, J.R.; Holder, A.V.; Runyan, C.; Oppel, R.C.; Ibrahim, H.M.; Mueller, L.; Schrupp, F.; Vilchez, S.; et al. Antimicrobial-Resistant Escherichia coli from Environmental Waters in Northern Colorado. J. Environ. Public Health 2019, 2019, 3862949. [Google Scholar] [CrossRef] [Green Version]
- Rothrock, M.J., Jr.; Hiett, K.L.; Guard, J.Y.; Jackson, C.R. Antibiotic Resistance Patterns of Major Zoonotic Pathogens from All-Natural, Antibiotic-Free, Pasture-Raised Broiler Flocks in the Southeastern United States. J. Environ. Qual. 2016, 45, 593–603. [Google Scholar] [CrossRef]
- Xu, Y.; Tao, S.; Hinkle, N.; Harrison, M.; Chen, J. Salmonella, including antibiotic-resistant Salmonella, from flies captured from cattle farms in Georgia, U.S.A. Sci. Total. Environ. 2018, 616–617, 90–96. [Google Scholar] [CrossRef]
- Adhikari, B.; Besser, T.E.; Gay, J.M.; Fox, L.K.; Davis, M.A.; Cobbold, R.N.; Berge, A.C.B.; Hancock, D.D. The role of animal movement, including off-farm rearing of heifers, in the interherd transmission of multidrug-resistant Salmonella. J. Dairy Sci. 2009, 92, 4229–4238. [Google Scholar] [CrossRef]
- CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final Report, 2013 U.S. Department of Health and Human Services, Atlanta (2015). Available online: https://www.cdc.gov/narms/pdf/2013-annual-report-narms-508c.pdf (accessed on 23 November 2021).
- Wang, X.; Biswas, S.; Paudyal, N.; Pan, H.; Li, X.; Fang, W.; Yue, M. Antibiotic Resistance in Salmonella Typhimurium Isolates Recovered from the Food Chain Through National Antimicrobial Resistance Monitoring System between 1996 and 2016. Front. Microbiol. 2019, 10, 985. [Google Scholar] [CrossRef] [Green Version]
- Lampidis, R.; Kostrewa, D.; Hof, H. Molecular characterization of the genes encoding DNA gyrase and topoisomerase IV of Listeria monocytogenes. J. Antimicrob. Chemother. 2002, 49, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Hull, D.M.; Harrell, E.; van Vliet, A.H.M.; Correa, M.; Thakur, S. Antimicrobial resistance and interspecies gene transfer in Campylobacter coli and Campylobacter jejuni isolated from food animals, poultry processing, and retail meat in North Carolina, 2018–2019. PLoS ONE 2021, 16, e0246571. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.P.; Gooch, C.A.; Lansing, S.; Schueler, J.; Hurst, J.J.; Sassoubre, L.; Crossette, E.M.; Aga, D.S. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J. Dairy Sci. 2020, 103, 1051–1071. [Google Scholar] [CrossRef] [PubMed]
- Obeng, A.S.; Rickard, H.; Sexton, M.; Pang, Y.; Peng, H.; Barton, M. Antimicrobial susceptibilities and resistance genes in Campylobacter strains isolated from poultry and pigs in Australia. J. Appl. Microbiol. 2012, 113, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Geissler, A.L.; Bustos Carrillo, F.; Swanson, K.; Patrick, M.E.; Fullerton, K.E.; Bennett, C.; Barrett, K.; Mahon, B.E. Increasing Campylobacter Infections, Outbreaks, and Antimicrobial Resistance in the United States, 2004–2012. Clin. Infect. Dis. 2017, 65, 1624–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Fang, L.; Xu, C.; Zhang, Q. Antibiotic resistance trends and mechanisms in the foodborne pathogen, Campylobacter. Anim. Health Res. Rev. 2017, 18, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Wang, Y.; Shen, J.; Zhang, Q.; Wu, C. Tracking Campylobacter contamination along a broiler chicken production chain from the farm level to retail in China. Int. J. Food Microbiol. 2014, 181, 77–84. [Google Scholar] [CrossRef]
- Zhang, P.; Shen, Z.; Zhang, C.; Song, L.; Wang, B.; Shang, J.; Yue, X.; Qu, Z.; Li, X.; Wu, L.; et al. Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015. Vet. Microbiol. 2017, 203, 49–55. [Google Scholar] [CrossRef]
- Alonso-Hernando, A.; Prieto, M.; García-Fernández, C.; Alonso-Calleja, C.; Capita, R. Increase over time in the prevalence of multiple antibiotic resistance among isolates of Listeria monocytogenes from poultry in Spain. Food Control. 2012, 23, 37–41. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Sun, W.; Wang, X.-J.; Su, J.-Q.; Stedfeld, R. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J. Hazard. Mater. 2018, 344, 716–722. [Google Scholar] [CrossRef]
- Alexander, T.W.; Yanke, J.L.; Reuter, T.; Topp, E.; Read, R.R.; Selinger, B.L.; McAllister, T.A. Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics. BMC Microbiol. 2011, 11, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenn, L.M.; Lindsey, R.L.; Frank, J.F.; Meinersmann, R.J.; Englen, M.D.; Fedorka-Cray, P.J.; Frye, J.G. Analysis of antimicrobial resistance genes detected in multidrug-resistant Salmonella enterica serovar Typhimurium isolated from food animals. Microb. Drug Resist. 2011, 17, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Frye, J.G.; Fedorka-Cray, P.J.; Jackson, C.R.; Rose, M. Analysis of Salmonella enterica with reduced susceptibility to the third-generation cephalosporin ceftriaxone isolated from U.S. cattle during 2000–2004. Microb. Drug Resist. 2008, 14, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Glenn, L.M.; Englen, M.D.; Lindsey, R.L.; Frank, J.F.; Turpin, J.E.; Berrang, M.E.; Meinersmann, R.J.; Fedorka-Cray, P.J.; Frye, J.G. Analysis of antimicrobial resistance genes detected in multiple-drug-resistant Escherichia coli isolates from broiler chicken carcasses. Microb. Drug Resist. 2012, 18, 453–463. [Google Scholar] [CrossRef]
- Evangelista, A.G.; Corrêa, J.A.F.; Pinto, A.C.S.M.; Luciano, F.B. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistancea-review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1–17. [Google Scholar] [CrossRef]
- McMillan, E.A.; Gupta, S.K.; Williams, L.E.; Jové, T.; Hiott, L.M.; Woodley, T.A.; Barrett, J.B.; Jackson, C.R.; Wasilenko, J.L.; Simmons, M.; et al. Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated with United States Food Animals. Front. Microbiol. 2019, 10, 832. [Google Scholar] [CrossRef] [PubMed]
- Escolar, C.; Gómez, D.; del Carmen Rota García, M.; Conchello, P.; Herrera, A. Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. Foodborne Pathog. Dis. 2017, 14, 357–363. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, E.; Tang, A.; Ye, M.C.; Wang, K.; Jia, Q.; Huang, Z. Data-Driven Analysis of Antimicrobial Resistance in Foodborne Pathogens from Six States within the US. Int. J. Environ. Res. Public Health 2019, 16, 1811. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Tang, Z.; Xi, B.; Tan, W.; Guo, W.; Wu, W.; Ma, C. Environmental effects and risk control of antibiotic resistance genes in the organic solid waste aerobic composting system: A review. Front. Environ. Sci. Eng. 2021, 15, 1–12. [Google Scholar]
- Liao, H.; Lu, X.; Rensing, C.; Friman, V.P.; Geisen, S.; Chen, Z.; Yu, Z.; Wei, Z.; Zhou, S.; Zhu, Y. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environ. Sci. Technol. 2018, 52, 266–276. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Yu, K.; Ahmed, I.; Gin, K.; Xi, B.; Wei, Z.; He, Y.; Zhang, B. Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review. Sci. Total. Environ. 2021, 791, 148372. [Google Scholar] [CrossRef]
- Iovine, N.M. Resistance mechanisms in Campylobacter jejuni. Virulence 2013, 4, 230–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsey, R.L.; Frye, J.G.; Fedorka-Cray, P.J.; Meinersmann, R.J. Microarray-based analysis of IncA/C plasmid-associated genes from multidrug-resistant Salmonella enterica. Appl. Environ. Microbiol. 2011, 77, 6991–6999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadan, H.; Jackson, C.R.; Frye, J.G.; Hiott, L.M.; Samir, M.; Awad, A.; Woodley, T.A. Antimicrobial Resistance, Genetic Diversity and Multilocus Sequence Typing of Escherichia coli from Humans, Retail Chicken and Ground Beef in Egypt. Pathogens 2020, 9, 357. [Google Scholar] [CrossRef] [PubMed]
- Wales, A.D.; Davies, R.H. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics 2015, 4, 567–604. [Google Scholar] [CrossRef] [Green Version]
- Rosengren, L.B.; Waldner, C.L.; Reid-Smith, R.J. Associations between antimicrobial resistance phenotypes, antimicrobial resistance genes, and virulence genes of fecal Escherichia coli isolates from healthy grow-finish pigs. Appl. Environ. Microbiol. 2009, 75, 1373–1380. [Google Scholar] [CrossRef] [Green Version]
Year | No. of Farms | Total No of Samples | Farm Amendment Type | Sample Type | ||
---|---|---|---|---|---|---|
Dairy Manure | Poultry Manure | Manure | Soil | |||
2016/2017 | 11 | 252 | 131 | 121 | 112 | 140 |
2018 | 11 | 262 | 142 | 120 | 120 | 142 |
2019 | 11 | 221 | 113 | 108 | 95 | 126 |
2020 | 10 | 109 | 55 | 54 | 52 | 57 |
Total | 844 | 441 | 403 | 379 | 465 |
Pathogen | No. of Isolates | Farm Amendment Type | Sample Type | ||
---|---|---|---|---|---|
Dairy Manure (n = 441) No. (%) | Poultry Manure (n = 403) No. (%) | Manure (n = 379) No. (%) | Soil (n = 465) No. (%) | ||
E. coli O157 | 15 | 13 (2.9) | 2 (0.5) | 11 (2.9) | 4 (0.9) |
Salmonella | 13 | 6 (1.4) | 7 (1.7) | 12 (3.2) | 1 (0.2) |
L. monocytogenes | 67 | 58 (13.1) | 9 (2.2) | 47(12.4) | 20 (4.3) |
Campylobacter | 68 | 66 (14.9) | 2 (0.5) | 67 (17.7) | 1 (0.2) |
Total positive | 163 | 143 (87.7) * | 20 (12.2) | 137 (84) * | 26 (15.9) |
Antimicrobial Class | Antimicrobials | E. coli O157 (n = 15) | Salmonella (n = 13) | L. monocytogenes (n = 67) | Campylobacter (n = 68) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R No. (%) | I No. (%) | S No. (%) | R No. (%) | I No. (%) | S No. (%) | R No. (%) | I No. (%) | S No. (%) | R No. (%) | I No. (%) | S No. (%) | ||
Penicillin | Amp | 6 (40) | 0 | 9 (60) | 6 (46) | 2 (15.3) | 5 (38.4) | 60 (89.5) | 0 | 7 (10.5) | 63 (97) | 0 | 5 (3) |
Pen | NA | NA | NA | NA | NA | NA | 32 (47.7) | 0 | 35 (52.3) | 68 (100) | 0 | 0 | |
Phenicol | Chl | 0 | 0 | 15 (100) | 1 (7.8) | 0 | 12 (92.2) | 42 (61.7) | 8 (11.7) | 17 (25) | 6 (5.9) | 0 | 62 (94.1) |
Flo | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 (2.9) | 0 | 66 (97) | |
Quinolones | Cip | 0 | 5 (33.3) | 10 (66.6) | 1 (7.6) | 7(46) | 5 (38.4) | 53 (79) | 1 (1.4) | 13 (19.6) | 4 (5.8) | 0 | 64 (94.2) |
Nal | 0 | 0 | 15 (100) | 7 (53.8) | 1(7.8) | 5 (38.4) | 64 (95.5) | 0 | 3 (4.5) | 23 (33.8) | 0 | 45 (66.2) | |
Aminoglycosides | Kan | 9 (60) | 1 (6.7) | 5 (33.3) | 6 (46) | 2 (15.3) | 5 (38.4) | 59 (88) | 0 | 8 (12) | 33 (48.5) | 4 (5.8) | 31 (45.5) |
Gen | 13 (86.6) | 1 (6.7) | 1 (6.7) | 10 (76.9) | 1 (7.8) | 2 (15.3) | 52 (77.6) | 0 | 15 (22.3) | 17 (25) | 0 | 51 (75) | |
Str | 8 (54) | 0 | 7 (46) | 11 (84.6) | 0 | 2 (15.3) | 66 (98.5) | 1 (1.5) | 0 | 15 (22) | 12 (17.6) | 41 (60.2) | |
Tetracyclines | Tet | 2 (23) | 2 (13) | 11 (73.3) | 3 (23) | 1 (7.8) | 9 (69.2) | 23 (34.3) | 0 | 44 (65.6) | 43 (63.2) | 0 | 25 (36.8) |
Macrolides | Ery | NA | NA | NA | NA | NA | NA | 25 (37.3) | 0 | 42 (62.7) | 67 (98.5) | 0 | 1 (1.5) |
Azi | 11(73.3) | 0 | 4 (26.6) | 10 (77) | 0 | 3 (23) | 67 (100) | 0 | 0 | 6 (5.9) | 0 | 62 (94.1) | |
Cephems | Ceft | 0 | 0 | 15 (100) | 1 (7.8) | 1 (7.8) | 11 (84.6) | 67 (100) | 0 | 0 | NA | NA | NA |
Cefo | 1 (6.7) | 0 | 14 (93.1) | 1 (7.8) | 1 (7.8) | 11 (84.6) | 67 (100) | 0 | 0 | NA | NA | NA | |
β–lactam | Amo | 1 (6.7) | 0 | 14 (93.1) | 1 (7.8) | 0 | 12 (92.2) | NA | NA | NA | NA | NA | NA |
Folate pathway Antagonists | Tri | 15 (100) | 0 | 0 | 13 (100) | 0 | 0 | 67 (100) | 0 | 0 | NA | NA | NA |
Sul | 15 (100) | 0 | 0 | 13 (100) | 0 | 0 | NA | NA | NA | NA | NA | NA | |
Polymyxins | Col | 1 (6.7) | 0 | 14 (93.1) | 2 (15.3) | 0 | 11 (84.6) | NA | NA | NA | NA | NA | NA |
Penem | Mer | 0 | 0 | 15 (100) | 0 | 0 | 13 (100) | 67 (100) | 0 | 0 | NA | NA | NA |
Glycopeptide | Van | NA | NA | NA | NA | NA | NA | 45 (67) | 22 (33) | 0 | NA | NA | NA |
Oxazolidinone | Lin | NA | NA | NA | NA | NA | NA | 39 (58) | 28 (42) | 0 | NA | NA | NA |
Nitrofuran | Nit | NA | NA | NA | NA | NA | NA | 6 (8.9) | 59 (86) | 2 (2.9) | NA | NA | NA |
Lincomycin | Cli | NA | NA | NA | NA | NA | NA | 67 (100) | 0 | 0 | 8 (11.7) | 0 | 60 (80.8) |
Rifamycins | Rif | NA | NA | NA | NA | NA | NA | 67 (100) | 0 | 0 | NA | NA | NA |
Fluoroquinolone | Lev | NA | NA | NA | NA | NA | NA | 61 (91) | 6 (9) | 0 | NA | NA | NA |
Ketolides | Tel | NA | NA | NA | NA | NA | NA | NA | NA | NA | 4 (5.8) | 0 | 64 (94.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hailu, W.; Helmy, Y.A.; Carney-Knisely, G.; Kauffman, M.; Fraga, D.; Rajashekara, G. Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States. Antibiotics 2021, 10, 1450. https://doi.org/10.3390/antibiotics10121450
Hailu W, Helmy YA, Carney-Knisely G, Kauffman M, Fraga D, Rajashekara G. Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States. Antibiotics. 2021; 10(12):1450. https://doi.org/10.3390/antibiotics10121450
Chicago/Turabian StyleHailu, Woinshet, Yosra A. Helmy, Geoffrey Carney-Knisely, Michael Kauffman, Dean Fraga, and Gireesh Rajashekara. 2021. "Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States" Antibiotics 10, no. 12: 1450. https://doi.org/10.3390/antibiotics10121450
APA StyleHailu, W., Helmy, Y. A., Carney-Knisely, G., Kauffman, M., Fraga, D., & Rajashekara, G. (2021). Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States. Antibiotics, 10(12), 1450. https://doi.org/10.3390/antibiotics10121450