Salmonella in Pig Farms and on Pig Meat in Suriname
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Isolation and Identification
2.3. Whole Genome Sequencing
2.4. Statistical Analysis
3. Results
3.1. Prevalence, Serotyes, and Epidemiology
3.2. Antimicrobial Resistance Genes
3.3. Plasmids
3.4. Association of Resistance Genes with Mobile Genetic Elements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adesiyun, A.; Webb, L.; Musai, L.; Louison, B.; Joseph, G.; Stewart-Johnson, A.; Samlal, S.; Rodrigo, S. Survey of Salmonella contamination in chicken layer farms in three Caribbean countries. J. Food Prot. 2014, 77, 1471–1480. [Google Scholar] [CrossRef]
- Guerra, M.M.; de Almeida, A.M.; Willingham, A.L. An overview of food safety and bacterial foodborne zoonoses in food production animals in the Caribbean region. Trop. Anim. Health Prod. 2016, 48, 1095–1108. [Google Scholar] [CrossRef] [Green Version]
- Amadi, V.A.; Hariharan, H.; Arya, G.; Matthew-Belmar, V.; Nicholas-Thomas, R.; Pinckney, R.; Sharma, R.; Johnson, R. Serovars and antimicrobial resistance of non-typhoidal Salmonella isolated from non-diarrhoeic dogs in Grenada, West Indies. Vet. Med. Sci. 2017, 4, 26–34. [Google Scholar] [CrossRef]
- Miller, S.; Zieger, U.; Ganser, C.; Satterlee, S.A.; Bankovich, B.; Amadi, V.; Hariharan, H.; Stone, D.; Wisely, S.M.J. Influence of land use and climate on Salmonella carrier status in the small Indian mongoose (Herpestes auropunctatus) in Grenada, West Indies. J. Wildl. Dis. 2015, 51, 60–68. [Google Scholar] [CrossRef]
- Sylvester, W.R.; Amadi, V.; Pinckney, R.; Macpherson, C.N.; McKibben, J.S.; Bruhl-Day, R.; Johnson, R.; Hariharan, H. Prevalence, serovars and antimicrobial susceptibility of Salmonella spp. from wild and domestic green iguanas (Iguana iguana) in Grenada, West Indies. Zoonoses Public Health 2014, 61, 436–441. [Google Scholar] [CrossRef]
- Peterson, R.; Hariharan, H.; Matthew, V.; Chappell, S.; Davies, R.; Parker, R.; Sharma, R. Prevalence, serovars, and antimicrobial susceptibility of Salmonella isolated from blue land crabs (Cardisoma guanhumi) in Grenada, West Indies. J. Food Prot. 2013, 76, 1270–1273. [Google Scholar] [CrossRef]
- Drake, M.; Amadi, V.; Zieger, U.; Johnson, R.; Hariharan, H. Prevalence of Salmonella spp. in cane toads (Bufo marinus) from Grenada, West Indies, and their antimicrobial susceptibility. Zoonoses Public Health 2013, 60, 437–441. [Google Scholar] [CrossRef]
- Rush, E.M.; Amadi, V.A.; Johnson, R.; Lonce, N.; Hariharan, H. Salmonella serovars associated with Grenadian tree boa (Corallus grenadensis) and their antimicrobial susceptibility. Vet. Med. Sci. 2020, 6, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Prud’homme, Y.; Burton, F.J.; McClave, C.; Calle, P.P. Prevalence, incidence, and identification of Salmonella enterica from wild and captive grand cayman iguanas (cyclura lewisi). J. Zoo Wildl. Med. 2018, 49, 959–966. [Google Scholar] [CrossRef]
- Dutton, C.S.; Revan, F.; Wang, C.; Xu, C.; Norton, T.M.; Stewart, K.M.; Kaltenboeck, B.; Soto, E. Salmonella enterica prevalence in leatherback sea turtles (Dermochelys coriacea) in St. Kitts, West Indies. J. Zoo Wildl. Med. 2013, 44, 765–768. [Google Scholar] [CrossRef]
- Cazabon, E.; Berment, M.; Supersad, N. Salmonella infection in market swine, Trinidad and Tobago. Bull. Pan Am. Health Organ. 1978, 12, 51–54. [Google Scholar]
- Hanlon, K.E.; Echeverry, A.; Miller, M.F.; Brashears, M.M. Establishment of a preliminary baseline of Salmonella presence on pork and goat carcasses harvested in the Bahamas to address food and nutritional security interventions. Anim. Front. 2018, 8, 26–32. [Google Scholar] [CrossRef]
- de la Fé Rodríguez, P.Y.; Martin, L.O.; Muñoz, E.C.; Imberechts, H.; Butaye, P.; Goddeeris, B.M.; Cox, E. Several enteropathogens are circulating in suckling and newly weaned piglets suffering from diarrhea in the province of Villa Clara, Cuba. Trop. Anim. Health Prod. 2013, 45, 435–440. [Google Scholar] [CrossRef]
- Persad, A.K.; LeJeune, J. A Review of Current Research and Knowledge Gaps in the Epidemiology of Shiga Toxin-Producing Escherichia coli and Salmonella spp. in Trinidad and Tobago. Vet. Sci. 2018, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Souvorov, A.; Agarwala, R.; Lipman, D.J. SKESA: Strategic k-mer extension for scrupulous assemblies. Genom. Biol. 2018, 19, 153. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, C.; Kruczkiewicz, P.; Laing, C.R.; Lingohr, E.J.; Gannon, V.P.J.; Nash, J.H.E.; Taboada, E.N. The Salmonella In Silico Typing Resource (SISTR): An open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE 2016, 11, e0147101. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total Genome Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Sahl, J.W.; Lemmer, D.; Travis, J.; Schupp, J.M.; Gillece, J.D.; Aziz, M.; Driebe, E.M.; Drees, K.P.; Hicks, N.D.; Williamson, C.H.D.; et al. NASP: An accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb. Genom. 2016, 2, e000074. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolaia, V.; Kaas, R.F.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.R.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Zankari, E.; Allesøe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwengers, O.; Barth, P.; Falgenhauer, L.; Hain, T.; Chakraborty, T.; Goesmann, A. Platon: Identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores. Microb. Genom. 2020, 6, mgen000398. [Google Scholar] [CrossRef]
- Neuert, S.; Nair, S.; Day, M.R.; Doumith, M.; Ashton, P.M.; Mellor, K.C.; Jenkins, C.; Hopkins, K.L.; Woodford, N.; de Pinna, E.; et al. Prediction of phenotypic antimicrobial resistance profiles from Whole Genome Sequences of Non-typhoidal Salmonella enterica. Front. Microbiol. 2018, 9, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adesiyun, A.A.; Kaminjolo, J.S.; Loregnard, R.; Kitson-Piggott, W. Epidemiology of Salmonella infections in Trinidadian livestock farms. Rev. Elev. Med. Vet. Pays Trop. 1993, 46, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Rasschaert, G.; Michiels, J.; Arijs, D.; Wildemauwe, C.; De Smet, S.; Heyndrickx, M. Effect of farm type on within-herd Salmonella prevalence, serovar distribution, and antimicrobial resistance. J. Food Prot. 2012, 75, 859–866. [Google Scholar] [CrossRef]
- Bonardi, S. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiol. Infect. 2017, 145, 1513–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, J.; Mourão, J.; Peixe, L.; Antunes, P. Non-typhoidal Salmonella in the pig production chain: A comprehensive analysis of its impact on human health. Pathogens 2019, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadel-Six, S.; Cherchame, E.; Douarre, P.E.; Tang, Y.; Felten, A.; Barbet, P.; Litrup, E.; Banerji, S.; Simon, S.; Pasquali, F.; et al. The spatiotemporal dynamics and microevolution events that favored the success of the highly clonal multidrug-resistant monophasic Salmonella Typhimurium circulating in Europe. Front. Microbiol. 2021, 12, 651124. [Google Scholar] [CrossRef]
- Tassinari, E.; Bawn, M.; Thilliez, G.; Charity, O.; Acton, L.; Kirkwood, M.; Petrovska, L.; Dallman, T.; Burgess, C.M.; Hall, N.; et al. Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium clone. Microb. Genom. 2020, 6, mgen000456. [Google Scholar] [CrossRef] [PubMed]
- Al-Gallas, N.; Khadraoui, N.; Hotzel, H.; Tomaso, H.; El-Adawy, H.; Neubauer, H.; Belghouthi, K.; Ghedira, K.; Gautam, H.K.; Kumar, B.; et al. Quinolone resistance among Salmonella Kentucky and Typhimurium isolates in Tunisia: First report of Salmonella Typhimurium ST34 in Africa and qnrB19 in Tunisia. J. Appl. Microbiol. 2021, 130, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Elbediwi, M.; Beibei, W.; Pan, H.; Jiang, Z.; Biswas, S.; Li, Y.; Yue, M. Genomic characterization of mcr-1-carrying Salmonella enterica Serovar 4,[5],12:i:- ST 34 clone isolated from pigs in China. Front. Bioeng. Biotechnol. 2020, 8, 663. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Pan, Z.M.; Kang, X.L.; Geng, S.Z.; Liu, Z.Y.; Cai, Y.Q.; Jiao, X.A. Prevalence, characteristics, and antimicrobial resistance patterns of Salmonella in retail pork in Jiangsu province, eastern China. J. Food Prot. 2014, 77, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S.; Georges, K.; Rahaman, S.; Abebe, W.; Adesiyun, A.A. Characterization of Salmonella isolates recovered from stages of the processing lines at four broiler processing plants in Trinidad and Tobago. Microorganisms 2021, 9, 1048. [Google Scholar] [CrossRef]
- Maguire, M.; Khan, A.S.; Adesiyun, A.A.; Georges, K.; Gonzalez-Escalona, N. Closed genome sequence of a Salmonella enterica Serotype Senftenberg strain carrying the mcr-9 gene isolated from broken chicken eggshells in Trinidad and Tobago. Microbiol. Resour. Announc. 2021, 10, e0146520. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Mohan, K.; Georges, K.; Dziva, F.; Adesiyun, A.A. Occurrence of virulence and resistance genes in Salmonella in cloacae of slaughtered chickens and ducks at pluck shops in Trinidad. J. Food Prot. 2021, 84, 39–46. [Google Scholar] [CrossRef]
- Poole, T.L.; Schlosser, W.D.; Anderson, R.C.; Norman, K.N.; Beier, R.C.; Nisbet, D.J. Whole-Genome Sequence of Aeromonas hydrophila CVM861 isolated from diarrhetic neonatal Swine. Microorganisms 2020, 8, 1648. [Google Scholar] [CrossRef] [PubMed]
- Shigemura, H.; Sakatsume, E.; Sekizuka, T.; Yokoyama, H.; Hamada, K.; Etoh, Y.; Carle, Y.; Mizumoto, S.; Hirai, S.; Matsui, M.; et al. Food workers as a reservoir of extended-spectrum-cephalosporin-resistant Salmonella strains in Japan. Appl. Environ. Microbiol. 2020, 86, e00072-20. [Google Scholar] [CrossRef]
- Li, R.; Zhang, P.; Yang, X.; Wang, Z.; Fanning, S.; Wang, J.; Du, P.; Bai, L. Identification of a novel hybrid plasmid coproducing MCR-1 and MCR-3 variant from an Escherichia coli strain. J. Antimicrob. Chemother. 2019, 74, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, R.R.; Dissel, S.; Rapallini, M.L.B.A.; van der Weijden, C.C.; Wit, B.; Heymans, R. Characterization and whole genome sequencing of closely related multidrug-resistant Salmonella enterica serovar Heidelberg isolates from imported poultry meat in the Netherlands. PLoS ONE 2019, 14, e0219795. [Google Scholar] [CrossRef] [Green Version]
Isolate | Farm | Origin | Serotype | MLST |
---|---|---|---|---|
173 | B | Cecal | Anatum | ST64 |
174 * | X | Cecal | Ohio | ST329 |
175 * | X | Cecal | Monophasic variant of Typhimurium | ST34 |
179 | X | Lymph node | Monophasic variant of Typhimurium | ST34 |
180 | P | Lymph node | Monophasic variant of Typhimurium | ST34 |
222 | E | Cecal | Brandenburg | ST65 |
250 | X | Lymph node | Javaniana | ST1674 |
543 | F | Lymph node | Ohio | ST329 |
Isolate | Serotype | β-Lactam | Aminoglycoside | Sulphonamide | Tetracycline | Trimethoprim | Plasmids |
---|---|---|---|---|---|---|---|
173 | Anatum | aac(6′) | ColpVC_ | ||||
174 | Ohio | aac(6′) | |||||
175 | Monophasic variant of Typhimurium | blaTEM-1 | aac(6′), aph(6)-Id, aph(3″)-Ib, aph(3′)-Ia | sul2 | IncQ1_1 | ||
179 | Monophasic variant of Typhimurium | blaTEM-1 | aac(6′), aph(6)-Id, aph(3″)-Ib, aph(3′)-Ia | sul2 | IncQ1_1, IncI1_1_Alpha | ||
180 | Monophasic variant of Typhimurium | blaTEM-1 | aac(6′), aph(6)-Id, aph(3″)-Ib, aph(3′)-Ia | sul2 | IncQ1_1 | ||
222 | Brandenburg | blaTEM-1 | aac(6′), aph(6)-Id, aph(3″)-Ib | sul2 | tet(B) | IncFIA(HI1)_1_HI1, IncH1A/B, ColRNAI_1, Col440I_1 | |
250 | Javaniana | aac(6′) | |||||
543 | Ohio | blaTEM-1 | aac(6′), aph(6)-Id, aph(3″)-Ib | sul2 | tet(B) | dfrAB | IncFIA(HI1)_1_HI1, IncHI1B(R27)_1_R27, Col440I_1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butaye, P.; Halliday-Simmonds, I.; Van Sauers, A. Salmonella in Pig Farms and on Pig Meat in Suriname. Antibiotics 2021, 10, 1495. https://doi.org/10.3390/antibiotics10121495
Butaye P, Halliday-Simmonds I, Van Sauers A. Salmonella in Pig Farms and on Pig Meat in Suriname. Antibiotics. 2021; 10(12):1495. https://doi.org/10.3390/antibiotics10121495
Chicago/Turabian StyleButaye, Patrick, Iona Halliday-Simmonds, and Astrid Van Sauers. 2021. "Salmonella in Pig Farms and on Pig Meat in Suriname" Antibiotics 10, no. 12: 1495. https://doi.org/10.3390/antibiotics10121495
APA StyleButaye, P., Halliday-Simmonds, I., & Van Sauers, A. (2021). Salmonella in Pig Farms and on Pig Meat in Suriname. Antibiotics, 10(12), 1495. https://doi.org/10.3390/antibiotics10121495