Effect of Titanium Dioxide Nanoparticles on the Expression of Efflux Pump and Quorum-Sensing Genes in MDR Pseudomonas aeruginosa Isolates
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Resistance Pattern of P. aeruginosa Isolates
2.2. Synthesis of Titanium Dioxide Nanoparticles and Characterization
2.3. Susceptibility of P. aeruginosa Isolates to TDN, TDP
2.4. Study of Efflux Pump System
2.5. Effect of TDN on the Antimicrobial Susceptibility of the Tested P. aeruginosa
2.6. Characterization of Biofilm Formation Using Tissue Culture Plate Method (TCP) or Microtitre Plate Test
2.7. Real Time PCR
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Bacterial Strains
4.3. Antimicrobial Susceptibility Testing
4.4. Synthesis of Titanium Dioxide Nanoparticles, Characterization
4.5. Preparation of TDN Suspension
4.6. Determination of Antibacterial Activity of Titanium Dioxide Powder (TDP) and Titanium Dioxide Nanoparticles (TDN)
4.7. Determination of Efflux Pumps Expression in Resistant Isolates
4.8. Effect of TDN on the Antimicrobial Susceptibility of the Tested P. aeruginosa
4.9. Biofilm Formation Assays
4.10. Gene Expression Using Real-Time PCR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awan, A.B.; Schiebel, J.; Böhm, A.; Nitschke, J.; Sarwar, Y.; Schierack, P.; Ali, A. Association of Biofilm Formation and Cytotoxic Potential with Multidrug Resistance in Clinical Isolates of Pseudomonas Aeruginosa. EXCLI J. 2019, 18, 79–90. [Google Scholar]
- Talebi-Taher, M.; Majidpour, A.; Gholami, A.; Rasouli-Kouhi, S.; Adabi, M. Role of Efflux Pump Inhibitor in Decreasing Antibiotic Cross-Resistance of Pseudomonas Aeruginosa in a Burn Hospital in Iran. J. Infect. Dev. Ctries. 2016, 10, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Pourakbari, B.; Yaslianifard, S.; Yaslianifard, S.; Mahmoudi, S.; Keshavarz-Valian, S.; Mamishi, S. Evaluation of Efflux Pumps Gene Expression in Resistant Pseudomonas Aeruginosa Isolates in an Iranian Referral Hospital. Iran. J. Microbiol. 2016, 8, 249–256. [Google Scholar] [PubMed]
- Lee, J.H.; Kim, Y.G.; Cho, M.H.; Lee, J. Zno Nanoparticles Inhibit Pseudomonas Aeruginosa Biofilm Formation and Virulence Factor Production. Microbiol. Res. 2014, 169, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Ugurlu, A.; Yagci, A.K.; Ulusoy, S.; Aksu, B.; Bosgelmez-Tinaz, G. Phenolic Compounds Affect Production of Pyocyanin, Swarming Motility and Biofilm Formation of Pseudomonas Aeruginosa. Asian Pac. J. Trop. Biomed. 2016, 6, 698–701. [Google Scholar] [CrossRef] [Green Version]
- Blach, S.; Zeuzem, S.; Manns, M.; Altraif, I.; Duberg, A.S.; Muljono, D.H.; Waked, I.; Alavian, S.M.; Lee, M.-H.; Negro, F. Global Prevalence and Genotype Distribution of Hepatitis C Virus Infection in 2015: A Modelling Study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Garg, A.; Pandit, S.; Mokkapati, V.R.S.S.; Mijakovic, I. Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials 2018, 8, 1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudramurthy, G.R.; Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Nanoparticles: Alternatives against Drug-Resistant Pathogenic Microbes. Molecules 2016, 21, 836. [Google Scholar] [CrossRef] [PubMed]
- Arora, B.; Murar, M.; Dhumale, V. Antimicrobial Potential of TiO2 Nanoparticles against MDR Pseudomonas aeruginosa. J. Exp. Nanosci. 2015, 10, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Front. Microbiol. 2018, 9, 1441. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.X.; Xu, Z.H.; Zhang, Y.Q.; Tian, J.; Weng, L.X.; Wang, L.H. A New Quorum-Sensing Inhibitor Attenuates Virulence and Decreases Antibiotic Resistance in Pseudomonas Aeruginosa. J. Microbiol. 2012, 50, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.A.; El-Ganiny, A.M.; Kamel, H. Phenotypic and Genotypic Detection of Antibiotic Resistance of Pseudomonas Aeruginosa Isolated from Urinary Tract Infections. Afr. Health Sci. 2018, 18, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Yayan, J.; Ghebremedhin, B.; Rasche, K. Antibiotic Resistance of Pseudomonas Aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period. PLoS ONE 2015, 10, e0139836. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Abdelhamid, F. Antibiotic Susceptibility of Pseudomonas Aeruginosa Isolated from Different Clinical Sources. Zagazig J. Pharm. Sci. 2020, 28, 10–17. [Google Scholar]
- Kishk, R.M.; Abdalla, M.O.; Hashish, A.A.; Nemr, N.A.; El Nahhas, N.; Alkahtani, S.; Abdel-Daim, M.M.; Kishk, S.M. Efflux Mexab-Mediated Resistance in P. Aeruginosa Isolated from Patients with Healthcare Associated Infections. Pathogens 2020, 9, 471. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, S.A.; Mohammed, W.H.; Emad, H.; Kareem, H.A.; Shamel, R.; Mahdi, S. The Antibacterial Activity of TiO2 Nanoparticles. J. Univ. Babylon 2017, 25, 955–961. [Google Scholar]
- Saranya, K.S.; Padil, V.V.T.; Senan, C.; Pilankatta, R.; Saranya, K.; George, B.; Wacławek, S.; Černík, M. Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye. Nanomaterials 2018, 8, 1002. [Google Scholar] [CrossRef] [Green Version]
- Othman, S.H.; Rashid, S.A.; Ghazi, T.I.M.; Abdullah, N. Dispersion and Stabilization of Photocatalytic TiO2 Nanoparticles in Aqueous Suspension for Coatings Applications. J. Nanomater. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T. Characterization Techniques for Nanoparticles: Comparison and Complementarity Upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantheti, P.; Alapati, P. Green Synthesis of TiO2 Nanoparticles Using OcimumBasilicum Extract and Its Characterization. Int. J. Chem. Stud. 2018, 6, 670–674. [Google Scholar]
- Patra, J.K.; Baek, K.-H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, M.; Anju, C.; Biswas, L.; Kumar, V.A.; Mohan, C.G.; Biswas, R. Antibiotic Resistance in Pseudomonas Aeruginosa and Alternative Therapeutic Options. Int. J. Med. Microbiol. 2016, 306, 48–58. [Google Scholar] [CrossRef]
- Devi, R.; Venckatesh, R.; Sivaraj, R. Synthesis of Titanium Dioxide Nanoparticles by Sol-Gel Technique. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 15206–15211. [Google Scholar] [CrossRef]
- Abdulazeem, L.; AL-Amiedi, B.H.; Alrubaei, H.A.; AL-Mawlah, Y.H. Titanium Dioxide Nanoparticles as Antibacterial Agents against Some Pathogenic Bacteria. Drug Invent. Today 2019, 12. [Google Scholar]
- de Dicastillo, C.L.; Patiño, C.; Galotto, M.J.; Vásquez-Martínez, Y.; Torrent, C.; Alburquenque, D.; Pereira, A.; Escrig, J. Novel Hollow Titanium Dioxide Nanospheres with Antimicrobial Activity against Resistant Bacteria. Beilstein. J. Nanotechnol. 2019, 10, 1716–1725. [Google Scholar] [CrossRef] [Green Version]
- Manjunath, K.; Yadav, L.S.R.; Jayalakshmi, T.; Reddy, V.; Rajanaika, H.; Nagaraju, G. Ionic Liquid Assisted Hydrothermal Synthesis of TiO2 Nanoparticles: Photocatalytic and Antibacterial Activity. J. Mater. Res. Technol. 2018, 7, 7–13. [Google Scholar] [CrossRef]
- Abdel-Fatah, W.I.; Gobara, M.M.; Mustafa, S.F.; Ali, G.W.; Guirguis, O.W. Role of Silver Nanoparticles in Imparting Antimicrobial Activity of Titanium Dioxide. Mater. Lett. 2016, 179, 190–193. [Google Scholar] [CrossRef]
- Kareem, P.A.; Alsammak, E.G.; Abdullah, Y.J.; Bdaiwi, Q.M. Estimation of Antibacterial Activity of Zinc Oxide, Titanium Dioxide, and Silver Nanoparticles against Multidrug-Resistant Bacteria Isolated from Clinical Cases in Amara City, Iraq. Drug Invent. Today 2019, 11, 2887–2890. [Google Scholar]
- Skandalis, N.; Dimopoulou, A.; Georgopoulou, A.; Gallios, N.; Papadopoulos, D.; Tsipas, D.; Theologidis, I.; Michailidis, N.; Chatzinikolaidou, M. The Effect of Silver Nanoparticles Size, Produced Using Plant Extract from Arbutus Unedo, on Their Antibacterial Efficacy. Nanomaterials 2017, 7, 178. [Google Scholar] [CrossRef] [Green Version]
- Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evid. Based Complementary Altern. Med. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Gad, G.F.; El-Domany, R.A.; Zaki, S.; Ashour, H.M. Characterization of Pseudomonas Aeruginosa Isolated from Clinical and Environmental Samples in Minia, Egypt: Prevalence, Antibiogram and Resistance Mechanisms. J. Antimicrob. Chemother. 2007, 60, 1010–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adabi, M.; Talebi-Taher, M.; Arbabi, L.; Afshar, M.; Fathizadeh, S.; Minaeian, S.; Moghadam-Maragheh, N.; Majidpour, A. Spread of Efflux Pump Overexpressing-Mediated Fluoroquinolone Resistance and Multidrug Resistance in Pseudomonas Aeruginosa by Using an Efflux Pump Inhibitor. Infect. Chemother. 2015, 47, 98. [Google Scholar] [CrossRef] [PubMed]
- Lamers, R.P.; Cavallari, J.F.; Burrows, L.L. The Efflux Inhibitor Phenylalanine-Arginine Beta-Naphthylamide (Paβn) Permeabilizes the Outer Membrane of Gram-Negative Bacteria. PLoS ONE 2013, 8, e60666. [Google Scholar] [CrossRef] [Green Version]
- Abdulrahman, N.B.; Nssaif, Z.M. Antimicrobial Activity of Zinc Oxide, Titanium Dioxide and Silver Nanoparticles against Mithicillin-Resistant Staphylococcus Aureus Isolates. Tikrit J. Pure Sci. 2018, 21, 49–53. [Google Scholar]
- Kareem, P.A.; Alsammak, E.G. The Effect of Silver and Titanium Dioxide Nanoparticles on Klebsiella Pneumoniae Isolates Multi Resistant to Antibiotics and Observed by Scanning Electron Microscopy. Cihan. Univ. Sci. J. 2017, 284–297. [Google Scholar] [CrossRef] [Green Version]
- Allahverdiyev, A.M.; Kon, K.V.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Coping with Antibiotic Resistance: Combining Nanoparticles with Antibiotics and Other Antimicrobial Agents. Expert Rev. Anti-Infect. Ther. 2011, 9, 1035–1052. [Google Scholar] [CrossRef]
- Dibrov, P.; Dzioba, J.; Gosink, K.K.; Häse, C.C. Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio Cholerae. Antimicrob. Agents Chemother. 2002, 46, 2668–2670. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of Antibacterial Activity of Copper Nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef]
- Vincent, M.G.; John, N.P.; Narayanan, P.M.; Vani, C.; Murugan, S. In Vitro Study on the Efficacy of Zinc Oxide and Titanium Dioxide Nanoparticles against Metallo Beta-Lactamase and Biofilm Producing Pseudomonas Aeruginosa. J. Appl. Pharm. Sci. 2014, 4, 41. [Google Scholar]
- Elmaraghy, N.; Abbadi, S.; Elhadidi, G.; Hashem, A.; Yousef, A. Virulence Genes in Pseudomonas Aeruginosa Strains Isolated at Suez Canal University Hospitals with Respect to the Site of Infection and Antimicrobial Resistance. Int. J. Clin. Microbiol. Biochem. Technol. 2019, 2, 8–19. [Google Scholar]
- Kamali, E.; Jamali, A.; Ardebili, A.; Ezadi, F.; Mohebbi, A. Evaluation of Antimicrobial Resistance, Biofilm Forming Potential, and the Presence of Biofilm-Related Genes among Clinical Isolates of Pseudomonas Aeruginosa. BMC Res. Notes 2020, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.A.; Serry, F.M.; EL-Masry, E.M. Combating Pseudomonas Aeruginosa Biofilms by Potential Biofilm Inhibitors. Asian J. Res. Pharm. Sci. 2012, 2, 2012. [Google Scholar]
- Gupta, D.; Singh, A.; Khan, A.U. Nanoparticles as Efflux Pump and Biofilm Inhibitor to Rejuvenate Bactericidal Effect of Conventional Antibiotics. Nanoscale Res. Lett. 2017, 12, 1–6. [Google Scholar] [CrossRef]
- Salman, J.A.S.; Al-Kadhemy, M.F.H.; Madhloom, S.A. Preparation of Titanium Dioxide Nanoparticles and Polyvinyl Pyrrolidone Polymer Films as Antibacterial, Antibiofilm against Pathogenic Bacteria on Different Surfaces. MJS 2017, 36, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Polo, A.; Diamanti, M.V.; Bjarnsholt, T.; Høiby, N.; Villa, F.; Pedeferri, M.P.; Cappitelli, F. Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of Pseudomonas Aeruginosa. Photochem. Photobiol. 2011, 87, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Prateeksha, P.; Upreti, D.K.; Singh, B.R.; Defoirdt, T.; Gupta, V.K.; De Souza, A.O.; Singh, H.B.; Barreira, J.C.M.; Ferreira, I.C.F.R.; et al. Bactericidal, Quorum Quenching and Anti-Biofilm Nanofactories: A New Niche for Nanotechnologists. Crit. Rev. Biotechnol. 2017, 37, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.R.; Singh, B.N.; Singh, A.; Khan, W.; Naqvi, A.H.; Singh, H.B. MycofabricatedBiosilver Nanoparticles Interrupt Pseudomonas Aeruginosa Quorum Sensing Systems. Sci. Rep. 2015, 5, 1–14. [Google Scholar] [CrossRef]
- Mahnaie, M.P.; Mahmoudi, H. Effect of Glutathione-Stabilized Silver Nanoparticles on Expression of Las I and Las R of the Genes in Pseudomonas Aeruginosa Strains. Eur. J. Med. Res. 2020, 25, 1–11. [Google Scholar]
- García-Lara, B.; Saucedo-Mora, M.; Roldán-Sánchez, J.A.; Pérez-Eretza, B.; Ramasamy, M.; Lee, J.; Coria-Jimenez, R.; Tapia, M.; Varela-Guerrero, V.; García-Contreras, R. Inhibition of Quorum-Sensing-Dependent Virulence Factors and Biofilm Formation of Clinical and Environmental P Seudomonas Aeruginosa Strains by Zno Nanoparticles. Lett. Appl. Microbiol. 2015, 61, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H.; Pagès, J.-M. Broad-Specificity Efflux Pumps and Their Role in Multidrug Resistance of Gram-Negative Bacteria. FEMS Microbiol. Rev. 2012, 36, 340–363. [Google Scholar] [CrossRef] [Green Version]
- Dashtizadeh, Y.; Moattari, A.; Gorzin, A.A. Phenotypic and Genetically Evaluation of the Prevalence of Efflux Pumps and Antibiotic Resistance in Clinical Isolates of Pseudomonas Aeruginosa among Burned Patients Admitted to Ghotbodin Shirazi Hospital. J. Microb. World 2014, 19, 118–127. [Google Scholar]
- Abdolhosseini, M.; Zamani, H.; Salehzadeh, A. Synergistic Antimicrobial Potential of Ciprofloxacin with Silver Nanoparticles Conjugated to Thiosemicarbazide against Ciprofloxacin Resistant Pseudomonas Aeruginosa by Attenuation of Mexa-B Efflux Pump Genes. Biologia 2019, 74, 1191–1196. [Google Scholar] [CrossRef]
- Dolatabadi, A.; Noorbazargan, H.; Khayam, N.; Moulavi, P.; Zamani, N.; Asghari Lalami, Z.; Ashrafi, F. Ecofriendly Biomolecule-Capped Bifidobacterium Bifidum-Manufactured Silver Nanoparticles and Efflux Pump Genes Expression Alteration in Klebsiella Pneumoniae. Microb. Drug Resist. 2021, 27, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Abdelraheem, W.M.; Abdelkader, A.E.; Mohamed, E.S.; Mohammed, M.S. Detection of Biofilm Formation and Assessment of Biofilm Genes Expression in Different Pseudomonas Aeruginosa Clinical Isolates. Meta Gene 2020, 23, 100646. [Google Scholar] [CrossRef]
- Wayne, P.A. Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing: 20th Informational Supplement. CLSI Document M100-S20. Inform Suppl 2010. pp. 100–121. Available online: http://file.qums.ac.ir/repository/mmrc/CLSI2015.pdf (accessed on 20 April 2021).
- Ahmed, F.Y.; Aly, U.F.; El-Baky, R.M.A.; Waly, N.G.F.M.; Youssef, F. Comparative Study of Antibacterial Effects of Titanium Dioxide Nanoparticles Alone and in Combination with Antibiotics on Mdr Pseudomonas Aeruginosa Strains. Int. J. Nanomed. 2020, 15, 3393. [Google Scholar]
- Christensen, G.D.; A Simpson, W.; Younger, J.J.; Baddour, L.M.; Barrett, F.F.; Melton, D.M.; Beachey, E.H. Adherence of Coagulase-Negative Staphylococci to Plastic Tissue Culture Plates: A Quantitative Model for the Adherence of Staphylococci to Medical Devices. J. Clin. Microbiol. 1985, 22, 996–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Type * | CF | IM | AK | CP | LV | CT |
---|---|---|---|---|---|---|---|
1 | W | R | S | R | R | R | R |
2 | W | R | R | R | R | R | R |
3 | W | R | R | R | R | R | R |
4 | U | R | R | R | R | R | R |
5 | ER | R | R | R | R | R | R |
6 | U | R | R | R | R | I | R |
7 | U | R | R | R | R | R | R |
8 | U | R | R | R | R | I | R |
9 | U | R | R | R | R | I | R |
10 | U | R | S | R | S | I | R |
11 | U | R | R | R | R | I | R |
12 | W | R | I | R | R | R | R |
13 | W | R | R | R | R | R | R |
14 | W | R | R | R | R | R | R |
15 | U | R | S | R | S | I | R |
16 | U | R | I | R | I | I | R |
17 | U | R | R | R | R | R | R |
18 | W | R | S | R | S | R | R |
19 | W | R | R | I | R | S | R |
20 | U | R | S | I | R | S | R |
21 | ER | R | R | R | R | R | R |
22 | W | R | R | R | R | R | R |
23 | U | R | R | R | S | S | R |
24 | U | R | R | R | S | S | R |
25 | ER | R | R | I | S | S | R |
Number of Isolates with MICs (μg/mL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
<1 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | ≥1024 | |
TDN | 3 | 0 | 0 | 0 | 1 | 6 | 1 | 14 | 0 | 0 | 0 | 0 |
TDP | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 6 | 2 | 1 | 11 |
No. | Et Br | CP | M | CT | AK | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC1 | MIC2 | MIC1 | MIC2 | MIC1 | MIC2 | MIC1 | MIC2 | MIC1 | MIC2 | |
1 | >1024 | 256 | 8 | 8 | S | ND * | 32 | 32 | 512 | 16 |
2 | >1024 | 2 | 32 | 8 | 64 | <1 | 1024 | 16 | 512 | 16 |
3 | 512 | 16 | 32 | <1 | 512 | <1 | 512 | <1 | 128 | <1 |
4 | >1024 | 512 | 32 | 32 | 512 | <1 | >1024 | 16 | >1024 | 16 |
5 | >1024 | 512 | 32 | 2 | 512 | <1 | >1024 | 16 | 128 | 1 |
6 | >1024 | 512 | 8 | 8 | 8 | 4 | 64 | 64 | 512 | 8 |
7 | >1024 | 256 | 4 | <1 | 16 | 8 | 128 | 128 | 512 | 16 |
8 | 1024 | 256 | 4 | <1 | 16 | <1 | 256 | <1 | 64 | <1 |
9 | >1024 | 512 | 32 | <1 | 512 | <1 | 256 | 2 | 64 | <1 |
10 | 512 | 128 | S | ND * | S | ND * | 256 | <1 | 16 | <1 |
11 | >1024 | 512 | 8 | 8 | 16 | <1 | 128 | 16 | 512 | 16 |
12 | 1024 | 512 | 16 | <1 | 16 | 8 | 64 | 64 | 128 | 16 |
13 | >1024 | 256 | 32 | <1 | 16 | 8 | >1024 | 8 | 1024 | 32 |
14 | >1024 | 256 | 4 | <1 | 16 | <1 | 256 | <1 | 128 | <1 |
15 | 1024 | 256 | S | ND * | S | ND * | 256 | 128 | 16 | <1 |
16 | 1024 | 512 | 8 | <1 | 8 | <1 | 32 | <1 | 512 | <1 |
17 | >1024 | 64 | 8 | <1 | 8 | <1 | 256 | 4 | 512 | <1 |
18 | 512 | 256 | S | ND * | S | ND * | 16 | <1 | 512 | <1 |
19 | >1024 | 256 | 4 | <1 | 64 | <1 | 32 | 2 | 32 | 8 |
20 | >1024 | 512 | 4 | <1 | S | ND * | 32 | <1 | 16 | <1 |
21 | 1024 | 512 | 4 | <1 | 32 | 2 | 32 | 8 | 64 | <1 |
22 | >1024 | 512 | 4 | <1 | 8 | <1 | 32 | <1 | 512 | <1 |
23 | >1024 | 512 | S | ND * | 16 | <1 | 64 | 16 | 64 | <1 |
24 | >1024 | 256 | S | ND * | 32 | <1 | 64 | 16 | 64 | 8 |
25 | 256 | 8 | S | ND * | 32 | <1 | 256 | 8 | 16 | <1 |
No. | CP | M | CT | AK | ||||
---|---|---|---|---|---|---|---|---|
MIC1 | MIC2 | MIC1 | MIC2 | MIC1 | MIC2 | MIC1 | MIC2 | |
1 | 8 | 0.5 | S | S | 32 | 1 | 512 | 1 |
2 | 32 | 0.5 | 64 | 16 | 1024 | 512 | 512 | 64 |
3 | 32 | 1 | 512 | 256 | 512 | 1 | 128 | 1 |
4 | 32 | 8 | 512 | 256 | >1024 | 512 | >1024 | 1024 |
5 | 32 | 16 | 512 | 128 | >1024 | 256 | 128 | 128 |
6 | 8 | 0.5 | 8 | 4 | 64 | 1 | 512 | 1 |
7 | 4 | 4 | 16 | 8 | 128 | 16 | 512 | 4 |
8 | 4 | 0.5 | 16 | 16 | 256 | 16 | 64 | 4 |
9 | 32 | 2 | 512 | 256 | 256 | 32 | 64 | 4 |
10 | S (<1) | S (<1) | S | S | 256 | 32 | 16 | 1 |
11 | 8 | 0.5 | 16 | 16 | 128 | 16 | 512 | 1 |
12 | 16 | 0.5 | 16 | 16 | 64 | 1 | 128 | 1 |
13 | 32 | 0.5 | 16 | 16 | >1024 | 256 | 1024 | 4 |
14 | 4 | 0.5 | 16 | 16 | 256 | 16 | 128 | 4 |
15 | S | S | s | s | 256 | 8 | 16 | 1 |
16 | 8 | 0.5 | 8 | 8 | 32 | 1 | 512 | 1 |
17 | 8 | 0.5 | 8 | 8 | 256 | 8 | 512 | 1 |
18 | S (<1) | S (<1) | S (<1) | S (<1) | 16 | 1 | 512 | 4 |
19 | 4 | S | 64 | 16 | 32 | 1 | 32 | 4 |
20 | 4 | S | S | S | 32 | 1 | 16 | 1 |
21 | 4 | 0.5 | 32 | 16 | 32 | 16 | 64 | 1 |
22 | 4 | 0.5 | 8 | 4 | 32 | 16 | 512 | 1 |
23 | S (<1) | S (<1) | 16 | 16 | 64 | 16 | 64 | 1 |
24 | S (<1) | S (<1) | 32 | 8 | 64 | 16 | 64 | 4 |
25 | S (<1) | S (<1) | 32 | 16 | 256 | 16 | 16 | 4 |
Target | Degree of Biofilm Formation | |||||
---|---|---|---|---|---|---|
High | Moderate | Non/Weak Biofilm | ||||
No. | % | No. | % | No. | % * | |
In absence of TDN | 11 | 44 | 7 | 28 | 7 | 28 |
In presence of TDN | 1 | 4 | - | - | 24 | 96 |
Sample | Ct | ΔCt | ΔΔCt | Fold Difference of Gene Expression |
---|---|---|---|---|
Target rpoD | - | - | - | |
(Housekeeping Gene) | ||||
Ps * | 37.203 | |||
Ps1 ** | 34.0287 | |||
Target lasI | −4.1318 | 17.607 | ||
Ps * | 27.9 | −9.253 | ||
Ps1 ** | 20.637 | -13.3911 | ||
Target lasR | −3.5783 | 11.9447 | ||
Ps * | 27.721 | −9.4821 | ||
Ps1 ** | 20.9683 | −13.0604 | ||
Target MexA | −5.599 | 48.47 | ||
Ps * | 30.7584 | −6.4446 | ||
Ps1 ** | 21.984 | −12.0438 | ||
Target MexY | −7.458 | 175.86 | ||
Ps * | 34.5908 | −2.6122 | ||
Ps1 ** | 25.9582 | −10.0705 | ||
Target Mex B | −6.0032 | 64.1428 | ||
Ps * | 29.905 | −7.2525 | ||
Ps1 ** | 20.773 | −13.2557 | ||
Target OprM | 3.937 | 0.0653 | ||
Ps * | 34.9282 | −2.2749 | ||
Ps1 ** | 35.6917 | 1.663 | ||
Target pqsA | −1.499 | 2.8279 | ||
Ps * | 26.669 | −10.5335 | ||
Ps1 ** | 21.99 | −12.033 | ||
Target pqsR | −3.9985 | 15.98 | ||
Ps * | 27.9577 | −9.2453 | ||
Ps1 ** | 20.7849 | −13.243 | ||
Target rhlR | −3.2054 | 9.2242 | ||
Ps * | 27.3754 | −9.8277 | ||
Ps1 ** | 20.9956 | −13.0331 | ||
Target rhll | −2.0059 | 4.0165 | ||
Ps * | 27.1394 | −10.0637 | ||
Ps1 ** | 21.959 | −12.0696 |
Biofilm Formation | Adherence | Mean OD Values |
---|---|---|
Non/Weak | Non/Weak | <0.120 |
Moderate | Moderate | 0.120–0.240 |
High | Strong | >0.240 |
Gene | Primer Direction | Primer Sequence | Size of Amplified Product (bp) | Reference |
---|---|---|---|---|
rpoD | F R | 5-GCGAGAGCCTCAAGGATAC-3 5-CGAACTGCTTGCCGACTT-3 | 131 | (El-Shaer et al., 2016) |
MexY | F R | 5-CCGCTACAACGGCTATCCCT-3 5-AGCGGGATCGACCAGCTTTC-3 | 246 | (Yoneda et al., 2005) |
MexA | F R | 5′ACCTACGAGCCGACTACCAGA-3′ 5′GTTGGTCACCAGGGCGCCTTC-3′ | 179 | (Pourakbari et al., 2016) |
MexB | F R | 5-GTGTTCGGCTCGCAGTACTC-3 5-AACCGTCGGGATTGACCTTG-3 | 244 | (Pourakbari et al., 2016) |
OprM | F R | 5-CCATGAGCCGCCAACTGTC-3 5-CCTGGAACGCCGTCTGGAT-3 | 205 | (Pourakbari et al., 2016) |
Las I | F R | 5-CGCACATCTGGGAACTCA-3 5-CGGCACGACGATCATCATCT-3 | 176 | (El-Shaer et al., 2016) |
Las R | F R | 5-CTGTGGATGCTCAAGGACTAC-3 5-AACTGGTCTTGCCGATGG-3 | 133 | (El-Shaer et al., 2016) |
rhII | F R | 5-GTAGCGGGTTTGCGGATG-3 5-CGGCATCAGGTCTTCATCG-3 | 101 | (El-Shaer et al., 2016) |
rhIR | F R | 5-GCCAGCGTCTTGTTCGG-3 5-CGGTCTGCCTGAGCCATC-3 | 160 | (El-Shaer et al., 2016) |
Pqs A | F R | 5-GACCGGCTGTATTCGATTC-3 5-GCTGAACCAGGGAAAGAAC-3 | 74 | (El-Shaer et al., 2016) |
pqsR | F R | 5-CTGATCTGCCGGTAATTGG-3 5-ATCGACGAGGAACTGAAGA-3 | 142 | (El-Shaer et al., 2016) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, F.Y.; Aly, U.F.; Abd El-Baky, R.M.; Waly, N.G.F.M. Effect of Titanium Dioxide Nanoparticles on the Expression of Efflux Pump and Quorum-Sensing Genes in MDR Pseudomonas aeruginosa Isolates. Antibiotics 2021, 10, 625. https://doi.org/10.3390/antibiotics10060625
Ahmed FY, Aly UF, Abd El-Baky RM, Waly NGFM. Effect of Titanium Dioxide Nanoparticles on the Expression of Efflux Pump and Quorum-Sensing Genes in MDR Pseudomonas aeruginosa Isolates. Antibiotics. 2021; 10(6):625. https://doi.org/10.3390/antibiotics10060625
Chicago/Turabian StyleAhmed, Fatma Y., Usama Farghaly Aly, Rehab Mahmoud Abd El-Baky, and Nancy G. F. M. Waly. 2021. "Effect of Titanium Dioxide Nanoparticles on the Expression of Efflux Pump and Quorum-Sensing Genes in MDR Pseudomonas aeruginosa Isolates" Antibiotics 10, no. 6: 625. https://doi.org/10.3390/antibiotics10060625
APA StyleAhmed, F. Y., Aly, U. F., Abd El-Baky, R. M., & Waly, N. G. F. M. (2021). Effect of Titanium Dioxide Nanoparticles on the Expression of Efflux Pump and Quorum-Sensing Genes in MDR Pseudomonas aeruginosa Isolates. Antibiotics, 10(6), 625. https://doi.org/10.3390/antibiotics10060625