Does an Antibiotic Stewardship Applied in a Pig Farm Lead to Low ESBL Prevalence?
Abstract
:1. Introduction
2. Material and Methods
2.1. Swabs Recovery
2.2. Selection of Resistant Isolates
2.3. Identification and Phenotype of Resistance of Isolates
2.4. Identification of β-Lactamase Genes
2.5. Genetic Subtyping
2.6. Plasmid Characterization
3. Results
3.1. Prevalence of β-Lactamase-Producing and Colistin-Resistant Enterobacterales
3.2. Antimicrobial Resistance Features of Colistin-Resistant Isolates
3.3. Clonal Relationship
3.4. Plasmid Analysis
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amusi, J.; Tamara, L.; Horton, R.; Winkler, A.S. Reconnecting for our future: The Lancet One Health commission. Lancet 2020, 395, 1469–1471. [Google Scholar] [CrossRef]
- Colligon, P.J.; McEwen, S.A. One Health—Its importance in helping to better control antimicrobial resistance. Trop. Med. Infect. Dis. 2019, 4, 1–21. [Google Scholar]
- Aarestrup, F.M.; Wegner, H.C.; Collignon, P. Resistane in bacteria of the food chain: Epidemiology and control strategies. Expert Rev. Anti-Infect. Ther. 2008, 6, 733–750. [Google Scholar] [CrossRef]
- Bergšpica, I.; Kaprou, G.; Alexa, E.A.; Prieto, M.; Alvarez-Ordóñez, A. Extended spectrum β-lactamase (ESBL) Escherichia coli in pigs and pork meat in European Union. Antibiotics 2020, 9, 678. [Google Scholar] [CrossRef] [PubMed]
- Suis, A.G. Available online: https://www.suisag.ch/fr/gesundheit/programme-sante-suissano (accessed on 22 February 2021).
- Nordmann, P.; Jayol, A.; Poirel, L. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg. Infect. Dis. 2016, 22, 1038–1043. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Mazé, A.; Culebras, E.; Dobias, J.; Jayol, A.; Poirel, L. A culture medium screening 16S rRNA methylase-porducing pan-aminoglycoside resistant Gram-negative bacteria. Diag. Microbiol. Infect. Dis. 2018, 91, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Jayol, A.; Poirel, L. An universal culture medium for screening polymyxin-resistant Gram-negative isoaltes. J. Clin. Microbiol. 2016, 54, 1395–1399. [Google Scholar] [CrossRef] [Green Version]
- Dortet, L.; Poirel, L.; Nordmann, P. Rapid detection of ESBL-producing Enterobacteriaceae in blood culture. Emerg. Infect. Dis. 2015, 21, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Poirel, L.; Dortet, L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2012, 18, 1503–1507. [Google Scholar] [CrossRef] [Green Version]
- European Comittee on Antimicrobial Susceptiblity Testing. In Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 10.0; European Comittee on Antimicrobial Susceptiblity Testing: Växjö, Sweden, 2020.
- Fournier, C.; Aires-de-Sousa, M.; Nordmann, P.; Poirel, L. Occurrence of CTX-M-15 and MCR-1-producing Enterobacterales in pigs, Portugal; evidences of direct links with antibiotic selective pressure. Int. J. Antimicrob. Agents 2019, 55, 105802. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cg (accessed on 22 February 2021).
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-protocol-508c.pdf (accessed on 22 February 2021).
- Public Databases for Molecular Typing and Microbial Genome Diversity. Available online: https://pubmlst.org/bigsdb?db=pubmlst_ecoli_achtman_seqdef (accessed on 22 February 2021).
- Kieser, T. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 1984, 12, 19–36. [Google Scholar] [CrossRef]
- Zurfluh, K.; Jakobi, G.; Stephan, R.; Hächler, H.; Nüesch-Inderbinen, M. Replicon typing of plasmids carrying blaCTX-M-1 in Enterobacteriaceae of animal, environmental and human origin. Front. Microb. 2014, 5, 555. [Google Scholar] [CrossRef]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threfall, E.J. Identification of plasmids by PCR-based replicon typing. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- The Comprehensive Antibiotic Resistance Database. Available online: https://card.mcmaster.ca (accessed on 22 February 2021).
- Center for Genomic Epidemiology. Available online: https://cge.cbs.dtu.dk/services/PlasmidFinder/ (accessed on 22 February 2021).
- Kieffer, N.; Aires-de-Sousa, M.; Nordmann, P.; Poirel, L. High rate of MCR-1-producing Escherichia coli and Klebsiella pneumoniae among pigs, Portugal. Emerg. Infect. Dis. 2017, 23, 2023–2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Sun, L.; Ding, B.; Yang, Y.; Xu, X.; Liu, W.; Zhu, D.; Yang, F.; Zhang, H.; Hu, F. Outbreak of NDM-1-producing Klebsiella pneumoniae ST76 and ST37 isolates in neonates. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 611–618. [Google Scholar] [CrossRef]
- Su, S.; Zhao, Y.; Yu, L.; Li, C.; Wang, Y.; Wang, Y.; Boa, M.; Fu, Y.; Li, C.; Zang, X. Outbreak of KPC-2 carbapenem-resistant Klebsiella pneumoniae ST76 and carbapenem-resistant K2 hypervirulent Klebsiella pneumoniae ST375 strains in Northeast China: Molecular and virulent characteristics. BMC Infect. Dis. 2020, 20, 472. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, J.; Su, J.; Fu, Y.; Bao, M.; Wang, Y.; Zhang, X. Characterization and epidemiology of carbapenem non-susceptible Enterobacteriacae isolates in the Eastern region of Heilongjiang Province, China. BMC Infect. Dis. 2018, 18, 417. [Google Scholar] [CrossRef] [Green Version]
- Day, M.J.; Hopkins, K.L.; Warenham, D.W.; Toleman, M.A.; Elviss, N.; Randall, L.; Teale, C.; Cleary, P.; Wiuff, C.; Doumith, M.; et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and food chain-derived samples from England, Wales, and Scotland: An epidemiological surveillance and typing study. Lancet Infect. Dis. 2019, 19, 1325–1335. [Google Scholar] [CrossRef] [Green Version]
- Zurfluh, K.; Wang, J.; Klumpp, J.; Nüesch-Inderbinden, M.; Fanning, S.; Stephan, R. Vertical transmission of highly simialr blaCTX-M-1-harboring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid. Front. Microbiol. 2014, 5, 519. [Google Scholar] [CrossRef]
- Geser, N.; Stephan, R.; Korczak, B.M.; Beutin, L.; Hächler, H. Molecular identification of extended-spectrum-β-lactamase from Enterobacteriaceae isolated from healthy human carriers in Switzerland. Antimicrob. Agents Chemother. 2012, 56, 1609–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valcek, A.; Roer, L.; Overballe-Petersen, S.; Hansen, F.; Bortolaia, V.; Leekitcharoenphon, P.; Korsgaard, H.B.; Seyfarth, A.M.; Hendriksen, R.S.; Hasman, H.; et al. IncI1 ST3 and IncI1 ST7 plasmids form CTX-M-1 producing Escherichia coli obtained from patients with bloodstream infections are closely related to plasmids form E. coli of animal origin. J. Antimicrob. Chemother. 2019, 74, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Magnuson, R.D. Modular organisatzion of the PhD repressor/antitoxin protein. J. Bacteriol. 2004, 186, 2692–2698. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Villa, L.; Fortini, D.; García-Fernández, A. Contemporary IncI1 plasmids involved in the transmission and spread of antimicrobial resistance in Enterobacteriaceae. Plasmid 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiss Interior Federal Department Ordinance Regulation the Hygiene in Diary Production (OHyPL). RS 916.351.021.1 (State at the 8 December 2020). Available online: https://www.fedlex.admin.ch/eli/cc/2005/824/fr (accessed on 22 February 2021).
- Darphorn, T.S.; Bel, K.; Koenders-van Sint Anneland, B.B.; Brul, S.; Ter Kuile, B.H. Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates form meat. Sci. Rep. 2021, 11, 2136. [Google Scholar] [CrossRef] [PubMed]
- Rossolini, G.M.; D’Andrea, M.M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbiol. Infect. 2008, 14, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Stable Number | Number of Pigs | Number of Resistant Isolates | Type of Livestock | Weight of Piglets | Clones Present | Rate of Pigs Carrying Resistant Strains | Resistant Determinant | Co-Resistance Phenotype |
---|---|---|---|---|---|---|---|---|
1 | 8 | 7 | Fattening | 40 to 42 kg | A (n = 6) | 87.50% | blaCTX-M-1 | SUL, TET a (n = 1); SUL (n = 4); |
None (n = 1) | ||||||||
C (n = 1) | blaCTX-M-1 | NAL, CIP, TET, SUL, CHL, FLO (n = 1) | ||||||
2 | 8 | 5 | Fattening | 40 to 42 kg | A (n = 5) | 62.50% | blaCTX-M-1 | SUL (n = 4); NAL, CIP, TET, SUL, CHL, FLO (n = 1) |
3 | 6 | 2 | Fattening | 102 kg | A (n = 1) | 33.30% | blaCTX-M-1 | SUL (n = 1) |
B1 (n = 1) | blaCTX-M-1 | SUL (n = 1) | ||||||
4 | 10 | 4 | Weaning | 18 to 20 kg | A (n = 4) | 40% | blaCTX-M-1 | SUL (n = 4) |
5 | 10 | 8 | Weaning | 18 to 20 kg | A (n = 3) | 60% | blaCTX-M-1 | SUL (n = 3) |
B1 (n = 2) | blaCTX-M-1 | SUL, TET (n = 2) | ||||||
E (n = 1) | blaCTX-M-1 | TET (n = 1) | ||||||
E. cloacae (n = 1) | blaCTX-M-1 | SUL, TET (n = 1) | ||||||
K. pneumoniae (n = 1) | mgrB truncation | SUL (n = 1) | ||||||
6 | 20 | 4 | Weaning | 9 to 10 kg | A (n = 2) | 20% | blaCTX-M-1 | SUL (n = 1); NAL, CIP, SUL, TET, CHL, FLO (n = 1); |
E. cloacae (n = 1) | ND d | None (n = 1) | ||||||
K. pneumoniae (n = 1) | mgrB truncation | None (n = 1) | ||||||
7 | 10 | 8 | Reproduction | - | B1 (n = 7) | blaCTX-M-1 | SUL, TET (n = 7) | |
D (n = 1) | blaCTX-M-1 | GMI, KMN, TMN, SUL, TET (n = 1) | ||||||
8 | 3 | 2 | Sow b with 3 piglets | B1 (n = 2) | 66% | blaCTX-M-1 | SUL, TET (n = 2) | |
9 | 3 | 2 | Sow c with 3 piglets | B2 (n = 1) | 33% | blaTEM-1 | KMN, SUL, SXT, TET (n = 1) | |
B1 (n = 1) | 33% | blaCTX-M-1 | SUL, TET (n = 1) | |||||
10 | 3 | 1 | Sow d with 3 piglets | A (n = 1) | 33% | blaCTX-M-1 | SUL (n = 1) |
Number of Isolates | Species | Phylogenic Group | ST | Pulsotype | Resistance Determinants | Incompatibility Group of the Plasmid Carrying blaCTX-M-1 | Coresistance on the Plasmid Carrying blaCTX-M-1 |
---|---|---|---|---|---|---|---|
22 | E. coli | A | ST10 | A | blaCTX-M-1 | Inc I1 | TET, SUL a |
12 | E. coli | A | ST10 | B1 b | blaCTX-M-1 | Inc I1 | TET, SUL |
1 | E. coli | A | ST10 | B2 b | blaCTX-M-1 | IncI1 | GMI, KMN, TMN, SUL, TET |
1 | E. coli | A | ST744 | C | blaCTX-M-1 | Inc I1 | TET, SUL |
1 | E. coli | A | ST34 | D | blaCTX-M-1 | Inc I1 | TET, SUL |
1 | E. coli | A | ST10 | E | blaCTX-M-1 | Inc I1 | TET, SUL |
1 | E. cloacae | ND | blaCTX-M-1 | Inc I1 | TET, SUL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fournier, C.; Nordmann, P.; Pittet, O.; Poirel, L. Does an Antibiotic Stewardship Applied in a Pig Farm Lead to Low ESBL Prevalence? Antibiotics 2021, 10, 574. https://doi.org/10.3390/antibiotics10050574
Fournier C, Nordmann P, Pittet O, Poirel L. Does an Antibiotic Stewardship Applied in a Pig Farm Lead to Low ESBL Prevalence? Antibiotics. 2021; 10(5):574. https://doi.org/10.3390/antibiotics10050574
Chicago/Turabian StyleFournier, Claudine, Patrice Nordmann, Olivier Pittet, and Laurent Poirel. 2021. "Does an Antibiotic Stewardship Applied in a Pig Farm Lead to Low ESBL Prevalence?" Antibiotics 10, no. 5: 574. https://doi.org/10.3390/antibiotics10050574
APA StyleFournier, C., Nordmann, P., Pittet, O., & Poirel, L. (2021). Does an Antibiotic Stewardship Applied in a Pig Farm Lead to Low ESBL Prevalence? Antibiotics, 10(5), 574. https://doi.org/10.3390/antibiotics10050574