Antibiotic Resistance Patterns of Bacterial Isolates from Neonatal Sepsis Patients at University Hospital of Leipzig, Germany
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Study Participants and Organisms Isolated from Sepsis Patients
2.2. Antibiotic Resistance Patterns of Gram Positive Bacteria
2.3. Antibiotic Resistance Patterns of Gram Negative Bacteria
3. Discussion
4. Materials and Methods
4.1. Study Design and Period
4.2. Study Participants
4.3. Blood Culture and Identification of Organisms
4.4. Antimicrobial Susceptibility Testing (AST)
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edwards, M.S.B.C. Sepsis in The Newborn. In Sepsis in The Newborn; Gershon, A.A., Hotez, P.J.K., SL, E., Eds.; Mosby: Philadelphia, PA, USA, 2004; pp. 545–561. [Google Scholar]
- Zea-Vera, A.; Ochoa, T.J. Challenges in the diagnosis and management of neonatal sepsis. J. Trop. Pediatr. 2015, 61, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calil, R.; Marba, S.T.M.; von Nowakonski, A.; Tresoldi, A.T. Reduction in colonization and nosocomial infection by multiresistant bacteria in a neonatal unit after institution of educational measures and restriction in the use of cephalosporins. Am. J. Infect. Control 2001, 29, 133–138. [Google Scholar] [CrossRef]
- Cantey, J.B.; Milstone, A.M. Bloodstream Infections. Clin. Perinatol. 2015, 42, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yusef, D.; Shalakhti, T.; Awad, S.; Algharaibeh, H.; Khasawneh, W. Clinical characteristics and epidemiology of sepsis in the neonatal intensive care unit in the era of multi-drug resistant organisms: A retrospective review. Pediatr. Neonatol. 2018, 59, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hady, H.; Hawas, S.; El-Daker, M.; El-Kady, R. Extended-spectrum β-lactamase producing Klebsiella pneumoniae in neonatal intensive care unit. J. Perinatol. 2008, 28, 685–690. [Google Scholar] [CrossRef] [Green Version]
- UNICEF, WHO, World Bank, UN-DESA Population Division. Levels and Trends in Child Mortality Report 2018. Developed by The UN Inter-Agency Group for Child Mortality Estimation; UNICEF: New York, NY, USA, 2018. [Google Scholar]
- Oza, S.; Lawn, J.E.; Hogan, D.R.; Mathers, C.; Cousens, S.N. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000–2013. Bull. World Health Organ. 2015, 93, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.J.; Saiman, L. Principles and Strategies of Antimicrobial Stewardship in the Neonatal Intensive Care Unit. Semin. Perinatol. 2012, 36, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Cantey, J.B.; Patel, S.J. Antimicrobial stewardship in the NICU. Infect. Dis. Clin. N. Am. 2014, 28, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Ramasethu, J.; Kawakita, T. Antibiotic stewardship in perinatal and neonatal care. Semin. Fetal Neonatal Med. 2017, 22, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Cailes, B.; Vergnano, S.; Kortsalioudaki, C.; Heath, P.; Sharland, M. The current and future roles of neonatal infection surveillance programmes in combating antimicrobial resistance. Early Hum. Dev. 2015, 91, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Tzialla, C.; Borghesi, A.; Serra, G.; Stronati, M.; Corsello, G. Antimicrobial therapy in neonatal intensive care unit. Ital. J. Pediatr. 2015, 41, 27. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, D. Unnatural selection: Reducing antibiotic resistance in neonatal units. Arch. Dis. Child Fetal Neonatal Ed. 2006, 91, F72–F74. [Google Scholar] [CrossRef]
- World Health Organization. WHO Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Childhood Illnesses; World Health Organization: Geneva, Switzerland, 2013; ISBN 9789241548373. [Google Scholar]
- Satar, M.; Engin Arısoy, A.; Çelik, İ.H. Turkish neonatal society guideline on neonatal infections—Diagnosis and treatment. Turk. Pediatr. Ars. 2018, 53, S88–S100. [Google Scholar] [CrossRef]
- Polin, R.A.; Papile, L.A.; Baley, J.E.; Benitz, W.; Carlo, W.A.; Cummings, J.; Kumar, P.; Tan, R.C.; Wang, K.S.; Watterberg, K.L.; et al. Management of Neonates with Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2012, 129, 1006–1015. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Speer, C.P. Late-onset neonatal sepsis: Recent developments. Arch. Dis. Child Fetal Neonatal Ed. 2015, 100, F257–F263. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.W.; Ubhi, H.; Milner, P. Antimicrobial treatment of serious gram-negative infections in newborns topical collection on pediatric infectious diseases. Curr. Infect. Dis. Rep. 2014, 16, 400. [Google Scholar] [CrossRef]
- Tran, H.T.; Doyle, L.W.; Lee, K.J.; Dang, N.M.; Graham, S.M. A high burden of late-onset sepsis among newborns admitted to the largest neonatal unit in central Vietnam. J. Perinatol. 2015, 35, 846–851. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Karamat, K.A.; Butt, T. Neonatal sepsis: High antibiotic resistance of the bacterial pathogens in a neonatal intensive care unit in Karachi. J. Pak. Med. Assoc. 2002, 52, 348–350. [Google Scholar]
- Premalatha, D.E.; Koppad, M.; Halesh, L.H.; Siddesh, K.; Prakash, N.; Professor, A.; Professor, A. The Bacterial Profile and Antibiogram of Neonatal Septicaemia in a Tertiary Care Hospital. Int. J. Recent Trends Sci. Technol. 2014, 10, 451–455. [Google Scholar]
- Mhada, T.V.; Fredrick, F.; Matee, M.I.; Massawe, A. Neonatal sepsis at Muhimbili National Hospital, Dar es Salaam, Tanzania; Aetiology, antimicrobial sensitivity pattern and clinical outcome. BMC Public Health 2012, 12, 904. [Google Scholar] [CrossRef] [Green Version]
- Geyesus, T.; Moges, F.; Eshetie, S.; Yeshitela, B.; Abate, E. Bacterial etiologic agents causing neonatal sepsis and associated risk factors in Gondar, Northwest Ethiopia. BMC Pediatr. 2017, 17, 137. [Google Scholar] [CrossRef] [Green Version]
- Kruse, A.Y.; Thieu Chuong, D.H.; Phuong, C.N.; Duc, T.; Graff Stensballe, L.; Prag, J.; Kurtzhals, J.; Greisen, G.; Pedersen, F.K. Neonatal bloodstream infections in a pediatric hospital in Vietnam: A cohort study. J. Trop. Pediatr. 2013, 59, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Afsharpaiman, S.; Torkaman, M.; Saburi, A.; Farzaampur, A.; Amirsalari, S.; Kavehmanesh, Z. Trends in incidence of neonatal sepsis and antibiotic susceptibility of causative agents in two neonatal intensive care units in Tehran, I.R Iran. J. Clin. Neonatol. 2012, 1, 124–130. [Google Scholar]
- Bingen, E.; Denamur, E.; Brahimi, N.; Elion, J. Genotyping may provide rapid identification of Escherichia coli K1 organisms that cause neonatal meningitis. Clin. Infect. Dis. 1996, 22, 152–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obata-Yasuoka, M.; Ba-Thein, W.; Tsukamoto, T.; Yoshikawa, H.; Hayashi, H. Vaginal Escherichia coli share common virulence factor profiles, serotypes and phylogeny with other extraintestinal E. coli. Microbiology 2002, 148, 2745–2752. [Google Scholar] [CrossRef] [Green Version]
- Watt, S.; Lanotte, P.; Mereghetti, L.; Moulin-Schouleur, M.; Picard, B.; Quentin, R. Escherichia coli strains from pregnant women and neonates: Intraspecies genetic distribution and prevalence of virulence factors. J. Clin. Microbiol. 2003, 41, 1929–1935. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.L.; Kainer, M.A.; Badrawi, N.; Afifi, S.; Wasfy, M.; Bashir, M.; Jarvis, W.R.; Graham, T.W.; El-Kholy, A.; Gipson, R.; et al. Neonatal sepsis in Egypt associated with bacterial contamination of glucose-containing intravenous fluids. Pediatr. Infect. Dis. J. 2005, 24, 590–594. [Google Scholar] [CrossRef]
- Motara, F.; Ballot, D.E.; Perovic, O. Epidemiology of Neonatal Sepsis at Johannesburg Hospital. South Afr. J. Epidemiol. Infect. 2005, 20, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.K.; Jain, V.M.; Maheshwari, S. Clinical profile of neonatal sepsis. Kathmandu Univ. Med. J. (KUMJ) 2003, 1, 117–120. [Google Scholar]
- Movahedian, A.H.; Moniri, R.; Mosayebi, Z. Bacterial culture of neonatal sepsis. Iran J. Public Health 2006, 35, 84–89. [Google Scholar]
- Zakariya, B.P.; Bhat, V.; Harish, B.N.; Arun Babu, T.; Joseph, N.M. Neonatal sepsis in a tertiary care hospital in South India: Bacteriological profile and antibiotic sensitivity pattern. Indian J. Pediatr. 2011, 78, 413–417. [Google Scholar] [CrossRef]
- Fuchs, A.; Bielicki, J.; Mathur, S.; Sharland, M.; Van Den Anker, J. Antibiotic use for sepsis in neonates and children: 2016 evidence update. WHO Rev. 2016, 1–53. [Google Scholar]
- Moremi, N.; Claus, H.; Mshana, S.E. Antimicrobial resistance pattern: A report of microbiological cultures at a tertiary hospital in Tanzania. BMC Infect. Dis. 2016, 16, 756. [Google Scholar] [CrossRef] [Green Version]
- Arowosegbe, A.O.; Ojo, D.A.; Dedeke, I.O.; Shittu, O.B.; Akingbade, O.A. Neonatal sepsis in a Nigerian Tertiary Hospital: Clinical features, clinical outcome, aetiology and antibiotic susceptibility pattern. South Afr. J. Infect. Dis. 2017, 32, 127–131. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Antimicrobial Resistance. In Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, Z.; Sun, Z. Antimicrobial resistance trends in bloodstream infections at a large teaching hospital in China: A 20-year surveillance study (1998–2017). Antimicrob. Resist. Infect. Control 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition. CLSI document M02-A11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; ISBN 1562387812. [Google Scholar]
- Mukhopadhyay, S.; Wade, K.C.; Puopolo, K.M. Drugs for the Prevention and Treatment of Sepsis in the Newborn. Clin. Perinatol. 2019, 46, 327–347. [Google Scholar] [CrossRef]
- Le, J.; Nguyen, T.; Okamoto, M.; McKamy, S.; Lieberman, J.M. Impact of empiric antibiotic use on development of infections caused by extended-spectrum β-lactamase bacteria in a neonatal intensive care unit. Pediatr. Infect. Dis. J. 2008, 27, 314–318. [Google Scholar] [CrossRef]
- Manzoni, P.; Farina, D.; Leonessa, M.; D’Oulx, E.A.; Galletto, P.; Mostert, M.; Miniero, R.; Gomirato, G. Risk factors for progression to invasive fungal infection in preterm neonates with fungal colonization. Pediatrics 2006, 118, 2359–2364. [Google Scholar] [CrossRef]
- Clark, R.H.; Bloom, B.T.; Spitzer, A.R.; Gerstmann, D.R. Empiric use of ampicillin and cefotaxime, compared with ampicillin and gentamicin, for neonates at risk for sepsis is associated with an increased risk of neonatal death. Pediatrics 2006, 117, 67–74. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef]
- Tessema, B.; Lippmann, N.; Willenberg, A.; Knüpfer, M.; Sack, U.; König, B. The Diagnostic Performance of Interleukin-6 and C-Reactive Protein for Early Identification of Neonatal Sepsis. Diagnostics 2020, 10, 978. [Google Scholar] [CrossRef] [PubMed]
Organism | Total N (%) | Sepsis Onset | Gender | Age in Days | ||
---|---|---|---|---|---|---|
EOS N (%) | LOS N (%) | Male N (%) | Female N (%) | Mean (± SD) | ||
Gram positive | 99 (73.9) | 13 (9.7) | 86 (64.2) | 55 (41.1) | 44 (32.8) | 11.46 (8.46) |
Staphylococcus epidermidis | 51 (38.1) | 2 (1.5) | 49 (36.6) | 28 (20.9) | 23 (17.2) | 11.57 (8.41) |
Staphylococcus haemolyticus | 15 (11.2) | 1 (0.7) | 14 (10.4) | 11 (8.2) | 4 (3.0) | 15.27 (8.17) |
Staphylococcus aureus | 11 (8.2) | - | 11 (8.2) | 5 (3.7) | 6 (4.5) | 10.55 (5.41) |
Streptococcus agalactiae | 6 (4.5) | 2 (1.5) | 4 (3.0) | 3 (2.2) | 3 (2.2) | 12.83 (12.51) |
Staphylococcus hominis | 5 (3.7) | 3 (2.2) | 2 (1.5 | 2 (2.7) | 3 (2.2) | 6.80 (9.39) |
Enterococcus faecalis | 5 (3.7) | - | 5 (3.7) | 2 (1.5) | 3 (2.2) | 11.00 (6.78) |
Bacillus cereus | 2 (1.5) | 2 (1.5) | - | 1 (0.7) | 1 (0.7) | 2.00 |
Listeria monocytogenes | 2 (1.5) | 2 (1.5) | - | 1 (0.7) | 1 (0.7) | 0.50 (0.71) |
Micrococcus luteus | 1 (0.7) | - | 1 (0.7) | 1 (0.7) | - | 19.00 |
Staphylococcus lugdunensis | 1 (0.7) | 1 (0.7) | - | 1 (0.7) | - | 1.00 |
Gram negative | 34 (25.4) | 5 (3.7) | 29 (21.7) | 18 (13.4) | 16 (12.0) | 13.27 (10.86) |
Escherichia coli | 23 (17.2) | 5 (3.7) | 18 (13.4) | 15 (65.2) | 8 (34.8) | 11.83 (10.84) |
Klebsiella oxytoca | 3 (2.2) | - | 3 (2.2) | 1 (0.7) | 2 (2.2) | 24.33 (5.86) |
Klebsiella pneumoniae | 2 (1.5) | - | 2 (1.5) | - | 2 (2.2) | 10.50 (6.36) |
Enterobacter cloacae | 2 (1.5) | - | 2 (1.5) | 1 (0.7) | 1 (0.7) | 20.00 (9.90) |
Enterobacter hormaechei | 1 (0.7) | - | 1 (0.7) | - | 1 (0.7) | 4.00 |
Citrobacter freundii | 1 (0.7) | - | 1 (0.7) | - | 1 (0.7) | 32.00 |
Morganella morganii | 1 (0.7) | - | 1 (0.7) | - | 1 (0.7) | 11.00 |
Pseudomonas aeruginosa | 1 (0.7) | - | 1 (0.7) | 1 (0.7) | - | 5.00 |
Fungi | 1 (0.7) | - | 1 (0.7) | 1 (0.7) | - | 12.00 |
Candida albicans | 1 (0.7) | - | 1 (0.7) | 1 (0.7) | - | 12.00 |
Total | 134 (100) | 18 (13.4) | 116 (86.6) | 74 (55.2) | 60 (44.8) | 11.91 (9.07) |
Antibiotics | Staphylococcus epidermidis | Staphylococcus haemolyticus | Staphylococcus aureus | Streptococcus agalactiae | ||
---|---|---|---|---|---|---|
R/N (%) | I/N (%) | R/N (%) | I/N (%) | R/N (%) | R/N (%) | |
Penicillin G | 46/51 (90.2) | - | 13/15 (86.7) | - | 8/11 (72.7) | 0/6 |
Roxithromycin | 46/51 (90.2) | - | 14/15 (93.3) | - | 3/11 (27.3) | 1/6 (16.7) |
Oxacillin | 45/51 (88.2) | - | 13/15 (86.7) | - | 0/11 | 6 (<0.125) * |
Cefotaxime | 45/51 (88.2) | - | 13/15 (86.7) | - | 0/11 | 0/6 |
Cefuroxime | 45/51 (88.2) | - | 13/15 (86.7) | - | 0/11 | 0/6 |
Piperacillin-Tazobactam | 45/51 (88.2) | - | 13/15 (86.7) | - | 0/11 | 0/6 |
Imipenem | 45/51 (88.2) | - | 13/15 (86.7) | - | 0/11 | 0/6 |
Ampicillin-Sulbactam | 41/47 (87.2) | - | 12/14 (85.7) | - | 0/11 | 0/6 |
Meropenem | 44/51 (86.3) | - | 12/15 (80.0) | - | 0/11 | 0/6 |
Ciprofloxacin | 32/51 (62.7) | - | 13/15 (86.7) | - | 0/11 | 6 (0,0,0,1,1,2) * |
Amikacin | 30/50 (60.0) | - | 12/15 (80.0) | - | 1/11 (9.1) | 4 (0.5,4,8,32) * |
Gentamicin | 30/51 (58.8) | - | 12/15 (80.0) | - | 1/11 (9.1) | 6 (0,0,0.1,1,2,4) * |
Clindamycin | 23/51 (45.1) | - | 7/15 (46.7) | - | 0/11 | 0/6 |
Levofloxacin | 22/51 (43.1) | 12/51 (23.5) | 12/15 (80.0) | - | 0/11 | 0/6 # |
Moxifloxacin | 18/51 (35.3) | 5/51 (9.8) | 11/15 (73.3) | 1/15(6.7) | 0/11 | 0/6 |
Ceftaroline | 6/12 (30.0) | - | 3/3 (100) | - | 0/8 | 0/2 |
Cotrimoxazol | 9/50 (18.0) | 5/50 (10.0) | 11/15 (73.3) | - | 0/11 | 0/6 |
Fosfomycin | 6/51 (11.8) | - | 6/15 (40.0) | - | 0/11 | 2/6 (40.0) |
Doxycycline | 4/50 (8.0) | 1/50 (2.0) | 1/15 (6.7) | 1/15(6.7) | 0/11 | 5/6 (83.3) |
Rifampicin | 3/51 (5.9) | 1/51 (2.0) | 2/15 (13.3) | - | 0/11 | 0/6 |
Daptomycin | 0/48 | - | 1/14 (7.1) | - | 1/11 (9.1) | 5 (0,0,0,0,0) * |
Linezolid | 0/51 | - | 1/15 (6.7) | - | 0/11 | 0/6 |
Teicoplanin | 0/51 | - | 4/15 (26.7) | - | 0/11 | 0/6 |
Vancomycin | 0/51 | - | 0/15 | - | 0/11 | 0/6 |
Antibiotics | 2013–2016 % (N) | 2017–2020 % (N) | p-Value |
---|---|---|---|
Roxithromycin | 93.5 (31) | 83.0 (20) | 0.321 |
Oxacillin | 93.3 (30) | 85.0 (20) | 0.341 |
Meropenem | 93.1 (29) | 85.0 (20) | 0.362 |
PenicillinG | 90.3 (31) | 90.0 (20) | 0.970 |
Cefotaxime | 90.3 (31) | 85.0 (20) | 0.568 |
Cefuroxime | 90.3 (31) | 85.0 (20) | 0.568 |
Piperacillin-Tazobactam | 90.3 (31) | 85.0 (20) | 0.568 |
Imipenem | 90.3 (31) | 85.0 (20) | 0.568 |
Ampicillin-Sulbactam | 90.3 (31) | 81.2 (16) | 0.382 |
Ciprofloxacin | 67.7 (31) | 70.0 (20) | 0.867 |
Levofloxacin | 63.3 (30) | 75.0 (20) | 0.391 |
Amikacin | 56.7 (30) | 65.0 (20) | 0.560 |
Gentamicin | 54.8 (31) | 65.0 (20) | 0.476 |
Clindamycin | 51.6 (31) | 35.0 (20) | 0.249 |
Moxifloxacin | 40.0 (30) | 55.0 (20) | 0.302 |
Cotrimoxazol | 26.7 (30) | 30.0 (20) | 0.799 |
Fosfomycin | 13.3 (30) | 10.0 (20) | 0.725 |
Doxycycline | 10.0 (30) | 10.0 (20) | 1.000 |
Rifampicin | 10.0 (30) | 5.0 (20) | 0.527 |
Daptomycin | 0 (30) | 0 (18) | - |
Linezolid | 0 (31) | 0 (20) | - |
Teicoplanin | 0 (31) | 0 (19) | - |
Vancomycin | 0 (31) | 0 (19) | - |
Antibiotics | Escherichia coli (N = 23) | Klebsiella oxytoca (N = 3) | Klebsiella pneumonia (N = 2) | Enterobacter cloacae (N = 2) | ||||
---|---|---|---|---|---|---|---|---|
R (%) | I (%) | R | I | R | I | R | I | |
Ampicillin | 17 (73.9) | 3 (13) | 3 | - | 2 | - | 2 | - |
Ampicilin-Sulbactam | 12 (52.2) | 5 (21.7) | 0 | - | 1 | - | 2 | - |
Piperacillin | 11 (47.8) | 6 (26.1) | 1 | - | 1 | - | 0 | - |
Moxifloxacin | 6 (26.1) | - | 0 | - | 0 | - | 0 | - |
Levofloxacin | 5 (21.7) | - | 0 | - | 0 | - | 0 | - |
Ciprofloxacin | 5 (21.7) | - | 0 | - | 0 | - | 0 | - |
Cotrimoxazol | 4 (17.4) | - | 0 | - | 0 | - | 0 | - |
Ceftibuten | 2 (15.4) | - | 0 | - | NA | - | 1 | - |
Cefuroxime | 2 (8.7) | 16 (69.6) | 0 | 2 | 0 | 2 | 2 | - |
Fosfomycin | 0 | - | 2 | - | 0 | - | 1 | |
Cefotaxime | 1 | - | 0 | - | 0 | - | 0 | - |
Ceftazidime | 1 | - | 0 | - | 0 | - | 0 | - |
Aztreonam | 1 | - | 0 | - | 0 | - | 0 | - |
Tobramycin | 0 | - | 0 | - | 0 | - | 0 | 1 |
Amikacin | 0 | - | 0 | - | 0 | - | 0 | |
Colistin | 0 | - | 0 | - | 0 | - | 0 | - |
Gentamicin | 0 | - | 0 | - | 0 | - | 0 | - |
Imipenem | 0 | - | 0 | - | 0 | - | 0 | - |
Meropenem | 0 | - | 0 | - | 0 | - | 0 | - |
Piperacillin-Tazobactam | 0 | - | 0 | - | 0 | - | 0 | - |
Antibiotics | 2013–2016 % (N) | 2017–2020 % (N) | p-Value |
---|---|---|---|
Ampicillin | 76.9 (13) | 100.0 (10) | 0.111 |
Ampicillin-Sulbactam | 69.2 (13) | 80.0 (10) | 0.569 |
Piperacillin | 69.2 (13) | 80.0 (10) | 0.569 |
Cefuroxime | 69.2 (13) | 90.0 (10) | 0.242 |
Moxifloxacin | 38.5 (13) | 10.0 (10) | 0.132 |
Levofloxacin | 38.5 (13) | 0 (10) | 0.030 |
Ciprofloxacin | 38.5 (13) | 0 (10) | 0.030 |
Cotrimoxazol | 23.1 (13) | 10.0 (10) | 0.422 |
Cefotaxime | 7.7 (13) | 0 (10) | 0.380 |
Ceftazidime | 7.7 (13) | 0 (10) | 0.380 |
Aztreonam | 7.7 (13) | 0 (10) | 0.380 |
Fosfomycin | 0 (13) | 0 (10) | - |
Doxycycline | 0 (13) | 0 (10) | |
Tobramycin | 0 (13) | 0 (10) | - |
Amikacin | 0 (13) | 0 (10) | - |
Colistin | 0 (13) | 0 (10) | - |
Gentamicin | 0 (13) | 0 (10) | - |
Imipenem | 0 (13) | 0 (10) | - |
Meropenem | 0 (13) | 0 (10) | - |
Piperacillin-Tazobactam | 0 (13) | 0 (10) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessema, B.; Lippmann, N.; Knüpfer, M.; Sack, U.; König, B. Antibiotic Resistance Patterns of Bacterial Isolates from Neonatal Sepsis Patients at University Hospital of Leipzig, Germany. Antibiotics 2021, 10, 323. https://doi.org/10.3390/antibiotics10030323
Tessema B, Lippmann N, Knüpfer M, Sack U, König B. Antibiotic Resistance Patterns of Bacterial Isolates from Neonatal Sepsis Patients at University Hospital of Leipzig, Germany. Antibiotics. 2021; 10(3):323. https://doi.org/10.3390/antibiotics10030323
Chicago/Turabian StyleTessema, Belay, Norman Lippmann, Matthias Knüpfer, Ulrich Sack, and Brigitte König. 2021. "Antibiotic Resistance Patterns of Bacterial Isolates from Neonatal Sepsis Patients at University Hospital of Leipzig, Germany" Antibiotics 10, no. 3: 323. https://doi.org/10.3390/antibiotics10030323
APA StyleTessema, B., Lippmann, N., Knüpfer, M., Sack, U., & König, B. (2021). Antibiotic Resistance Patterns of Bacterial Isolates from Neonatal Sepsis Patients at University Hospital of Leipzig, Germany. Antibiotics, 10(3), 323. https://doi.org/10.3390/antibiotics10030323