Spread of Linezolid-Resistant Enterococcus spp. in Human Clinical Isolates in the Czech Republic
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Susceptibility of Linezolid Resistant Isolates of E. faecium and E. faecalis
2.2. Mechanisms of Linezolid and Vancomycin Resistance
2.3. Molecular Typing-MLST Analysis
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Susceptibility Testing
4.3. Detection of Determinants of Linezolid Resistance
4.4. Detection of Mechanism of Vancomycin Resistance
4.5. MLST Typing of Linezolid Resistant Strains of E. faecium, E. faecalis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prieto, A.M.; van Schaik, W.; Rogers, M.R.C.; Coque, T.M.; Baquero, F.; Corander, J.; Willems, R.J.L. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front. Microbiol. 2016, 26, 788. [Google Scholar]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar] [CrossRef]
- Mendes, R.E.; Deshpande, L.M.; Jones, R.N. Linezolid update: Stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist. Updates 2014, 17, 1–12. [Google Scholar] [CrossRef]
- Bourgeois-Nicolaos, N.; Massias, L.; Couson, B.; Butel, M.J.; Andremont, A.; Doucet-Populaire, F. Dose Dependence of Emergence of Resistance to Linezolid in Enterococcus faecalis In Vivo. J. Infect. Dis. 2007, 10, 1480–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, L.; Kiratisin, P.; Mendes, R.E.; Panesso, D.; Singh, K.V.; Arias, C.A. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob. Agents Chemother. 2012, 56, 3917–3922. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, A.; D’Andrea, M.M.; Brenciani, A.; Galeotti, C.L.; Morroni, G.; Pollini, S.; Varaldo, P.E.; Rossolini, G.M. Characterization of poxtA, a novel phenicol–oxazolidinone–tetracycline resistance gene from an MRSA of clinical origin. J. Antimicrob. Chemother. 2018, 73, 1763–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klare, I.; Fleige, C.; Geringer, U.; Thurmer, A.; Bender, J.; Mutters, N.T.; Mischnik, A.; Werner, G. Increased frequency of linezolid resistance among clinical Enterococcus faecium isolates from German hospital patients. J. Glob. Antimicrob. Resist. 2015, 3, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.N.; Memari, N.; Shahinas, D.; Toye, B.; Jamieson, F.B.; Farrell, D.J. Linezolid resistance in Enterococcus faecium isolated in Ontario, Canada. Diagn. Microbiol. Infect. Dis. 2013, 77, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Rossney, A.S.; Shore, A.C.; Morgan, P.M.; Fitzgibbon, M.M.; O’Connell, B.; Coleman, D.C. The emergence and importation of diverse genotypes of methicillin-resistant Staphylococcus aureus (MRSA) harboring the Panton-Valentine leukocidin gene (pvl) reveal that pvl is a poor marker for community-acquired MRSA strains in Ireland. J. Clin. Microbiol. 2007, 45, 2554–2563. [Google Scholar] [CrossRef] [Green Version]
- Bender, J.K.; Fleige, C.; Klare, I.; Fiedler, S.; Mischnik, A.; Mutters, N.T.; Dingle, K.E.; Werner, G. Detection of a cfr(B) Variantin German Enterococcus faecium Clinical Isolates and the Impact on Linezolid Resistance in Enterococcuss pp. PLoS ONE 2016, 11, e0167042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moure, Z.; Lara, N.; Marín, M.; Sola-Campoy, P.J.; Bautista, V.; Gómez-Bertomeu, F.; Gómez-Dominguez, C.; Pérez-Vázquez, M.; Aracil, B.; Campos, J.; et al. Spanish Linezolid-Resistant Enterococci Collaborating Group, Interregional spread in Spain of linezolid-resistant Enterococcus spp. isolates carrying the optrA and poxtA genes. Int. J. Antimicrob. Agents 2020, 55, 105977. [Google Scholar] [CrossRef] [PubMed]
- Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updates 2018, 40, 25–39. [Google Scholar] [CrossRef]
- Prystowsky, J.; Siddiqui, F.; Chosay, J.; Shinabarger, D.L.; Millichap, J.; Peterson, L.R.; Noskin, G.A. Resistance to linezolid: Characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 2001, 45, 2154–2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntokou, E.; Stathopoulos, C.; Kristo, I.; Dimitroulia, E.; Labrou, M.; Vasdeki, A.; Makris, D.; Zakynthinos, E.; Tsakris, A. Intensive care unit dissemination of multiple clones of linezolid-resistant Enterococcus faecalis and Enterococcus faecium. J. Antimicrob. Chemother. 2012, 67, 1819–1823. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.E.; Deshpande, L.M.; Costello, A.J.; Farrell, D.J. Molecular epidemiology of Staphylococcus epidermidis clinical isolates from U.S. hospitals. Antimicrob. Agents Chemother. 2012, 56, 4656–4661. [Google Scholar] [CrossRef] [Green Version]
- Cavaco, L.M.; Bernal, J.F.; Zankari, E.; Le’on, M.; Hendriksen, R.S.; Perez-Gutierrez, E.; Aarestrup, F.M.; Donado-Godoy, P. Detection of linezolid resistance due to the optrA gene in Enterococcus faecalis from poultry meat from the American continent (Colombia). J. Antimicrob. Chemother. 2017, 72, 678–683. [Google Scholar] [PubMed]
- Vorobieva, V.; Roer, L.; Justesen, U.S.; Hansen, F.; Frimodt-Moller, N.; Hasman, H.; Hammerum, A.M. Detection of the optrA gene in a clinical ST16 Enterococcus faecalis isolate in Denmark. J. Glob. Antimicrob. Resist. 2017, 10, 12–13. [Google Scholar] [CrossRef]
- Ruiz-Ripa, L.; Feßler, A.T.; Hanke, D.; Eichhorn, I.; Azcona-Gutiérrez, J.M.; Pérez-Moreno, M.O.; Seral, C.; Aspiroz, C.; Alonso, C.A.; Torres, L.; et al. Mechanisms of Linezolid Resistance Among Enterococci of Clinical Origin in Spain-Detection of optrA- and cfr(D)-Carrying E. faecalis. Microorganisms 2020, 8, 1155. [Google Scholar] [CrossRef]
- Papagiannitsis, C.C.; Tsilipounidaki, K.; Malli, E.; Petinaki, E. Detection in Greece of a clinical Enterococcus faecium isolate carrying the novel oxazolidinone resistance gene poxtA. J. Antimicrob. Chemother. 2019, 8, 2461–2462. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Fan, R.; Wang, Y.; Lei, L.; Feßler, A.T.; Wang, Z.; Wu, C.; Schwarz, S.; Wang, Y. Analysis of combined resistance to oxazolidinones and phenicols among bacteria from dogs fed with raw meat/vegetables and the respective food items. Sci. Rep. 2019, 1, 15500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, G.; Fleige, C.; Neumanna, B.; Bender, J.K.; Layer, F.; Klare, I. Evaluation of DiversiLab®, MLST and PFGE typing for discriminating clinical Enterococcus faecium isolates. J. Microbiol. Methods 2015, 118, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Werner, G. Molecular Typing of Enterococci/VRE. Werner. J. Bacteriol. Parasitol. 2013, 10, 2155–9597. [Google Scholar] [CrossRef] [Green Version]
- Kerschner, H.; Cabal, A.; Hartl, R.; Machherndl-Spandl, S.; Allerberger, F.; Ruppitsch, W.; Apfalter, P. Hospital outbreak caused by linezolid resistant Enterococcus faecium in Upper Austria. Antimicrob. Resist. Infect. Control 2019, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Egan, S.A.; Shore, A.C.; O’Connell, B.; Brennan, G.I.; Coleman, D.C. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: High prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. J. Antimicrob. Chemother. 2020, 75, 1704–1711. [Google Scholar] [CrossRef]
- Quiñones, D.; Aung, M.S.; Martins, J.P.S.; Urushibara, N.; Kobayashi, N. Genetic characteristics of VanA-type vancomycin-resistant Enterococcus faecalis and Enterococcus faecium in Cuba. New Microbes New Infect. 2018, 21, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guo, Y.; Lv, J.; Qi, X.; Li, D.; Chen, Z.; Zhang, X.; Wang, L.; Yu, F. Characteristic of Enterococcus faecium clinical isolates with quinupristin/dalfopristin resistance in China. BMC Microbiol. 2016, 16, 246. [Google Scholar] [CrossRef] [Green Version]
- Kawalec, M.; Pietras, Z.; Danilowicz, E.; Jakubczak, A.; Gniadkowski, M.; Hryniewicz, W.; Willems, R. Clonal structure of Enterococcus faecalis isolated from Polish hospitals: The characterization of epidemic clones. J. Clin. Microbiol. 2007, 1, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Garbajosa, P.; Bonten, M.J.; Robinson, D.A.; Top, J.; Nallapareddy, S.R.; Torres, C.; Coque, T.M.; Canton, R.; Baquero, F.; Murray, B.E.; et al. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J. Clin. Microbiol. 2006, 44, 2220–2228. [Google Scholar] [CrossRef] [Green Version]
- Freitas, A.R.; Tedim, A.P.; Novais, C.; Lanza, V.L.; Peixe, L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microb. Genom. 2020, 6, e000350. [Google Scholar] [CrossRef] [PubMed]
- Brenciani, A.; Morroni, G.; Vincenzi, C.; Manso, E.; Mingoia, M.; Giovanetti, E.; Varaldo, P.E. Detection in Italy of two clinical Enterococcus faecium isolates carrying both the oxazolidinone and phenicol resistance gene optrA and a silent multiresistance gene cfr. J. Antimicrob. Chemother 2016, 71, 1118–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Li, T.; Zhu, Y.; Wang, B.; Zou, X.; Li, M. Mechanisms of linezolid resistance in staphylococciand enterococci isolated from two teaching hospitals in Shanghai, China. BMC Microbiol. 2014, 14, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, R.; Xia, Y.; Wu, W.; Yan, J.; Yang, M. Whole transcriptome analysis reveals potential novel mechanisms of low-level linezolid resistance in Enterococcus faecalis. Gene 2018, 647, 143–149. [Google Scholar] [CrossRef]
- Morales, G.; Picazo, J.J.; Baos, E.; Candel, F.J.; Arribi, A.; Peláez, B.; Andrade, R.; de la Torre, M.A.; Fereres, J.; Sánchez-García, M. Resistance to Linezolid Is Mediated by the cfr Gene in the First Report of an Outbreak of Linezolid-Resistant Staphylococcus aureus. Clin. Inf. Dis. 2010, 50, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Belén, A.; Pavón, I.; Maiden, M.C.J. Multilocus Sequence Typing. Methods Mol. Biol. 2009, 551, 129–140. [Google Scholar]
E. faecium | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ST | CC | Number of Isolates | AMP | LNZ | TEI | VAN | GEN | STR | TGC | Mechanism of LNZ-R | Van Genotype | ||
ST80 | 17 | 53 | 100(53) | 100(53) | 94 (50) | 94(50) | 98(52) | 85(45) | 5.6 (3) | ∆G2576T | (53) | vanA | (50) |
ST117 | 17 | 24 | 100(24) | 100(24) | 45.8 (11) | 54(13) | 75(18) | 83(20) | 0 | ∆G2576T | (22) | vanA | (10) |
cfr | (1) | vanB | (2) | ||||||||||
* | (1) | vanA,vanB | (1) | ||||||||||
ST18 | 17 | 13 | 100(13) | 100(13) | 46(6) | 53.8(7) | 84.6(11) | 38.4(5) | 0 | ∆G2576T | (12) | vanA | (5) |
* | (1) | vanA,vanB | (2) | ||||||||||
ST761 | 17 | 4 | 100(4) | 100(4) | 25(1) | 25(1) | 75(3) | 75(3) | 0 | ∆G2576T | (3) | vanA | (1) |
cfrB | (1) | ||||||||||||
ST78 | 17 | 3 | 100(3) | 100(3) | 33.3(1) | 33.3(1) | 33.3(1) | 66.6(2) | 0 | ∆G2576T | (3) | vanA,vanB | (1) |
ST17 | 17 | 2 | 100(2) | 100(2) | 50(1) | 50(1) | 0 | 0 | 0 | ∆G2576T | (2) | vanA | (1) |
ST203 | 17 | 1 | 100(1) | 100(1) | 100(1) | 100(1) | 0 | 100(1) | 0 | ∆G2576T | (1) | vanA | (1) |
ST552 | 17 | 1 | 100(1) | 100(1) | 0 | 0 | 100(1) | 0 | 0 | ∆G2576T | (1) | - | |
ST262 | 17 | 1 | 100(1) | 100(1) | 0 | 0 | 0 | 100(1) | 0 | optrA | (1) | - | |
ST1487 † | 17 | 1 | 100(1) | 100(1) | 100(1) | 100(1) | 100(1) | 100(1) | 0 | * | (1) | vanA | (1) |
ST3501 † | 17 | 2 | 100(2) | 100(2) | 100(2) | 100(2) | 100(2) | 0 | 0 | ∆G2576T | (2) | vanA | (2) |
ST3502 † | 17 | 1 | 0 | 100(1) | 0 | 0 | 0 | 100(1) | 0 | optrA | (1) | - | |
E. faecalis | |||||||||||||
ST6 | 2 | 1 | 0 | 100(1) | 0 | 0 | 100(1) | 100(1) | 0 | ∆G2576T | (1) | - | |
ST476 | 476 | 3 | 0 | 100(3) | 0 | 0 | 100(3) | 0 | 0 | optrA | (3) | - | |
ST480 | 480 | 2 | 0 | 100(2) | 0 | 0 | 100(2) | 50(1) | 0 | optrA | (2) | - | |
ST858 | unknown | 2 | 0 | 100(2) | 0 | 0 | 100(2) | 100(2) | 0 | optrA | (2) | - | |
ST1982 † | unknown | 1 | 0 | 100(1) | 0 | 0 | 100(1) | 0 | 0 | ∆G2576T | (1) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mališová, L.; Jakubů, V.; Pomorská, K.; Musílek, M.; Žemličková, H. Spread of Linezolid-Resistant Enterococcus spp. in Human Clinical Isolates in the Czech Republic. Antibiotics 2021, 10, 219. https://doi.org/10.3390/antibiotics10020219
Mališová L, Jakubů V, Pomorská K, Musílek M, Žemličková H. Spread of Linezolid-Resistant Enterococcus spp. in Human Clinical Isolates in the Czech Republic. Antibiotics. 2021; 10(2):219. https://doi.org/10.3390/antibiotics10020219
Chicago/Turabian StyleMališová, Lucia, Vladislav Jakubů, Katarína Pomorská, Martin Musílek, and Helena Žemličková. 2021. "Spread of Linezolid-Resistant Enterococcus spp. in Human Clinical Isolates in the Czech Republic" Antibiotics 10, no. 2: 219. https://doi.org/10.3390/antibiotics10020219
APA StyleMališová, L., Jakubů, V., Pomorská, K., Musílek, M., & Žemličková, H. (2021). Spread of Linezolid-Resistant Enterococcus spp. in Human Clinical Isolates in the Czech Republic. Antibiotics, 10(2), 219. https://doi.org/10.3390/antibiotics10020219