Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy
Abstract
:1. Introduction
2. Results
2.1. Biosecurity and Management of Farms
2.2. Laboratory Analyses
3. Discussion
4. Materials and Methods
4.1. Farm Samples’ Collection
4.2. Biosecurity and Management Data Collection
4.3. Phenotypic Analysis
4.4. Genotypic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Action Plan on Antimicrobial Resistance 2016–2020. Available online: http://www.fao.org/fsnforum/resources/fsn-resources/fao-action-plan-antimicrobial-resistance-2016–2020 (accessed on 1 February 2021).
- Voss, A.; Loeffen, F.; Bakker, J.; Klaassen, C.; Wulf, M. Methicillin-resistantStaphylococcus aureusin Pig Farming. Emerg. Infect. Dis. 2005, 11, 1965–1966. [Google Scholar] [CrossRef] [PubMed]
- Peeters, L.E.; Argudín, M.A.; Azadikhah, S.; Butaye, P. Antimicrobial resistance and population structure of Staphylococcus aureus recovered from pigs farms. Vet. Microbiol. 2015, 180, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Pirolo, M.; Sieber, R.N.; Moodley, A.; Visaggio, D.; Artuso, I.; Gioffrè, A.; Casalinuovo, F.; Spatari, G.; Guardabassi, L.; Stegger, M.; et al. Local and Transboundary Transmissions of Methicillin-Resistant Staphylococcus aureus Sequence Type 398 through Pig Trading. Appl. Environ. Microbiol. 2020, 86, 00430–20. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.C.; Male, M.J.; Harper, A.L.; Kroeger, J.S.; Tinkler, G.P.; Moritz, E.D.; Capuano, A.W.; Herwaldt, L.A.; Diekema, D.J. Methicillin-Resistant Staphylococcus aureus (MRSA) Strain ST398 Is Present in Midwestern U.S. Swine and Swine Workers. PLoS ONE 2009, 4, e4258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, Y.-Y.; Huang, Y.-C. Livestock-associated meticillin-resistant Staphylococcus aureus in Asia: An emerging issue? Int. J. Antimicrob. Agents 2015, 45, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, I.; Huijsdens, X.; Tiemersma, E.; De Neeling, A.; Van De Sande-Bruinsma, N.; Beaujean, D.; Voss, A.; Kluytmans, J. Emergence of Methicillin-ResistantStaphylococcus aureusof Animal Origin in Humans. Emerg. Infect. Dis. 2007, 13, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Monaco, M.; Pedroni, P.; Sanchini, A.; Bonomini, A.; Indelicato, A.; Pantosti, A. Livestock-associated methicillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming. BMC Infect. Dis. 2013, 13, 258. [Google Scholar] [CrossRef] [Green Version]
- Sieber, R.N.; Larsen, A.R.; Urth, T.R.; Iversen, S.; Møller, C.H.; Skov, R.L.; Larsen, J.; Stegger, M. Genome investigations show host adaptation and transmission of LA-MRSA CC398 from pigs into Danish healthcare institutions. Sci. Rep. 2019, 9, 18655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirolo, M.; Visaggio, D.; Gioffrè, A.; Artuso, I.; Gherardi, M.; Pavia, G.; Samele, P.; Ciambrone, L.; Di Natale, R.; Spatari, G.; et al. Unidirectional animal-to-human transmission of methicillin-resistant Staphylococcus aureus ST398 in pig farming; evidence from a surveillance study in southern Italy. Antimicrob. Resist. Infect. Control. 2019, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, H.; Ziegler, D.; Pflüger, V.; Vogel, G.; Zweifel, C.; Stephan, R. Prevalence and characteristics of methicillin-resistant coagulase-negative staphylococci from livestock, chicken carcasses, bulk tank milk, minced meat, and contact persons. BMC Vet. Res. 2011, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsilio, F.; Di Francesco, C.E.; Di Martino, B. Coagulase-Positive and Coagulase-Negative Staphylococci Animal Diseases. In Pet-To-Man Travelling Staphylococci; Elsevier BV: Cambridge, MA, USA, 2018; pp. 43–50. [Google Scholar]
- Chen, S.; Wang, Y.; Chen, F.; Yang, H.; Gan, M.; Zheng, S.J. A Highly Pathogenic Strain of Staphylococcus sciuri Caused Fatal Exudative Epidermitis in Piglets. PLoS ONE 2007, 2, e147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chehabi, C.N.; Nonnemann, B.; Astrup, L.B.; Farre, M.; Pedersen, K. In vitro Antimicrobial Resistance of Causative Agents to Clinical Mastitis in Danish Dairy Cows. Foodborne Pathog. Dis. 2019, 16, 562–572. [Google Scholar] [CrossRef]
- Stępień-Pyśniak, D.; Wilczyński, J.; Marek, A.; Śmiech, A.; Kosikowska, U.; Hauschild, T. Staphylococcus simulans associated with endocarditis in broiler chickens. Avian Pathol. 2016, 46, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamee, P.T.; Smyth, J.A. Bacterial chondronecrosis with osteomyelitis (’femoral head necrosis’) of broiler chickens: A review. Avian Pathol. 2000, 29, 253–270. [Google Scholar] [CrossRef] [PubMed]
- von Eiff, C.; Peters, G.; Heilmann, C. Pathogenesis of infections due to coagulasenegative staphylococci. Lancet Infect. Dis. 2002, 2, 677–685. [Google Scholar] [CrossRef]
- Lim, D.; Strynadka, N.C. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Genet. 2002, 9, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Rolo, J.; Worning, P.; Nielsen, J.B.; Sobral, R.; Bowden, R.; Bouchami, O.; Damborg, P.; Guardabassi, L.; Perreten, V.; Westh, H.; et al. Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci. PLoS Genet. 2017, 13, e1006674. [Google Scholar] [CrossRef]
- Miragaia, M. Factors Contributing to the Evolution of mecA-Mediated β-lactam Resistance in Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). Front. Microbiol. 2018, 9, 2723. [Google Scholar] [CrossRef] [Green Version]
- Tsubakishita, S.; Kuwahara-Arai, K.; Baba, T.; Hiramatsu, K. Staphylococcal Cassette Chromosome mec-Like Element in Macrococcus caseolyticus. Antimicrob. Agents Chemother. 2010, 54, 1469–1475. [Google Scholar] [CrossRef] [Green Version]
- Kawano, J.; Shimizu, A.; Saitoh, Y.; Yagi, M.; Saito, T.; Okamoto, R. Isolation of methicillin-resistant coagulase-negative staphylococci from chickens. J. Clin. Microbiol. 1996, 34, 2072–2077. [Google Scholar] [CrossRef] [Green Version]
- Nemeghaire, S.; Vanderhaeghen, W.; Argudín, M.A.; Haesebrouck, F.; Butaye, P. Characterization of methicillin-resistant Staphylococcus sciuri isolates from industrially raised pigs, cattle and broiler chickens. J. Antimicrob. Chemother. 2014, 69, 2928–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulinski, P.; Fluit, A.C.; Wagenaar, J.A.; Mevius, D.; Van De Vijver, L.; Duim, B. Methicillin-Resistant Coagulase-Negative Staphylococci on Pig Farms as a Reservoir of Heterogeneous Staphylococcal Cassette ChromosomemecElements. Appl. Environ. Microbiol. 2011, 78, 299–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-López, P.; Filipello, V.; Di Ciccio, P.A.; Pitozzi, A.; Ghidini, S.; Scali, F.; Ianieri, A.; Zanardi, E.; Losio, M.N.; Simon, A.C.; et al. Assessment of the Antibiotic Resistance Profile, Genetic Heterogeneity and Biofilm Production of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from The Italian Swine Production Chain. Foods 2020, 9, 1141. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Caruso, M.; Normanno, G.; Latorre, L.; Miccolupo, A.; Fraccalvieri, R.; Intini, F.; Manginelli, T.; Santagada, G. MRSA in swine, farmers and abattoir workers in Southern Italy. Food Microbiol. 2019, 82, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Pirolo, M.; Gioffrè, A.; Visaggio, D.; Gherardi, M.; Pavia, G.; Samele, P.; Ciambrone, L.; Di Natale, R.; Spatari, G.; Casalinuovo, F.; et al. Prevalence, Molecular epidemiology, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus from swine in southern Italy. BMC Microbiol. 2019, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Van Rennings, L.; Von Münchhausen, C.; Ottilie, H.; Hartmann, M.; Merle, R.; Honscha, W.; Käsbohrer, A.; Kreienbrock, L. Cross-Sectional Study on Antibiotic Usage in Pigs in Germany. PLoS ONE 2015, 10, e0119114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weese, J.S.; Zwambag, A.; Rosendal, T.; Reid-Smith, R.; Friendship, R. Longitudinal Investigation of Methicillin-Resistant Staphylococcus aureus in Piglets. Zoonoses Public Health 2010, 58, 238–243. [Google Scholar] [CrossRef]
- Burns, A.; Shore, A.; Brennan, G.; Coleman, D.; Egan, J.; Fanning, S.; Galligan, M.; Gibbons, J.; Gutierrez, M.; Malhotra-Kumar, S.; et al. A longitudinal study of Staphylococcus aureus colonization in pigs in Ireland. Vet. Microbiol. 2014, 174, 504–513. [Google Scholar] [CrossRef]
- Verhegghe, M.; Pletinckx, L.J.; Crombé, F.; Van Weyenberg, S.; Haesebrouck, F.; Butaye, P.; Heyndrickx, M.; Rasschaert, G. Cohort study for the presence of livestock-associated MRSA in piglets: Effect of sow status at farrowing and determination of the piglet colonization age. Vet. Microbiol. 2013, 162, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Fromm, S.; Beißwanger, E.; Käsbohrer, A.; Tenhagen, B.-A. Risk factors for MRSA in fattening pig herds–A meta-analysis using pooled data. Prev. Vet. Med. 2014, 117, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Schoenfelder, S.M.; Dong, Y.; Feßler, A.T.; Schwarz, S.; Schoen, C.; Köck, R.; Ziebuhr, W. Antibiotic resistance profiles of coagulase-negative staphylococci in livestock environments. Vet. Microbiol. 2017, 200, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Sinlapasorn, S.; Lulitanond, A.; Angkititrakul, S.; Chanawong, A.; Wilailuckana, C.; Tavichakorntrakool, R.; Chindawong, K.; Seelaget, C.; Krasaesom, M.; Chartchai, S.; et al. SCCmec IX in meticillin-resistant Staphylococcus aureus and meticillin-resistant coagulase-negative staphylococci from pigs and workers at pig farms in Khon Kaen, Thailand. J. Med. Microbiol. 2015, 64, 1087–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeghaire, S.; Argudín, M.A.; Feßler, A.T.; Hauschild, T.; Schwarz, S.; Butaye, P. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Vet. Microbiol. 2014, 171, 342–356. [Google Scholar] [CrossRef]
- Iwase, T.; Uehara, Y.; Shinji, H.; Tajima, A.; Seo, H.; Takada, K.; Agata, T.; Mizunoe, Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nat. Cell Biol. 2010, 465, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.I.V.; Jensen, V.F.; Boklund, A.; Halasa, T.; Christensen, H.; Toft, N. Risk factors for the occurrence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Danish pig herds. Prev. Vet. Med. 2018, 159, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Barbier, F.; Ruppe, E.; Hernandez, D.; Lebeaux, D.; Francois, P.; Felix, B.; Desprez, A.; Maiga, A.; Woerther, P.; Gaillard, K.; et al. Methicillin-Resistant Coagulase-Negative Staphylococci in the Community: High Homology of SCCmec IVa betweenStaphylococcus epidermidisand Major Clones of Methicillin-ResistantStaphylococcus aureus. J. Infect. Dis. 2010, 202, 270–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, M.D.; Boundy, S.; Archer, G.L. Transfer of the methicillin resistance genomic island among staphylococci by conjugation. Mol. Microbiol. 2016, 100, 675–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shore, A.C.; Rossney, A.S.; Brennan, O.M.; Kinnevey, P.M.; Humphreys, H.; Sullivan, D.J.; Goering, R.V.; Ehricht, R.; Monecke, S.; Coleman, D.C. Characterization of a Novel Arginine Catabolic Mobile Element (ACME) and Staphylococcal Chromosomal CassettemecComposite Island with Significant Homology to Staphylococcus epidermidis ACME Type II in Methicillin-Resistant Staphylococcus aureus Genotype ST22-MRSA-IV. Antimicrob. Agents Chemother. 2011, 55, 1896–1905. [Google Scholar] [CrossRef] [Green Version]
- Fluit, A.C.; Carpaij, N.; Majoor, E.A.M.; Bonten, M.J.M.; Willems, R.J.L. Shared reservoir of ccrB gene sequences between coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2013, 68, 1707–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeman, M.; Mašlaňová, I.; Indráková, A.; Šiborová, M.; Mikulášek, K.; Bendíčková, K.; Plevka, P.; Vrbovská, V.; Zdráhal, Z.; Doškař, J.; et al. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci. Rep. 2017, 7, srep46319. [Google Scholar] [CrossRef] [PubMed]
- Wielders, C.; Vriens, M.R.; Brisse, S.; De Graaf-Miltenburg, L.; Troelstra, A.; Fleer, A.; Schmitz, F.J.; Verhoef, J.; Fluit, A.C. Evidence for in-vivo transfer of mecA DNA between strains of Staphylococcus aureus. Lancet 2001, 357, 1674–1675. [Google Scholar] [CrossRef]
- Schaumburg, F.; Peters, G.; Alabi, A.; Becker, K.; Idelevich, E.A. Missense mutations of PBP2a are associated with reduced susceptibility to ceftaroline and ceftobiprole in African MRSA. J. Antimicrob. Chemother. 2016, 71, 41–44. [Google Scholar] [CrossRef]
- Mendes, R.; Tsakris, A.; Sader, H.S.; Jones, R.N.; Biek, D.; McGhee, P.; Appelbaum, P.C.; Kosowska-Shick, K. Characterization of methicillin-resistant Staphylococcus aureus displaying increased MICs of ceftaroline. J. Antimicrob. Chemother. 2012, 67, 1321–1324. [Google Scholar] [CrossRef] [PubMed]
- Kelley, W.L.; Jousselin, A.; Barras, C.; Lelong, E.; Renzoni, A. Missense Mutations in PBP2A Affecting Ceftaroline Susceptibility Detected in Epidemic Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clonotypes ST228 and ST247 in Western Switzerland Archived since 1998. Antimicrob. Agents Chemother. 2015, 59, 1922–1930. [Google Scholar] [CrossRef] [Green Version]
- Djoudi, F.; Bonura, C.; Touati, A.; Aléo, A.; Benallaoua, S.; Mammina, C. Staphylococcal cassette chromosome mec typing and mecA sequencing in methicillin-resistant staphylococci from Algeria: A highly diversified element with new mutations in mecA. J. Med. Microbiol. 2016, 65, 1267–1273. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chen, Z.; Guo, D.; Li, S.; Huang, J.; Wang, X.; Yao, Z.; Chen, S.; Ye, X. Nasal carriage of methicillin-resistant coagulase-negative staphylococci in healthy humans is associated with occupational pig contact in a dose-response manner. Vet. Microbiol. 2017, 208, 231–238. [Google Scholar] [CrossRef]
- Merialdi, G.; Galletti, E.; Guazzetti, S.; Rosignoli, C.; Alborali, G.; Battisti, A.; Franco, A.; Bonilauri, P.; Rugna, G.; Martelli, P. Environmental methicillin-resistant Staphylococcus aureus contamination in pig herds in relation to the productive phase and application of cleaning and disinfection. Res. Vet. Sci. 2013, 94, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L.; Larsen, J.; Weese, J.; Butaye, P.; Battisti, A.; Kluytmans, J.; Lloyd, D.; Skov, R. Public health impact and antimicrobial selection of meticillin-resistant staphylococci in animals. J. Glob. Antimicrob. Resist. 2013, 1, 55–62. [Google Scholar] [CrossRef]
- Dorado-García, A.; Dohmen, W.; Bos, M.E.; Verstappen, K.M.; Houben, M.; Wagenaar, J.A.; Heederik, D.J. Dose-Response Relationship between Antimicrobial Drugs and Livestock-Associated MRSA in Pig Farming. Emerg. Infect. Dis. 2015, 21, 950–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anagrafe Nazionale Zootecnica—Statistiche Banca Dati Nazionale dell’Anagrafe Zootecnica. Available online: https://www.vetinfo.it/j6_statistiche/#/ (accessed on 16 June 2020).
- R Core Team. R: A Language and Environment for Statistical Computing Computer Program, Version 3.6.1.; R Foundation for Sta-tistical Computing: Vienna, Austria, 2019; Available online: http://www.r-project.org (accessed on 25 May 2021).
- Jones, E.; Bowker, K.; Cooke, R.; Marshall, R.; Reeves, D.; MacGowan, A. Salt tolerance of EMRSA-16 and its effect on the sensitivity of screening cultures. J. Hosp. Infect. 1997, 35, 59–62. [Google Scholar] [CrossRef]
- A Van Enk, R.; Thompson, K.D. Use of a primary isolation medium for recovery of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 1992, 30, 504–505. [Google Scholar] [CrossRef] [Green Version]
- Schulthess, B.; Brodner, K.; Bloemberg, G.V.; Zbinden, R.; Böttger, E.C.; Hombach, M. Identification of Gram-Positive Cocci by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Comparison of Different Preparation Methods and Implementation of a Practical Algorithm for Routine Diagnostics. J. Clin. Microbiol. 2013, 51, 1834–1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graber, H.U. Genotyping of Staphylococcus aureus by Ribosomal Spacer PCR (RS-PCR). J. Vis. Exp. 2016, 117, 54623. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.B.; Skov, R.; Pallesen, L.V. Detection of methicillin resistance in coagulase-negative staphylococci and in staphylococci directly from simulated blood cultures using the EVIGENE MRSA Detection Kit. J. Antimicrob. Chemother. 2003, 51, 419–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Farm ID | Farm Type | MRS n Positive Samples /n Tested (%; 95% CI) | Staphylococcus Species (n Positive) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
S. aureus | S. cohnii | S. equorum | S. haemolyticus | S. pasteuri | S. sciuri | S. xylosus | ||||
Farm B | intensive | animals | 27/45 | 0 | 1 | 2 | 2 | 0 | 22 | 0 |
(60%; 44.3–74.3) | ||||||||||
environment | 4/6 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | ||
(66.7%; 22.3–95.7) | ||||||||||
Farm G | intensive (antibiotic-free finishing) | animals | 31/45 | 0 | 0 | 0 | 0 | 0 | 31 | 0 |
(68.9%; 53.3–81.8) | ||||||||||
environment | 4/6 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | ||
(66.7%; 22.3–95.7) | ||||||||||
Farm P | intensive | animals | 17/45 | 0 | 1 | 0 | 0 | 0 | 16 | 0 |
(37.8%; 23.8–53.5) | ||||||||||
environment | 2/6 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | ||
(33.3%; 0.4–77.7) | ||||||||||
Farm S | organic | animals | 8/15 | 0 | 0 | 0 | 0 | 0 | 8 | 0 |
(53.3%; 26.6–78.7) | ||||||||||
environment | 0/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
(0%; 0–84.2) | ||||||||||
Farm T | intensive | animals | 44/45 | 1 | 0 | 0 | 2 | 5 | 35 | 1 |
(97.8%; 88.2–100) | ||||||||||
environment | 5/6 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | ||
(83.3%; 35.9–99.6) | ||||||||||
Total | animals | 127/195 | 1 | 2 | 2 | 4 | 5 | 112 | 1 | |
(65.1%; 58.0–71.8) | ||||||||||
environment | 15/26 | 0 | 1 | 1 | 1 | 0 | 12 | 0 | ||
(57.7%; 36.9–76.7) |
Farm ID | Farm Type | MRS Per Productive Stage | |||||
---|---|---|---|---|---|---|---|
n Positive Samples/n Tested (%; 95% CI) | |||||||
Finishing | Post-Weaning | Sows | |||||
Animals | Environment | Animals | Environment | Animals | Environment | ||
Farm B | Intensive | 8/15 | 1/2 | 8/15 | 2/2 | 11/15 | 1/2 |
(53.3%; 26.6–78.7) | (50.0%; 12.6–98.7) | (53.3%; 26.6–78.7) | (100%; 15.8–100) | (73.3%; 44.9–92.2) | (50.0%; 12.6–98.7) | ||
Farm G | Intensive (antibiotic-free finishing) | 2/15 | 0/2 | 14/15 | 2/2 | 15/15 | 2/2 |
(13.3%; 1.6–40.5) | (0%; 0–84.2) | (93.3%; 68.1–99.8) | (100%; 15.8–100) | (100%; 78.2–100) | (100%; 15.8–100) | ||
Farm P | Intensive | 5/15 | 1/2 | 6/15 | 0/2 | 7/15 | 1/2 |
(33.3%; 11.8–61.6) | (50.0%; 12.6–98.7) | (40.0%; 16.3–67.7) | (0%; 0–84.2) | (46.7%; 21.3–73.4) | (50.0%; 12.6–98.7) | ||
Farm S | Organic | 8/15 | 0/2 | - | - | - | - |
(53.3%; 26.6–78.7) | (0%; 0–84.2) | ||||||
Farm T | Intensive | 14/15 | 1/2 | 15/15 * | 2/2 | 15/15 | 2/2 |
(93.3%; 68.1–99.8) | (50.0%; 12.6–98.7) | (100%; 78.2–100) | (100%; 15.8–100) | (100%; 78.2–100) | (100%; 15.8–100) | ||
Total | 37/75 | 3/10 | 43/60 | 6/8 | 48/60 | 6/8 | |
(49.3%; 38–60.6) | (30%; 6.7–65.2) | (71.7%; 58.6–82.5) | (75%; 34.9–96.8) | (80%; 67.7–89.2) | (75%; 34.9–96.8) |
Strain | Organism | Farm | Productive Phase | Sample | Point Mutation | PBP2-a Mutation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T667G | T675A | G682A | G737A | Y223D | S225R | A228T | G246E | |||||
B1SAS3 | S. equorum | B | sows | animal | X | X | X | X | ||||
(MW768099) | ||||||||||||
B1SAS5,9,11 | S. sciuri | B | sows | animal | X | X | ||||||
B1SAS15 | S. equorum | B | sows | animal | X | X | X | X | ||||
(MW768100) | ||||||||||||
B1SHS1 | S. equorum (MW768101) | B | sows | environment | X | X | X | X | ||||
B1PAS10 | S. haemolyticus | B | post-weaning | animal | X | X | ||||||
B1PAS15 | S. cohnii | B | post-weaning | animal | X | X | ||||||
(MW768093) | ||||||||||||
B1PHS1 | S. cohnii | B | post-weaning | environment | X | X | ||||||
(MW768094) | ||||||||||||
B1PHS2 | S. sciuri | B | post-weaning | environment | X | X | ||||||
B1FAS9 | S. sciuri | B | finishing | animal | X | X | ||||||
B1FAS13 | S. haemolyticus | B | finishing | animal | X | X | ||||||
B1FAS15 | S. haemolyticus | B | finishing | animal | X | X | ||||||
(MW768103) | ||||||||||||
B1FHS1 | S. haemolyticus (MW768102) | B | finishing | environment | X | X | ||||||
G1SAS7,12 | S. sciuri | G | sows | animal | X | X | ||||||
G1PAS6,15 | S. sciuri | G | post-weaning | animal | X | X | ||||||
G1PHS2 | S. sciuri | G | post-weaning | environment | X | X | ||||||
P1SAS1,3 | S. sciuri | P | sows | animal | X | X | ||||||
P1SAS14 | S. cohnii | P | sows | animal | X | X | ||||||
(MW774905) | ||||||||||||
P1SHS1 | S. sciuri | P | sows | environment | X | X | ||||||
P1PAS6,12,13,15 | S. sciuri | P | post-weaning | animal | X | X | ||||||
P1FAS2,3,9 | S. sciuri | P | finishing | animal | X | X | ||||||
P1FHS1 | S. sciuri | P | finishing | environment | X | X | ||||||
S1FAS2,7,10,14 | S. sciuri | S | finishing | animal | X | X | ||||||
T1SAS2,4,7,10,14 | S. sciuri | T | sows | animal | X | X | ||||||
T1SAS12 | S. xylosus | T | sows | animal | X | X | ||||||
(MW768096) | ||||||||||||
T1SHS1,2 | S. sciuri | T | sows | environment | X | X | ||||||
T1PAS3 | S. aureus | T | post-weaning | animal | X | X | X | X | ||||
(MW768098) | ||||||||||||
T1PAS4 | S. sciuri | T | post-weaning | animal | X | X | X | X | ||||
(MW732662) | ||||||||||||
T1PAS7,9,14 | S. sciuri | T | post-weaning | animal | X | X | ||||||
T1PAS12 | S. pasteuri | T | post-weaning | animal | X | X | ||||||
T1PHS1,2 | S. sciuri | T | post-weaning | environment | X | X | ||||||
T1FAS1,4,6,13 | S. pasteuri | T | finishing | animal | X | X | ||||||
(MW768095) | ||||||||||||
T1FAS5 | S. sciuri | T | finishing | animal | X | X | ||||||
(MW768105) | ||||||||||||
T1FAS7,15 | S. haemolyticus | T | finishing | animal | X | X | X | X | ||||
(MW768097) | ||||||||||||
T1FHS2 | S. sciuri | T | finishing | environment | X | X | ||||||
(MW768104) | ||||||||||||
COL | S. aureus (AAW37420.1) | human | X | X | ||||||||
MW2 | S. aureus (WP_001801873.1) | human | ||||||||||
N315 | S. aureus (BAB41256.1) | human | ||||||||||
SMK37o | S. equorum | cat | X | X | X | X | ||||||
(GU301099.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonvegna, M.; Grego, E.; Sona, B.; Stella, M.C.; Nebbia, P.; Mannelli, A.; Tomassone, L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics 2021, 10, 676. https://doi.org/10.3390/antibiotics10060676
Bonvegna M, Grego E, Sona B, Stella MC, Nebbia P, Mannelli A, Tomassone L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics. 2021; 10(6):676. https://doi.org/10.3390/antibiotics10060676
Chicago/Turabian StyleBonvegna, Miryam, Elena Grego, Bruno Sona, Maria Cristina Stella, Patrizia Nebbia, Alessandro Mannelli, and Laura Tomassone. 2021. "Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy" Antibiotics 10, no. 6: 676. https://doi.org/10.3390/antibiotics10060676
APA StyleBonvegna, M., Grego, E., Sona, B., Stella, M. C., Nebbia, P., Mannelli, A., & Tomassone, L. (2021). Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics, 10(6), 676. https://doi.org/10.3390/antibiotics10060676