Isolation of Human Lineage, Fluoroquinolone-Resistant and Extended-β-Lactamase-Producing Escherichia coli Isolates from Companion Animals in Japan
Abstract
:1. Introduction
2. Results
2.1. Isolation of E. coli from Rectal Samples Taken from Companion Animals, and Measurement of Their Susceptibility to Ciprofloxacin and Cefotaxime
2.2. Isolation Rate of Ciprofloxacin- or Cefotaxime-Resistant E. coli Isolates from Companion Animals
2.3. Determination of ST131 Clades in Ciprofloxacin-Resistant E. coli Isolates
2.4. Detection of CTX-M Type β-Lactamase
2.5. Multi-Locus Sequence Typing (MLST) Analysis
2.6. MLST Analysis of Ciprofloxacin-Resistant E. coli Isolates from Companion Animals and Their Owners
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolation
4.2. Antimicrobial Susceptibility
4.3. Genetic Analysis
4.4. Statistical Analysis
4.5. Ethical Approvemnet
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Byron, J.K. Urinary Tract Infection. Vet. Clin. North Am. Small Anim. Pract. 2019, 49, 211–221. [Google Scholar] [CrossRef]
- Tsuyuki, Y.; Kurita, G.; Murata, Y.; Takahashi, T. Bacteria isolated from companion animals in Japan (2014–2016) by blood culture. J. Infect. Chemother. 2018, 24, 583–587. [Google Scholar] [CrossRef]
- Dear, J.D. Bacterial pneumonia in dogs and cats: An update. Vet. Clin. North Am. Small Anim. Pract. 2020, 50, 447–465. [Google Scholar] [CrossRef]
- Makita, K.; Sugahara, N.; Nakamura, K.; Matsuoka, T.; Sakai, M.; Tamura, Y. Current status of antimicrobial drug use in japanese companion animal clinics and the factors associated with their use. Front. Vet. Sci. 2021, 8, 705648. [Google Scholar] [CrossRef]
- Harada, K.; Okada, E.; Shimizu, T.; Kataoka, Y.; Sawada, T.; Takahashi, T. Antimicrobial resistance, virulence profiles, and phylogenetic groups of fecal Escherichia coli isolates: A comparative analysis between dogs and their owners in Japan. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats—A scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef]
- Okubo, T.; Sato, T.; Yokota, S.-I.; Usui, M.; Tamura, Y. Comparison of broad-spectrum cephalosporin-resistant Escherichia coli isolated from dogs and humans in Hokkaido, Japan. J. Infect. Chemother. 2014, 20, 243–249. [Google Scholar] [CrossRef]
- Sato, T.; Yokota, S.-I.; Okubo, T.; Ishihara, K.; Ueno, H.; Muramatsu, Y.; Fujii, N.; Tamura, Y. Contribution of the AcrAB-TolC efflux pump to high-level fluoroquinolone resistance in Escherichia coli isolated from dogs and humans. J. Vet. Med. Sci. 2013, 75, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Yokota, S.-I.; Ichihashi, R.; Miyauchi, T.; Okubo, T.; Usui, M.; Fujii, N.; Tamura, Y. Isolation of Escherichia coli strains with AcrAB–TolC efflux pump-associated intermediate interpretation or resistance to fluoroquinolone, chloramphenicol and aminopenicillin from dogs admitted to a university veterinary hospital. J. Vet. Med. Sci. 2014, 76, 937–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, B.J.; Stephens, D.S. Urinary tract infection: An overview. Am. J. Med. Sci. 1997, 314, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.H. Reservoirs of antimicrobial resistance in pet animals. Clin. Infect. Dis. 2007, 45, S148–S152. [Google Scholar] [CrossRef]
- Mathers, A.J.; Peirano, G.; Pitout, J.D.D. The Role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, B.; Sidjabat, H.E.; Paterson, D.L. Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain. J. Antimicrob. Chemother. 2011, 66, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Maeyama, Y.; Taniguchi, Y.; Hayashi, W.; Ohsaki, Y.; Osaka, S.; Koide, S.; Tamai, K.; Nagano, Y.; Arakawa, Y.; Nagano, N. Prevalence of ESBL/AmpC genes and specific clones among the third-generation cephalosporin-resistant Enterobacteriaceae from canine and feline clinical specimens in Japan. Vet. Microbiol. 2018, 216, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Belas, A.; Marques, C.; Aboim, C.; Pomba, C. Emergence of Escherichia coli ST131 H30/H30-Rx subclones in companion animals. J. Antimicrob. Chemother. 2019, 74, 266–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platell, J.L.; Johnson, J.R.; Cobbold, R.N.; Trott, D.J. Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Vet. Microbiol. 2011, 153, 99–108. [Google Scholar] [CrossRef] [PubMed]
- National Veterinary Assay Laboratory. JVARM (Japanese Veterinary Antimicrobial Resistance Monitoring System) 2017–2019. Available online: https://www.maff.go.jp/nval/tyosa_kenkyu/taiseiki/monitor/e_index.html (accessed on 25 November 2021).
- Yokota, S.-I.; Sato, T.; Okubo, T.; Ohkoshi, Y.; Okabayashi, T.; Kuwahara, O.; Tamura, Y.; Fujii, N. Prevalence of fluoroquinolone-resistant Escherichia coli O25:H4-ST131 (CTX-M-15-Nonproducing) strains isolated in Japan. Chemotherapy 2012, 58, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, Y.; Sato, T.; Tsukamoto, N.; Nakajima, C.; Suzuki, Y.; Takahashi, S.; Yokota, S.-I. Clonal/subclonal changes and accumulation of CTX-M-type β-lactamase genes in fluoroquinolone-resistant Escherichia coli ST131 and ST1193 strains isolated during the past 12 years, Japan. J. Glob. Antimicrob. Resist. 2021, 27, 150–155. [Google Scholar] [CrossRef]
- Kawamura, K.; Sugawara, T.; Matsuo, N.; Hayashi, K.; Norizuki, C.; Tamai, K.; Kondo, T.; Arakawa, Y. Spread of CTX-type extended-spectrum β-lactamase-producing Escherichia coli isolates of epidemic clone B2-O25-ST131 among dogs and cats in Japan. Microb. Drug Resist. 2017, 23, 1059–1066. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Yossapol, M.; Shibata, S.; Asai, T. Selection of broad-spectrum cephalosporin-resistant Escherichia coli in the feces of healthy dogs after administration of first-generation cephalosporins. Microbiol. Immunol. 2017, 61, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manges, A.R.; Mende, K.; Murray, C.K.; Johnston, B.D.; Sokurenko, E.V.; Tchesnokova, V.; Johnson, J.R. Clonal distribution and associated characteristics of Escherichia coli clinical and surveillance isolates from a military medical center. Diagn. Microbiol. Infect. Dis. 2017, 87, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Tchesnokova, V.; Radey, M.; Chattopadhyay, S.; Larson, L.; Weaver, J.L.; Kisiela, D.; Sokurenko, E.V. Pandemic fluoroquinolone resistant Escherichia coli clone ST1193 emerged via simultaneous homologous recombinations in 11 gene loci. Proc. Natl. Acad. Sci. USA 2019, 116, 14740–14748. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Johnston, B.; Clabots, C.; Kuskowski, M.A.; Castanheira, M. Escherichia coli Sequence Type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin. Infect. Dis. 2010, 51, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Yokota, S.-I.; Okubo, T.; Usui, M.; Fujii, N.; Tamura, Y. Phylogenetic association of fluoroquinolone and cephalosporin resistance of D-O1-ST648 Escherichia coli carrying bla CMY-2 from faecal samples of dogs in Japan. J. Med. Microbiol. 2014, 63, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, R.; Beyrouthy, R.; Haenni, M.; Nicolas-Chanoine, M.-H.; Dalmasso, G.; Madec, J.-Y. Host colonization as a major evolutionary force favoring the diversity and the emergence of the worldwide multidrug-resistant Escherichia coli ST131. mBio 2021, 12, 0145121. [Google Scholar] [CrossRef]
- Kidsley, A.K.; White, R.T.; Beatson, S.A.; Saputra, S.; Schembri, M.A.; Gordon, D.; Johnson, J.R.; O’Dea, M.; Mollinger, J.L.; Abraham, S.; et al. Companion animals are spillover hosts of the multidrug-resistant human extraintestinal Escherichia Coli pandemic clones ST131 and ST1193. Front. Microbiol. 2020, 11, 1968. [Google Scholar] [CrossRef] [PubMed]
- Platell, J.L.; Trott, D.J.; Johnson, J.R.; Heisig, P.; Heisig, A.; Clabots, C.R.; Johnston, B.; Cobbold, R.N. Prominence of an O75 clonal group (clonal complex 14) among non-ST131 fluoroquinolone-resistant Escherichia coli causing extraintestinal infections in humans and dogs in Australia. Antimicrob. Agents Chemother. 2012, 56, 3898–3904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toombs-Ruane, L.J.; Benschop, J.; French, N.P.; Biggs, P.J.; Midwinter, A.C.; Marshall, J.C.; Chan, M.; Drinković, D.; Fayaz, A.; Baker, M.G.; et al. Carriage of extended-spectrum-beta-lactamase- and AmpC beta-lactamase-producing Escherichia coli strains from humans and pets in the same households. Appl. Environ. Microbiol. 2020, 86, e01613–01620. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing CLSI Supplement M100, 30th ed.; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Matsumura, Y.; Pitout, J.D.D.; Peirano, G.; DeVinney, R.; Noguchi, T.; Yamamoto, M.; Gomi, R.; Matsuda, T.; Nakano, S.; Nagao, M.; et al. Rapid identification of different Escherichia coli sequence type 131 clades. Antimicrob. Agents Chemother. 2017, 61, e00179-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tartof, S.Y.; Solberg, O.D.; Manges, A.R.; Riley, L.W. Analysis of a Uropathogenic Escherichia coli clonal group by multilocus sequence typing. J. Clin. Microbiol. 2005, 43, 5860–5864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saladin, M.; Cao, V.T.B.; Lambert, T.; Donay, J.-L.; Herrmann, J.-L.; Ould-Hocine, Z.; Verdet, C.; Delisle, F.; Philippon, A.; Arlet, G. Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol. Lett. 2002, 209, 161–168. [Google Scholar] [CrossRef]
CHROMagar ECC | No. Total Isolates | Prevalence of Resistance (No. of Isolates) | Prevalence of ST131 (No. of Isolates) | |||
---|---|---|---|---|---|---|
Ciprofloxacin | Cefotaxime | Total | C1-M27 | C1-nM27 | ||
Plain | 101 | 27.7% (28) | 24.8% (25) | 9.9% (10) | 6.9% (7) | 3.0% (3) |
Ciprofloxacin-added | 46 | 100% (46) ** | 76.1% (35) ** | 32.6% (15) ** | 19.6% (9) | 13.0% (6) * |
ESBL supplement | 28 | 89.3% (25) ** | 100% (28) ** | 35.7% (10) ** | 28.6% (8) ** | 7.1% (2) |
CHROMagar ECC | Isolation Rate of Resistance (No. of Animals) | |
---|---|---|
Ciprofloxacin | Cefotaxime | |
Plain | 32.4% (11) | 29.4% (10) |
Ciprofloxacin-added | 47.1% (16) | 38.2% (13) |
ESBL supplement | 29.4% (10) | 32.4% (11) |
E. coli Strains | Origin | CHROMagar ECC | MIC (mg/L) | MLST-Clade | blaCTX-M | |
---|---|---|---|---|---|---|
CIP | CTX | |||||
DE3-1 | Dog #1 | plain | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3-2 | Dog #1 | plain | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3-3 | Dog #1 | plain | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3CIP1 | Dog #1 | Ciprofloxacin | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3CIP2 | Dog #1 | Ciprofloxacin | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3CIP3 | Dog #1 | Ciprofloxacin | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3ES1 | Dog #1 | ESBL | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3ES2 | Dog #1 | ESBL | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3ES3 | Dog #1 | ESBL | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3h1 | Owner of dog #1 | plain | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3h2 | Owner of dog #1 | plain | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3h3 | Owner of dog #1 | plain | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3hCIP1 | Owner of dog #1 | Ciprofloxacin | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3hCIP2 | Owner of dog #1 | Ciprofloxacin | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3hCIP3 | Owner of dog #1 | Ciprofloxacin | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3hES1 | Owner of dog #1 | ESBL | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3hES2 | Owner of dog #1 | ESBL | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
DE3hES3 | Owner of dog #1 | ESBL | 32 | >128 | ST131 C1-M27 | CTX-M-27 |
FE1-1 | Dog #2 | plain | 32 | <0.25 | ST131 C1-nM27 | ND |
FE1-2 | Dog #2 | plain | 32 | <0.25 | ST131 C1-nM27 | ND |
FE1-3 | Dog #2 | plain | 32 | <0.25 | ST131 C1-nM27 | ND |
FE1CIP1 | Dog #2 | Ciprofloxacin | 32 | <0.25 | ST131 C1-nM27 | ND |
FE1CIP2 | Dog #2 | Ciprofloxacin | 32 | <0.25 | ST131 C1-nM27 | ND |
FE1CIP3 | Dog #2 | Ciprofloxacin | 32 | <0.25 | ST131 C1-nM27 | ND |
FE1hCIP1 | Owner of dog #2 | Ciprofloxacin | 32 | <0.25 | ST131 C1-nM27 | ND |
FE1hCIP2 | Owner of dog #2 | Ciprofloxacin | 32 | <0.25 | ST131 C1-nM27 | ND |
FE1hCIP3 | Owner of dog #2 | Ciprofloxacin | 32 | <0.25 | ST131 C1-nM27 | ND |
GE1CIP1 | Dog #3 | Ciprofloxacin | 32 | >128 | ST2380 | CTX-M-14 |
GE1ES1 | Dog #3 | ESBL | 32 | >128 | ST2380 | CTX-M-14 |
GE1h-1 | Owner A of dog #3 | Ciprofloxacin | 32 | <0.25 | ST8671 | ND |
GE1h-2 | Owner B of dog #3 | Ciprofloxacin | 32 | <0.25 | ST2380 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, T.; Yokota, S.-i.; Tachibana, T.; Tamai, S.; Maetani, S.; Tamura, Y.; Horiuchi, M. Isolation of Human Lineage, Fluoroquinolone-Resistant and Extended-β-Lactamase-Producing Escherichia coli Isolates from Companion Animals in Japan. Antibiotics 2021, 10, 1463. https://doi.org/10.3390/antibiotics10121463
Sato T, Yokota S-i, Tachibana T, Tamai S, Maetani S, Tamura Y, Horiuchi M. Isolation of Human Lineage, Fluoroquinolone-Resistant and Extended-β-Lactamase-Producing Escherichia coli Isolates from Companion Animals in Japan. Antibiotics. 2021; 10(12):1463. https://doi.org/10.3390/antibiotics10121463
Chicago/Turabian StyleSato, Toyotaka, Shin-ichi Yokota, Tooru Tachibana, Satoshi Tamai, Shigeki Maetani, Yutaka Tamura, and Motohiro Horiuchi. 2021. "Isolation of Human Lineage, Fluoroquinolone-Resistant and Extended-β-Lactamase-Producing Escherichia coli Isolates from Companion Animals in Japan" Antibiotics 10, no. 12: 1463. https://doi.org/10.3390/antibiotics10121463
APA StyleSato, T., Yokota, S. -i., Tachibana, T., Tamai, S., Maetani, S., Tamura, Y., & Horiuchi, M. (2021). Isolation of Human Lineage, Fluoroquinolone-Resistant and Extended-β-Lactamase-Producing Escherichia coli Isolates from Companion Animals in Japan. Antibiotics, 10(12), 1463. https://doi.org/10.3390/antibiotics10121463