Use of Antimicrobials among Suspected COVID-19 Patients at Selected Hospitals, Bangladesh: Findings from the First Wave of COVID-19 Pandemic
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Characteristics
2.2. Proportion of Antibiotic Use (before and on Hospital Admission)
2.3. Healthcare Sought within Last Two Weeks Prior to Hospital Admission for Current Illness
2.4. Different Class of Antibiotic Used among SARS-CoV-2 Positive and Negative Patients before and on Hospital Admission
2.5. Antibiotic Use among Patients with Different COVID-19 Severity on Admission
2.6. Antiviral Use
2.7. Antiparasitic Drug Use
2.8. Steroid Use (Other Medication)
2.9. Potential Factors Associated with Antibiotic Use on Hospital Admission
3. Discussion
4. Materials and Methods
4.1. Study Site and Study Population
4.2. Surveillance Activities
4.2.1. COVID-19 Sentinel Surveillance
4.2.2. Hospital-Based Influenza Surveillance (HBIS)
4.3. Patient Enrolment and Data Collection
4.4. Sample Collection and Laboratory Testing
4.5. Disease Severity Category among Suspected COVID-19 Patients
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Antimicrobials | Type of Wards | |||||
---|---|---|---|---|---|---|
Medicine n = 676 n (%) | Pediatrics n = 389 n (%) | ICU n = 2 n (%) | CCU n = 54 n (%) | COVID-19 Isolation n = 67 n (%) | Total n = 1188 n (%) | |
Antibiotics | ||||||
Cephalosporin | 365 (54.0) | 334 (85.9) | 0 | 18 (33.3) | 10 (14.9) | 727 (61.2) |
First-generation | 0 | 0 | 0 | 0 | 0 | 0 |
Second-generation | 17 (2.5) | 35 (9.0) | 0 | 2 (3.7) | 0 | 54 (4.6) |
Third-generation | 349 (51.6) | 299 (76.9) | 0 | 16 (29.6) | 10 (14.9) | 674 (56.7) |
Fourth-generation | 0 | 1 (0.3) | 0 | 0 | 0 | 1 (0.1) |
Macrolide | 238 (35.2) | 7 (1.8) | 0 | 11 (20.4) | 9 (13.4) | 265 (22.3) |
Penicilin | 101 (14.9) | 53 (13.6) | 2 (100) | 19 (35.2) | 3 (4.5) | 178 (15.0) |
Aminoglycoside | 4 (0.6) | 103 (26.5) | 1 (50.0) | 0 | 1 (1.5) | 109 (9.2) |
Quinolones | 50 (7.4) | 2 (0.5) | 0 | 0 | 0 | 52 (4.4) |
Tetracycline | 47 (6.9) | 0 | 0 | 2 (3.7) | 7 (10.4) | 56 (4.7) |
Carbapenems | 26 (3.8) | 14 (3.6) | 1 (50.0) | 1 (1.8) | 2 (3.0) | 44 (3.7) |
Oxazolidinone | 2 (0.3) | 10 (2.6) | 0 | 0 | 0 | 12 (1.0) |
Glycopeptides | 0 | 10 (2.6) | 0 | 0 | 0 | 10 (0.8) |
Nitroimidazoles | 11 (1.6) | 1 (0.3) | 0 | 0 | 0 | 12 (1.0) |
WHO AWaRe classification antibiotics | ||||||
Access | 145 (21.4) | 153 (39.3) | 2 (100.0) | 19 (35.2) | 10 (14.9) | 329 (27.7) |
Watch | 547 (80.92) | 355 (91.3) | 1 (50.0) | 25 (46.3) | 21 (31.3) | 949 (79.9) |
Reserve | 2 (0.3) | 10 (2.6) | 0 | 0 | 0 | 12 (1.0) |
Antiviral | ||||||
Acyclovir | 3 (0.4) | 0 | 0 | 0 | 0 | 3 (0.2) |
Adefovir | 1 (0.1) | 0 | 0 | 0 | 0 | 1 (0.1) |
Zidovudine | 1 (0.1) | 0 | 0 | 0 | 0 | 1 (0.1) |
Valacyclovir | 1 (0.1) | 0 | 0 | 2 (3.7) | 0 | 3 (0.2) |
Favipiravir | 6 (0.9) | 0 | 0 | 0 | 2 (3.0) | 8 (0.7) |
Antiparasitic drug | ||||||
Ivermectin | 28 (4.1) | 0 | 0 | 2 (3.7) | 0 | 30 (2.5) |
Classification | Clinical Syndromes | Definition | Absent | |
---|---|---|---|---|
Mild | COVID-19-like symptoms | Fever, cough, sore throat, fatigue, headache, muscle pain, anorexia, diarrhea, nausea or vomiting | Pneumonia or difficulty breathing | |
Moderate | Pneumonia | Adolescent or adult: (Any 1) 1. If x-ray conducted: Suggestive of pneumonia 2. If x-ray not conducted: Clinical sign of pneumonia: Fever (≥100.4 °F or ≥38 °C) + any respiratory symptom (cough or difficulty breathing) + decreased breath sound or rales 3. Physician diagnosed pneumonia | Child (≤5 years): (Any 1) 1. If x-ray conducted: Suggestive of pneumonia 2. If x-ray not conducted: Clinical sign of pneumonia: Cough or difficulty breathing + fast breath (<2 m: ≥ 60; 2–11 m: ≥ 50; 1–5 y: ≥40) +/or chest indrawing 3. Physician diagnosed pneumonia | Adolescent or adult: Respiratory rate: <30 Oxygen = 0 Child: Severe pneumonia |
Severe | Severe pneumonia | Adolescent or adult: (Any 1) 1. Pneumonia + fever + any one: Resp. rate (≥30 breath/min) or oxygen support 2. Physician diagnosed severe pneumonia | Child (≤5 years): (Any 1) 1. Pneumonia + cough/difficulty breathing + any one danger sign: central cyanosis or oxygen support or stridor or inability to drink/lethergy/unconsciousness/convulsions 2. Physician diagnosed severe pneumonia | |
Critical | Sepsis | Adult: (All 3) 1. Suspected or proven infection: Abnormal temp: Fever (low/high) + Neutrophil (high: >75) or ESR (high: >20) or WBC: (high: >12 k or low: < 4 k) or lymphocyte (low: <20) 2. Fast HR (pulse rate- ≥ 12 y: >100) 3. Altered mental status (2–5) or Oxygen support or Thrombocytopenia (Platelet: <50,000/cmm)or Physician diagnosed sepsis | Child: (All 3) 1. Suspected or proven infection: Abnormal temp: Fever (low/high) + Neutrophil (high: >75) or ESR (high: >20) or WBC: (high: >12 k or low: <4 k) or lymphocyte (low: <20) 2. HR (pulse rate- 0–29 d: >180, 30 d-1 y: >160, 1–5 y: >140, 5–12 y: >90) 3. Altered mental status (3–5) or Oxygen support or Thrombocytopenia (Platelet: <50,000/cmm)or Physician diagnosed sepsis | |
ARDS | Physician diagnosed ARDS | |||
Septic shock | Physician diagnosed septic shock | |||
Required ICU or mechanical ventilation | ICU or Mechanical ventilation required |
References
- Nestler, M.J.; Godbout, E.; Lee, K.; Kim, J.; Noda, A.J.; Taylor, P.; Pryor, R.; Markley, J.D.; Doll, M.; Bearman, G.; et al. Impact of COVID-19 on pneumonia-focused antibiotic use at an academic medical center. Infect. Control Hosp. Epidemiol. 2020, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Coronavirus Disease 2019, Superinfections, and Antimicrobial Development: What Can We Expect? Clin. Infect. Dis. 2020, 71, 2736–2743. [Google Scholar] [CrossRef]
- Huttner, B.; Catho, G.; Pano-Pardo, J.; Pulcini, C.; Schouten, J. COVID-19: Don’t neglect antimicrobial stewardship principles! Clin. Microbiol. Infect. 2020, 26, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Beović, B.; Doušak, M.; Ferreira-Coimbra, J.; Nadrah, K.; Rubulotta, F.; Belliato, M.; Berger-Estilita, J.; Ayoade, F.; Rello, J.; Erdem, H. Antibiotic use in patients with COVID-19: A ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J. Antimicrob. Chemother. 2020, 75, 3386–3390. [Google Scholar] [CrossRef] [PubMed]
- Verroken, A.; Scohy, A.; Gerard, L.; Wittebole, X.; Collienne, C.; Laterre, P.-F. Co-infections in COVID-19 critically ill and antibiotic management: A prospective cohort analysis. Crit. Care 2020, 24, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Ortwine, J.K.; Mang, N.S.; Joseph, C.; Hall, B.C.; Prokesch, B.C. Limited Role for Antibiotics in COVID-19: Scarce Evidence of Bacterial Coinfection (6/4/2020). Available SSRN 3622388 2020. [Google Scholar] [CrossRef]
- Townsend, L.; Hughes, G.; Kerr, C.; Kelly, M.; O’Connor, R.; Sweeney, E.; Doyle, C.; O’Riordan, R.; Martin-Loeches, I.; Bergin, C.; et al. Bacterial pneumonia coinfection and antimicrobial therapy duration in SARS-CoV-2 (COVID-19) infection. JAC-Antimicrob. Resist. 2020, 2, dlaa071. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Chong, W.H.; Saha, B.K.; Ramani, A.; Chopra, A. State-of-the-art review of secondary pulmonary infections in patients with COVID-19 pneumonia. Infection 2021, 1–15. [Google Scholar] [CrossRef]
- Karaba, S.M.; Jones, G.; Helsel, T.; Smith, L.L.; Avery, R.; Dzintars, K.; Salinas, A.B.; Keller, S.C.; Townsend, J.L.; Klein, E.; et al. Prevalence of Co-infection at the Time of Hospital Admission in COVID-19 Patients, A Multicenter Study. Open Forum Infect. Dis. 2021, 8, ofaa578. [Google Scholar] [CrossRef]
- Wang, L.; Amin, A.K.; Khanna, P.; Aali, A.; McGregor, A.; Bassett, P.; Rao, G.G. An observational cohort study of bacterial co-infection and implications for empirical antibiotic therapy in patients presenting with COVID-19 to hospitals in North West London. J. Antimicrob. Chemother. 2020, 76, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, M.; Patil, S.; Barkate, H. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2021, 102, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.E.; Bode, C.O.; Ajayi, A.A.; Alakaloko, F.M.; Akase, I.E.; Otrofanowei, E.; Salu, O.B.; Adeyemo, W.L.; Ademuyiwa, A.O.; Omilabu, S.A. Ivermectin shows clinical benefits in mild to moderate Covid19 disease: A randomised controlled double blind dose response study in Lagos. QJM An Int. J. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Karim, M.M.; Ross, A.G.; Hossain, M.S.; Clemens, J.D.; Sumiya, M.K.; Phru, C.S.; Rahman, M.; Zaman, K.; Somani, J.; et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int. J. Infect. Dis. 2021, 103, 214–216. [Google Scholar] [CrossRef]
- Hsu, J. How covid-19 is accelerating the threat of antimicrobial resistance. BMJ 2020, 369, m1983. [Google Scholar] [CrossRef]
- Rossato, L.; Negrão, F.J.; Simionatto, S. Could the COVID-19 pandemic aggravate antimicrobial resistance? Am. J. Infect. Control 2020, 48, 1129–1130. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Castro-Sanchez, E.; Charani, E.; Davies, F.; Satta, G.; Ellington, M.J.; Holmes, A.H. COVID-19 and the potential long-term impact on antimicrobial resistance. J. Antimicrob. Chemother. 2020, 75, 1681–1684. [Google Scholar] [CrossRef]
- PEW. Could Efforts to Fight the Coronavirus Lead to Overuse of Antibiotics? The Pew Charitable Trusts: Philadelphia, PA, USA, 2021. [Google Scholar]
- World Health Organisation. Record Number of Countries Contribute Data Revealing Disturbing Rates of Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- The Government of Bangladesh. Bangladesh Corona Info. Available online: https://corona.gov.bd/ (accessed on 11 November 2020).
- Islam, M.S.; Luby, S.P.; Sultana, R.; Rimi, N.A.; Zaman, R.U.; Uddin, M.; Nahar, N.; Rahman, M.; Hossain, M.J.; Gurley, E.S. Family caregivers in public tertiary care hospitals in Bangladesh: Risks and opportunities for infection control. Am. J. Infect. Control 2014, 42, 305–310. [Google Scholar] [CrossRef]
- Rimi, N.A.; Sultana, R.; Luby, S.P.; Islam, M.S.; Uddin, M.; Hossain, M.J.; Zaman, R.U.; Nahar, N.; Gurley, E.S. Infrastructure and Contamination of the Physical Environment in Three Bangladeshi Hospitals: Putting Infection Control into Context. PLoS ONE 2014, 9, e89085. [Google Scholar] [CrossRef]
- Rahaman, K.R.; Mahmud, S.; Mallick, B. Challenges of Testing COVID-19 Cases in Bangladesh. Int. J. Environ. Res. Public Health 2020, 17, 6439. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Nasrullah, M.; Hosen, M.J. COVID-19 and Bangladesh: Challenges and How to Address Them. Front. Public Health 2020, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.; Chowdhury, A.S.M.S.; Zahan, T. Self-medication during COVID-19 outbreak: A cross sectional online survey in Dhaka city. Int. J. Basic Clin. Pharmacol. 2020, 9, 1325. [Google Scholar] [CrossRef]
- Ahmed, I.; Hasan, M.; Akter, R.; Sarkar, B.K.; Rahman, M.; Sarker, S.; Samad, M.A. Behavioral preventive measures and the use of medicines and herbal products among the public in response to COVID-19 in Bangladesh: A cross-sectional study. PLoS ONE 2020, 15, e0243706. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. COVID-19 Clinical Management: Living Guidance; World Health Organization: Geneva, Switzerland, 2021; p. 81. [Google Scholar]
- Directorate General of Health Services. Bangladesh National Guidelines on Clinical Management of Coronavirus Disease 2019 (COVID-19); Version 7.0.; DGHS: Dhaka, Bangladesh, 2020. [Google Scholar]
- World Health Organisation. AWaRe Polcy Brief; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Molla, M.A.; Yeasmin, M.; Islam, K.; Sharif, M.; Amin, R.; Nafisa, T.; Ghosh, A.K.; Parveen, M.; Arif, M.H.; Alam, J.A.J.; et al. Antibiotic Prescribing Patterns at COVID-19 Dedicated Wards in Bangladesh: Findings from a Single Center Study. Infect. Prev. Pract. 2021, 3, 100134. [Google Scholar] [CrossRef]
- Parveen, M.; Molla, M.A.; Yeasmin, M.; Nafisa, T.; Barna, A.A.; Ghosh, A.K. Evidences on Irrational Anti-Microbial Prescribing and Consumption among COVID-19 Positive Patients and Possible Mitigation Strategies: A Descriptive Cross Sectional Study. Bangladesh J. Infect. Dis. 2020, 7, S3–S7. [Google Scholar] [CrossRef]
- World Health Organisation. Adopt AWaRe: Handle Antibiotics with Care. Available online: https://adoptaware.org/assets/pdf/aware_brochure.pdf (accessed on 17 December 2020).
- Kaur, H.; Shekhar, N.; Sharma, S.; Sarma, P.; Prakash, A.; Medhi, B. Ivermectin as a potential drug for treatment of COVID-19: An in-sync review with clinical and computational attributes. Pharmacol. Rep. 2021, 1–14. [Google Scholar] [CrossRef]
- Zhao, J.P.; Hu, Y.; Du, R.H.; Chen, Z.S.; Jin, Y.; Zhou, M.; Zhang, J.; Qu, J.M.; Cao, B. Expert consensus on the use of corticosteroid in patients with 2019-nCoV pneumonia. Chin. J. Tuberc. Respir. Dis. 2020, 43, 183–184. [Google Scholar]
- Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020, 395, 473–475. [Google Scholar] [CrossRef] [Green Version]
- Biswas, M.; Roy, M.N.; Manik, M.I.N.; Hossain, M.S.; Tapu, S.T.A.; Moniruzzaman, M.; Sultana, S. Self medicated antibiotics in Bangladesh: A cross-sectional health survey conducted in the Rajshahi City. BMC Public Health 2014, 14, 847. [Google Scholar] [CrossRef] [Green Version]
- Alam, N.; Saffoon, N.; Uddin, R. Self-medication among medical and pharmacy students in Bangladesh. BMC Res. Notes 2015, 8, 763. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.A.K.S.; Ajisola, M.; Azeem, K.; Bakibinga, P.; Chen, Y.-F.; Choudhury, N.N.; Fayehun, O.; Griffiths, F.; Harris, B.; Kibe, P.; et al. Impact of the societal response to COVID-19 on access to healthcare for non-COVID-19 health issues in slum communities of Bangladesh, Kenya, Nigeria and Pakistan: Results of pre-COVID and COVID-19 lockdown stakeholder engagements. BMJ Glob. Health 2020, 5, e003042. [Google Scholar] [CrossRef]
- Ahmed, M.; Aleem, M.A.; Roguski, K.; Abedin, J.; Islam, A.; Alam, K.F.; Gurley, E.S.; Rahman, M.; Azziz-Baumgartner, E.; Homaira, N.; et al. Estimates of seasonal influenza-associated mortality in Bangladesh, 2010–2012. Influenza Other Respir. Viruses 2017, 12, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, R.U.; Alamgir, A.S.M.; Rahman, M.; Azziz-Baumgartner, E.; Gurley, E.S.; Sharker, M.A.Y.; Brooks, W.A.; Azim, T.; Fry, A.M.; Lindstrom, S.; et al. Influenza in Outpatient ILI Case-Patients in National Hospital-Based Surveillance, Bangladesh, 2007–2008. PLoS ONE 2009, 4, e8452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, Z.; Monjur, M.R.; Biswas, A.A.J.; Chowdhury, F.; Kafi, M.A.H.; Braithwaite, J.; Jaffe, A.; Homaira, N. Antibiotic use for acute respiratory infections among under-5 children in Bangladesh: A population-based survey. BMJ Glob. Health 2021, 6, e004010. [Google Scholar] [CrossRef] [PubMed]
- Jewell, N.P. Statistics for Epidemiology; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
Characteristics | Suspected COVID-19 Patients (n = 1188) n (%) | Antibiotic Use n (%) | ||
---|---|---|---|---|
Overall (n = 1090) | COVID-19 Sentinel Surveillance (n = 150) | Hospital-Based Influenza Surveillance (n = 940) | ||
Age in year | ||||
≤5 | 322 (27.1) | 312 (28.6) | 1 (0.7) | 311 (33.1) |
6–18 | 96 (8.1) | 89 (8.2) | 5 (3.3) | 84 (8.9) |
19–59 | 486 (40.9) | 436 (40.0) | 51 (34.0) | 385 (40.9) |
≥60 | 284 (23.9) | 253 (23.2) | 93 (62.0) | 160 (17.0) |
Gender | ||||
Male | 816 (68.7) | 755 (69.3) | 102 (68.0) | 653 (69.5) |
Female | 372 (31.3) | 335 (30.7) | 48 (32.0) | 287 (30.5) |
Type of ward | ||||
Medicine | 676 (56.9) | 633 (58.1) | 94 (62.7) | 539 (57.3) |
Pediatrics | 389 (32.7) | 375 (34.4) | 5 (3.3) | 370 (39.4) |
ICU | 2 (0.2) | 2 (0.2) | 1 (0.7) | 1 (0.1) |
CCU | 54 (4.5) | 43 (3.9) | 13 (8.7) | 30 (3.2) |
COVID-19 Isolation | 67 (5.6) | 37 (3.4) | 37 (24.7) | 0 |
COVID-19 test result | ||||
Positive | 257 (21.6) | 237 (21.7) | 44 (29.3) | 193 (20.5) |
Negative | 931 (78.4) | 853 (78.3) | 106 (70.7) | 747 (79.5) |
Health care worker | ||||
Yes | 14 (1.2) | 12 (1.1) | 0 | 12 (1.3) |
No | 1174 (98.8) | 1078 (98.9) | 150 (100.0) | 928 (98.7) |
Smoking | ||||
Smoker | 250 (21.0) | 220 (20.2) | 53 (35.3) | 167 (17.8) |
Non-smoker | 938 (79.0) | 870 (79.8) | 97 (64.7) | 773 (82.2) |
Characteristics | Suspected COVID-19 Patients (n = 1188) n (%) | Antibiotic Use n (%) | ||
---|---|---|---|---|
Overall (n = 1090) | COVID-19 Sentinel Surveillance (n = 150) | Hospital-Based Influenza Surveillance (n = 940) | ||
Signs and symptoms on admission | ||||
Cough (dry/productive) | 1097 (92.3) | 1027 (94.2) | 87 (58.0) | 940 (100.0) |
Fever | 1063 (89.5) | 996 (91.4) | 56 (37.3) | 940 (100.0) |
Shortness of breath | 845 (71.1) | 797 (73.1) | 67 (44.7) | 730 (77.7) |
Runny nose | 405 (34.1) | 380 (34.9) | 9 (6.0) | 371 (39.5) |
Headache | 382 (32.1) | 348 (31.9) | 29 (19.3) | 319 (33.9) |
Sore throat | 225 (18.9) | 210 (19.3) | 18 (12.0) | 192 (20.4) |
Loss of smell or taste (n = 205) | 69 (33.7) | 49 (4.5) | 49 (32.7) | 0 |
Fever, cough and difficulty breathing | 765 (64.4) | 739 (67.8) | 9 (6.0) | 730 (77.7) |
Comorbidities | ||||
None | 708 (59.6) | 658 (60.4) | 48 (32.0) | 610 (64.9) |
One or more | 480 (40.4) | 432 (39.6) | 102 (68.0) | 330 (35.1) |
COVID-19 disease severity (WHO category) | ||||
Mild (symptoms only) | 436 (36.7) | 357 (32.8) | 109 (72.7) | 248 (26.4) |
Moderate (pneumonia) | 389 (32.7) | 374 (34.3) | 33 (22.0) | 341 (36.3) |
Severe (severe pneumonia) | 326 (27.4) | 323 (29.6) | 6 (4.0) | 317 (33.7) |
Critical (ARDS or Sepsis or septic shock or ICU/ventilation) | 37 (3.1) | 36 (3.3) | 2 (1.3) | 34 (3.6) |
Care seeking before admission (n = 205) | ||||
Visited any healthcare provider or facility within two weeks of hospital admission | 160 (78.0) | 114 (76.0) | 114 (76.0) | 0 |
Death occurred in hospital | 69 (5.8) | 66 (6.1) | 13 (8.7) | 53 (5.6) |
Antimicrobials * | Suspected COVID-19 Patients (n = 1188) n (%) | Within 24 h before Admission | On Admission | ||||
---|---|---|---|---|---|---|---|
SARS-CoV-2 Positive (n = 257) n (%) | SARS-CoV-2 Negative (n = 931) n (%) | p-Value | SARS-CoV-2 Positive (n = 257) n (%) | SARS-CoV-2 Negative (n = 931) n (%) | p-Value | ||
Antibiotic | |||||||
Antibiotics used in total | 1090 (91.7%) | 562 (47.3%) | 1057 (89.0%) | ||||
Cephalosporin | 761 (64.1) | 25 (9.7) | 161 (17.3) | 0.003 | 127 (49.4) | 600 (64.4) | <0.001 |
First-generation | 4 (0.3) | 1 (0.4) | 3 (0.3) | 0.870 | 0 | 0 | |
Second-generation | 69 (5.8) | 5 (2) | 13 (1.4) | 0.523 | 7 (2.7) | 47 (5.1) | 0.113 |
Third-generation | 708 (59.6) | 19 (7.4) | 145 (15.6) | 0.001 | 120 (46.7) | 554 (59.5) | <0.001 |
Fourth-generation | 1 (0.1) | 0 | 0 | 0 | 0 | 1 (0.1) | 0.599 |
Macrolide | 481 (40.5) | 104 (40.5) | 223 (24.0) | <0.001 | 85 (33.1) | 180 (19.3) | <0.001 |
Penicillin | 200 (16.8) | 6 (2.3) | 27 (2.9) | 0.625 | 38 (14.8) | 140 (15.0) | 0.920 |
Aminoglycoside | 114 (9.6) | 1 (0.4) | 6 (0.6) | 0.636 | 7 (2.7) | 102 (11.0) | <0.001 |
Quinolones | 63 (5.3) | 3 (1.2) | 8 (0.9) | 0.648 | 11 (4.3) | 41 (4.4) | 0.932 |
Tetracycline | 76 (6.4) | 10 (3.9) | 14 (1.5) | 0.016 | 17 (6.6) | 39 (4.2) | 0.104 |
Carbapenems | 45 (3.8) | 0 | 3 (0.3) | 0.362 | 11 (4.3) | 33 (3.5) | 0.580 |
Oxazolidinone | 12 (1.0) | 0 | 0 | 3 (1.2) | 9 (1.0) | 0.776 | |
Glycopeptides | 10 (0.8) | 0 | 0 | 2 (0.8) | 8 (0.9) | 0.900 | |
Nitroimidazoles | 13 (1.1) | 0 | 1 (0.1) | 0.599 | 3 (1.2) | 9 (1.0) | 0.776 |
WHO AWaRe classification antibiotics | |||||||
Access | 370 (31.1) | 68 (5.7) | 329 (27.7) | ||||
Watch | 1016 (85.5) | 514 (43.3) | 949 (79.9) | ||||
Reserve | 12 (1.0) | 0 | 12 (1.0) | ||||
Antiviral drug | |||||||
Antiviral used in total | 16 (1.4) | 0 | 16 (1.4) | ||||
Acyclovir | 3 (0.3) | 0 | 0 | - | 0 | 3 (0.3) | 0.362 |
Adefovir | 1 (0.1) | 0 | 0 | - | 0 | 1 (0.1) | 0.599 |
Zidovudine | 1 (0.1) | 0 | 0 | - | 0 | 1 (0.1) | 0.599 |
Valacyclovir | 3 (0.3) | 0 | 0 | - | 1 (0.4) | 2 (0.2) | 0.622 |
Favipiravir | 8 (0.7) | 0 | 0 | - | 1 (0.4) | 7 (0.7) | 0.529 |
Antiparasitic drug | |||||||
Antiparasitic drug used in total | 33 (2.8) | 3 (0.3) | 30 (2.5) | ||||
Ivermectin | 33 (2.8) | 1 (0.4) | 2 (0.2) | 0.622 | 9 (3.5) | 21 (2.7) | 0.260 |
Antimicrobials | Disease Severity | ||||
---|---|---|---|---|---|
Mild (n = 436) n (%) | Moderate (n = 389) n (%) | Severe (n = 326) n (%) | Critical (n = 37) n (%) | Total (n = 1188) n (%) | |
Antibiotic | 334 (76.6) | 367 (94.3) | 321 (98.5) | 35 (94.6) | 1057 (89.0) |
Cephalosporin | 197 (45.2) | 259 (66.6) | 250 (76.7) | 21 (56.8) | 727 (61.2) |
First-generation | 0 | 0 | 0 | 0 | 0 |
Second-generation | 10 (2.3) | 30 (7.7) | 10 (3.1) | 4 (10.8) | 54 (4.6) |
Third-generation | 187 (42.9) | 231 (59.4) | 239 (73.3) | 17 (46.0) | 674 (56.7) |
Fourth-generation | 0 (0) | 0 (0) | 1 (0.3) | 0 (0) | 1 (0.1) |
Macrolide | 88 (20.2) | 98 (25.2) | 74 (22.7) | 5 (13.5) | 265 (22.3) |
Penicilin | 48 (11) | 59 (15.2) | 63 (19.3) | 8 (21.6) | 178 (15.0) |
Aminoglycoside | 15 (3.4) | 37 (9.5) | 51 (15.6) | 6 (16.2) | 109 (9.2) |
Quinolones | 27 (6.2) | 11 (2.8) | 13 (4) | 1 (2.7) | 52 (4.4) |
Tetracycline | 18 (4.1) | 16 (4.1) | 16 (4.9) | 6 (16.2) | 56 (4.7) |
Carbapenems | 17 (3.9) | 6 (1.5) | 18 (5.5) | 3 (8.1) | 44 (3.7) |
Oxazolidinones | 4 (0.9) | 3 (0.8) | 2 (0.6) | 3 (8.1) | 12 (1.0) |
Glycopeptides | 4 (0.9) | 2 (0.5) | 2 (0.6) | 2 (5.4) | 10 (0.8) |
Nitroimidazoles | 9 (2.1) | 2 (0.5) | 0 (0) | 1 (2.7) | 12 (1.0) |
WHO AWaRe classification antibiotics | |||||
Access | 82 (18.8) | 106 (27.2) | 122 (37.4) | 19 (51.3) | 329 (27.7) |
Watch | 287 (65.8) | 341 (87.7) | 293 (89.9) | 28 (75.7) | 949 (79.9) |
Reserve | 4 (0.9) | 3 (0.8) | 2 (0.6) | 3 (8.1) | 12 (1.0) |
Antiviral drug | |||||
Acyclovir | 2 (0.5) | 0 | 0 | 1 (2.7) | 3 (0.2) |
Adefovir | 0 | 1 (0.3) | 0 | 0 | 1 (0.1) |
Zidovudine | 1 (0.2) | 0 | 0 | 0 | 1 (0.1) |
Valacyclovir | 3 (0.7) | 0 | 0 | 0 | 3 (0.2) |
Favipiravir | 2 (0.5) | 0 | 6 (1.8) | 0 | 8 (0.7) |
Antiparasitic drug | |||||
Ivermectin | 3 (0.7) | 6 (1.5) | 16 (4.9) | 5 (13.5) | 30 (2.5) |
UOR (95% CI) | p-Value | AOR (95% CI) | p-Value | |
---|---|---|---|---|
Disease severity 1 | ||||
Mild | Reference | Reference | ||
Moderate | 5.1 (3.1–8.3) | <0.001 | 3.6 (2.2–6.0) | <0.001 |
Severe | 19.6 (7.9–48.8) | <0.001 | 11.7 (4.5–30.1) | <0.001 |
Critical | 5.3 (1.3–22.6) | 0.023 | 3.4 (0.8–14.9) | 0.098 |
Antibiotic use before hospital admission 2 | ||||
No | Reference | Reference | ||
Yes | 3.0 (2.0–4.5) | <0.001 | 1.6 (1.0–2.5) | 0.044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mah-E-Muneer, S.; Hassan, M.Z.; Biswas, M.A.A.J.; Rahman, F.; Akhtar, Z.; Das, P.; Islam, M.A.; Chowdhury, F. Use of Antimicrobials among Suspected COVID-19 Patients at Selected Hospitals, Bangladesh: Findings from the First Wave of COVID-19 Pandemic. Antibiotics 2021, 10, 738. https://doi.org/10.3390/antibiotics10060738
Mah-E-Muneer S, Hassan MZ, Biswas MAAJ, Rahman F, Akhtar Z, Das P, Islam MA, Chowdhury F. Use of Antimicrobials among Suspected COVID-19 Patients at Selected Hospitals, Bangladesh: Findings from the First Wave of COVID-19 Pandemic. Antibiotics. 2021; 10(6):738. https://doi.org/10.3390/antibiotics10060738
Chicago/Turabian StyleMah-E-Muneer, Syeda, Md. Zakiul Hassan, Md. Abdullah Al Jubayer Biswas, Fahmida Rahman, Zubair Akhtar, Pritimoy Das, Md. Ariful Islam, and Fahmida Chowdhury. 2021. "Use of Antimicrobials among Suspected COVID-19 Patients at Selected Hospitals, Bangladesh: Findings from the First Wave of COVID-19 Pandemic" Antibiotics 10, no. 6: 738. https://doi.org/10.3390/antibiotics10060738
APA StyleMah-E-Muneer, S., Hassan, M. Z., Biswas, M. A. A. J., Rahman, F., Akhtar, Z., Das, P., Islam, M. A., & Chowdhury, F. (2021). Use of Antimicrobials among Suspected COVID-19 Patients at Selected Hospitals, Bangladesh: Findings from the First Wave of COVID-19 Pandemic. Antibiotics, 10(6), 738. https://doi.org/10.3390/antibiotics10060738