Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow’s Milk in Kenya
Abstract
:1. Introduction
2. Results
2.1. Confirmation of Staphylococci Species with PCR
2.2. Antimicrobial Resistance Patterns of S. aureus and CoNS
2.3. Prevalence of Multidrug Resistance in Staphylococci Species
2.4. Detection of Resistant Genes from the Staphylococci Species
3. Discussion
4. Materials and Methods
4.1. Study Areas and Design
4.2. Herd and Sampling
4.3. Milk Sample Collection
4.4. Laboratory Analysis
4.4.1. Isolation and Phenotypic Characterization of the Isolates
4.4.2. Bacterial Genomic DNA Extraction
4.4.3. Staphylococcus Aureus nuc Gene Amplification
4.4.4. Antibiotic Susceptibility Testing
4.4.5. Detection of Antimicrobial Resistance Genes
4.5. nuc Gene and Antibiotic Resistance Gene Sequencing and Analysis
4.6. Statistical Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nucleotide Sequence Accession Numbers
References
- Zadoks, R.N.; Middleton, J.R.; McDougall, S.; Katholm, J.; Schukken, Y.H. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. Neoplasia 2011, 16, 357–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Lin, X.; Jiang, T.; Peng, Z.; Xu, J.; Yi, L.; Li, F. Prevalence and Characterization of Staphylococcus aureus Cultured from Raw Milk Taken from Dairy Cows with Mastitis in Beijing, China. Front. Microbiol. 2018, 9, 1123. [Google Scholar] [CrossRef]
- Kuehn, J.S.; Gorden, P.J.; Munro, D.; Rong, R.; Dong, Q.; Plummer, P.J.; Wang, C.; Phillips, G.J. Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis. PLoS ONE 2013, 8, e61959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, M.A.; Zadoks, R.N. Methicillin resistant S. aureus in human and bovine mastitis. J. Mammary Gland Biol. Neoplasia 2011, 16, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Hennekinne, J.; Buyser, M.-L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [Green Version]
- Gindonis, V.; Taponen, S.; Myllyniemi, A.L.; Pyörälä, S.; Nykäsenoja, S.; Salmenlinna, S.; Lindholm, L.; Rantala, M. Occurrence and characterization of methicillin-resistant staphylococci from bovine mastitis milk samples in Finland. Acta Vet. Scand. 2013, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobrega, D.B.; De Buck, J.; Barkema, H.W. Antimicrobial resistance in non-aureus staphylococci isolated from milk is associated with systemic but not intramammary administration of antimicrobials in dairy cattle. J. Dairy Sci. 2018, 101, 7425–7436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Y.; Zhao, H.; Nobrega, D.B.; Cobo, E.R.; Han, B.; Zhao, Z.; Li, S.; Li, M.; Barkema, H.W.; Gao, J. Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. J. Dairy Sci. 2019, 102, 1571–1583. [Google Scholar] [CrossRef] [Green Version]
- Kuipers, A.; Koops, W.J.; Wemmenhove, H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef] [Green Version]
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front. Vet. Sci. 2018, 4, 237. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Shang, X.; Li, H.; Zhang, H.; Wang, L.; Sun, Y. Short communication: Detection and molecular characterization of methicillin-resistant Staphylococcus aureus isolated from subclinical bovine mastitis cases in China. J. Dairy Sci. 2020, 103, 840–845. [Google Scholar] [CrossRef]
- Vanderhaeghen, W.; Cerpentier, T.; Adriaensen, C.; Vicca, J.; Hermans, K.; Butaye, P. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated with clinical and subclinical mastitis in Belgian cows. Vet. Microbiol. 2010, 144, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.F.; Marco-Jimenez, F.; Duncan, D.; Marín, C.; Smith, R.P.; Evans, S.J.; Butaye, P.R. Livestock-Associated Methicillin-Resistant Staphylococcus aureus From Animals and Animal Products in the UK. Front. Microbiol. 2019, 10, 1236. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verraes, C.; Claeys, W.; Cardoen, S.; Daube, G.; De Zutter, L.; Imberechts, H.; Herman, L. A review of the microbiological hazards of raw milk from animal species other than cows. Int. Dairy J. 2014, 39, 121–130. [Google Scholar] [CrossRef]
- Smith, T.C. Livestock-Associated Staphylococcus aureus: The United States Experience. PLoS Pathog. 2015, 11, e1004564. [Google Scholar] [CrossRef] [PubMed]
- Sawant, A.A.; Gillespie, B.E.; Oliver, S.P. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet. Microbiol. 2009, 134, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Thorberg, B.M.; Kuhn, I.; Aarestrup, F.M.; Brandstrom, B.; Jonsson, P.; Danielsson-Tham, M.L. Pheno- and genotyping of Staphylococcus epidermidis isolated from bovine milk and human skin. Vet. Microbiol. 2006, 115, 163–172. [Google Scholar] [CrossRef]
- Grace, D. Review of Evidence on Antimicrobial Resistance and Animal Agriculture in Developing Countries; International Livestock Research Institute: Nairobi, Kenya, 2015. [Google Scholar] [CrossRef]
- Thu, T.; Van, H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Journal of Global Antimicrobial Resistance Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. Integr. Med. Res. 2020, 20, 170–177. [Google Scholar] [CrossRef]
- Gitau, G.K.; Bundi, R.M.; Vanleeuwen, J.; Mulei, C.M. Mastitogenic bacteria isolated from dairy cows in Kenya and their antimicrobial sensitivity. J. S. Afr. Vet. Assoc. 2014, 85, 950. [Google Scholar] [CrossRef] [PubMed]
- Global Antibiotic Resistance Partnership (GARP). Situation Analysis and Recommendations: Antibiotic Use and Resistance in Kenya. Available online: https://cddep.org/wp-content/uploads/2017/08/garp-kenya_es.pdf (accessed on 2 March 2021).
- Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The FAO Action Plan on Antimicrobial Resistance 2016–2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; pp. 1–14. Available online: http://www.fao.org/3/a-i5996e.pdf (accessed on 4 March 2021).
- Asiimwe, B.B.; Baldan, R.; Trovato, A.; Cirillo, D.M. Prevalence and molecular characteristics of Staphylococcus aureus, including methicillin resistant strains, isolated from bulk can milk and raw milk products in pastoral communities of South-West Uganda. BMC Infect. Dis. 2017, 17, 422. [Google Scholar] [CrossRef] [PubMed]
- Gunga, P.M. Antibiotic Resistance Phenotypes and Genotypes of Staphylococcus aureus Isolated from Milk Submitted to the Central Veterinary Laboratories. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 11 November 2018. [Google Scholar]
- Shitandi, A.; Sternesjö, Å. Prevalence of Multidrug Resistant Staphylococcus aureus in Milk from Large- and Small-Scale Producers in Kenya. J. Dairy Sci. 2014, 87, 4145–4149. [Google Scholar] [CrossRef] [Green Version]
- Mureithi, D.; Khang, C.; Kamau, M.N. Antimicrobial resistance profile in bacterial isolates from subclinical mastitic milk samples in dairy herds in Kenya. Bull. Anim. Health Prod. Afr. 2017, 65, 167–173. [Google Scholar]
- Wang, D.; Wang, Z.; Yan, Z.; Wu, J.; Ali, T.; Li, J.; Lv, Y.; Han, B. Bovine mastitis Staphylococcus aureus: Antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infect. Genet. Evol. 2015, 31, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Mbindyo, C.; Gitao, C.; Mulei, C. Prevalence, Etiology, and Risk Factors of Mastitis in Dairy Cattle in Embu and Kajiado Counties, Kenya. Vet. Med. Int. 2020, 2020. [Google Scholar] [CrossRef]
- Aklilu, E.; Chia, H.Y. First mecC and mecA Positive Livestock-Associated Methicillin Resistant Staphylococcus aureus (mecC MRSA/LA-MRSA) from Dairy Cattle in Malaysia. Microorganisms 2020, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Phophi, L.; Petzer, I.-M.; Qekwana, D.N. Antimicrobial resistance patterns and biofilm formation of coagulase-negative Staphylococcus species isolated from subclinical mastitis cow milk samples submitted to the Onderstepoort Milk Laboratory. BMC Vet. Res. 2019, 15, 1–9. [Google Scholar] [CrossRef]
- Majalija, S.; Tumwine, G.; Kiguli, J.; Bugeza, J.; Ssemadaali, M.A.; Kazoora, H.B.; Muwanguzi, E.N.; Nantima, N.; Tuyiragize, R. Pastoral community practices, microbial quality and associated health risks of raw milk in the milk value chain of Nakasongola District, Uganda. Pastoralism 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Omwenga, I.; Aboge, G.O.; Mitema, E.S.; Obiero, G.; Ngaywa, C.; Ngwili, N.; Wamwere, G.; Wainaina, M.; Bett, B. Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus, Including Methicillin-Resistant Strains in Raw Milk of Livestock from Northern Kenya. Microb. Drug Resist. 2021, 27, 843–854. [Google Scholar] [CrossRef]
- Mekonnen, S.A.; Lam, T.J.G.M.; Hoekstra, J.; Rutten, V.P.M.G.; Tessema, T.S.; Broens, E.M.; Riesebos, A.E.; Spaninks, M.P.; Koop, G. Characterization of Staphylococcus aureus isolated from milk samples of dairy cows in small holder farms of North-Western Ethiopia. BMC Vet. Res. 2018, 14, 246. [Google Scholar] [CrossRef]
- Frey, Y.; Rodriguez, J.P.; Thomann, A.; Schwendener, S.; Perreten, V. Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk. J. Dairy Sci. 2013, 96, 2247–2257. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, S.; Meng, L.; Dong, L.; Zhao, S.; Lan, X.; Wang, J.; Zheng, N. Prevalence, antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from dairy herds in northern China. J. Dairy Sci. 2017, 100, 8796–8803. [Google Scholar] [CrossRef] [Green Version]
- Käppeli, N.; Morach, M.; Corti, S.; Eicher, C.; Stephan, R.; Johler, S. Staphylococcus aureus related to bovine mastitis in Switzerland: Clonal diversity, virulence gene profiles, and antimicrobial resistance of isolates collected throughout 2017. J. Dairy Sci. 2019, 102, 3274–3281. [Google Scholar] [CrossRef] [Green Version]
- Monistero, V.; Barberio, A.; Biscarini, F.; Cremonesi, P.; Castiglioni, B.; Graber, H.; Bottini, E.; Ceballos-Marquez, A.; Kroemker, V.; Petzer, I.; et al. Different distribution of antimicrobial resistance genes and virulence profiles of Staphylococcus aureus strains isolated from clinical mastitis in six countries. J. Dairy Sci. 2020, 103, 3431–3446. [Google Scholar] [CrossRef]
- Mitema, E.S.; Kikuvi, G.M.; Wegener, H.C.; Stohr, K. An assessment of antimicrobial consumption in food producing animals in Kenya. J. Vet. Pharmacol. Ther. 2002, 24, 385–390. [Google Scholar] [CrossRef]
- Boireau, C.; Cazeau, G.; Jarrige, N.; Calavas, D.; Madec, J.-Y.; Leblond, A.; Haenni, M.; Gay, É. Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006–2016. J. Dairy Sci. 2018, 101, 9451–9462. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-S.; Lee, A.-R.; Kang, H.-M.; Lee, E.-S.; Kim, M.-N.; Paik, Y.; Park, Y.; Joo, Y.-S.; Koo, H. Phenotypic and Genetic Antibiogram of Methicillin-Resistant Staphylococci Isolated from Bovine Mastitis in Korea. J. Dairy Sci. 2007, 90, 1176–1185. [Google Scholar] [CrossRef]
- Schnitt, A.; Tenhagen, B.-A. Risk Factors for the Occurrence of Methicillin-Resistant Staphylococcus aureus in Dairy Herds: An Update. Foodborne Pathog. Dis. 2020, 17, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Kalayu, A.A.; Woldetsadik, D.A.; Woldeamanuel, Y.; Wang, S.-H.; Gebreyes, W.A.; Teferi, T. Burden and antimicrobial resistance of S. aureus in dairy farms in Mekelle, Northern Ethiopia. BMC Vet. Res. 2020, 16, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Kemal, K.E.; Tesfaye, S.; Ashanafi, S.; Muhammadhussien, A.F. Prevalence, risk factors and multidrug resistance profile of Staphylococcus aureus isolated from bovine mastitis in selected dairy farms in and around Asella town, Arsi Zone, South Eastern Ethiopia. Afr. J. Microbiol. Res. 2017, 11, 1632–1642. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and Zone Diameters. Version 11.0. 2021. Available online: http://www.eucast.org (accessed on 7 May 2021).
- Kim, S.-J.; Moon, D.C.; Park, S.-C.; Kang, H.Y.; Na, S.H.; Lim, S.-K. Antimicrobial resistance and genetic characterization of coagulase-negative staphylococci from bovine mastitis milk samples in Korea. J. Dairy Sci. 2019, 102, 11439–11448. [Google Scholar] [CrossRef]
- Klibi, A.; Maaroufi, A.; Torres, C.; Jouini, A. Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. Int. J. Antimicrob. Agents 2018, 52, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Kreausukon, K.; Fetsch, A.; Kraushaar, B.; Alt, K.; Müller, K.; Krömker, V.; Zessin, K.-H.; Käsbohrer, A.; Tenhagen, B.-A. Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. J. Dairy Sci. 2012, 95, 4382–4388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing: CLSI Supplement M100S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Scholtzek, A.D.; Hanke, D.; Walther, B.; Eichhorn, I.; Stöckle, S.D.; Klein, K.-S.; Gehlen, H.; Lübke-Becker, A.; Schwarz, S.; Feßler, A.T.; et al. Molecular Characterization of Equine Staphylococcus aureus Isolates Exhibiting Reduced Oxacillin Susceptibility. Toxins 2019, 11, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchal, V.V.; Griffiths, C.; Mosaei, H.; Bilyk, B.; Sutton, J.A.F.; Carnell, O.T.; Hornby, D.P.; Green, J.; Hobbs, J.K.; Kelley, W.L.; et al. Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureus is associated with RNA Polymerase alterations and fine tuning of gene expression. PLoS Pathog. 2020, 16, e1008672. [Google Scholar] [CrossRef]
- Muloi, D.; Kiiru, J.; Ward, M.J.; Hassell, J.M.; Bettridge, J.M.; Robinson, T.P.; Van Bunnik, B.A.; Chase-Topping, M.; Robertson, G.; Pedersen, A.B.; et al. Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city. Int. J. Antimicrob. Agents 2019, 54, 531–537. [Google Scholar] [CrossRef]
- Muloi, D.; Fèvre, E.M.; Bettridge, J.; Rono, R.; Ong’Are, D.; Hassell, J.M.; Karani, M.K.; Muinde, P.; Van Bunnik, B.; Street, A.; et al. A cross-sectional survey of practices and knowledge among antibiotic retailers in Nairobi, Kenya. J. Glob. Health 2019, 9, 010412. [Google Scholar] [CrossRef]
- Hamel, M.J.; Feikin, D.R.; Marston, B.; Brooks, J.T.; Greene, C.; Poe, A.; Chiller, T.; Zhou, Z.; Ouma, P.; Ochieng, B.; et al. Does Cotrimoxazole Prophylaxis for the Prevention of HIV-Associated Opportunistic Infections Select for Resistant Pathogens in Kenyan Adults? Am. J. Trop. Med. Hyg. 2008, 79, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Vali, L.; Dashti, A.A.; Mathew, F.; Udo, E.E. Characterization of Heterogeneous MRSA and MSSA with Reduced Susceptibility to Chlorhexidine in Kuwaiti Hospitals. Front. Microbiol. 2017, 8, 1359. [Google Scholar] [CrossRef] [Green Version]
- Milheiriço, C.; Portelinha, A.; Krippahl, L.; De Lencastre, H.; Oliveira, D.C. Evidence for a purifying selection acting on the β-lactamase locus in epidemic clones of methicillin-resistant Staphylococcus aureus. BMC Microbiol. 2011, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Alabi, A.S.; Peters, G.; Becker, K. New epidemiology of Staphylococcus aureus infection in Africa. Clin. Microbiol. Infect. 2014, 20, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Dorneles, E.M.S.; Fonseca, M.D.A.M.; de Abreu, J.A.P.; Lage, A.P.; Brito, M.A.V.P.; Pereira, C.R.; Brandão, H.M.; Guimarães, A.S.; Heinemann, M.B. Genetic diversity and antimicrobial resistance inStaphylococcus aureusand coagulase-negativeStaphylococcusisolates from bovine mastitis in Minas Gerais, Brazil. Microbiology 2019, 8, e00736. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Qu, W.; Barkema, H.; Nóbrega, D.; Gao, J.; Liu, G.; De Buck, J.; Kastelic, J.; Sun, H.; Han, B. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J. Dairy Sci. 2019, 102, 2416–2426. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, C.; Cremonesi, P.; Caprioli, A.; Carfora, V.; Ianzano, A.; Barberio, A.; Morandi, S.; Casula, A.; Castiglioni, B.; Bronzo, V.; et al. Occurrence of methicillin-resistant Staphylococcus aureus in dairy cattle herds, related swine farms, and humans in contact with herds. J. Dairy Sci. 2017, 100, 608–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Wang, Q.; Wang, X.-R.; Wang, L.; Li, X.-P.; Luo, J.-Y.; Zhang, S.-D.; Li, H.-S. Genetic characterization of antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis cases in Northwest China. J. Integr. Agric. 2016, 15, 2842–2847. [Google Scholar] [CrossRef] [Green Version]
- Pekana, A.; Green, E. Antimicrobial Resistance Profiles of Staphylococcus aureus Isolated from Meat Carcasses and Bovine Milk in Abattoirs and Dairy Farms of the Eastern Cape, South Africa. Int. J. Environ. Res. Public Health 2018, 15, 2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Ferreri, M.; Liu, X.Q.; Chen, L.B.; Su, J.L.; Han, B. Development of multiplex polymerase chain reaction assay for rapid detection ofStaphylococcus aureusand selected antibiotic resistance genes in bovine mastitic milk samples. J. Vet. Diagn. Investig. 2011, 23, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Croes, S.; Deurenberg, R.H.; Boumans, M.-L.L.; Beisser, P.S.; Neef, C.; Stobberingh, E. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009, 9, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antók, F.I.; Mayrhofer, R.; Marbach, H.; Masengesho, J.C.; Keinprecht, H.; Nyirimbuga, V.; Fischer, O.; Lepuschitz, S.; Ruppitsch, W.; Ehling-Schulz, M.; et al. Characterization of Antibiotic and Biocide Resistance Genes and Virulence Factors of Staphylococcus Species Associated with Bovine Mastitis in Rwanda. Antibiotics 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Radostits, O.; Gay, C.; Blood, D.; Hinchcliff, K.; Constable, P.D. Veterinary Medicine: A Text Book of the Disease of Cattle, Sheep, Pigs, Goats and Horses, 9th ed.; W.B. Sounders Company Ltd.: New York, NY, USA, 2007; pp. 430–432. [Google Scholar]
- National Mastitis Council (NMC). Laboratory Handbook on Bovine Mastitis; Revised Edition; National Mastitis Council Inc.: New Prague, MN, USA, 2017. [Google Scholar]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology, 2nd ed.; Oxford University Press: New York, NY, USA, 2013; pp. 105–120. [Google Scholar]
- Monday, S.; Beisaw, A.; Feng, P. Identification of Shiga toxigenic Escherichia coli seropathotypes A and B by multiplex PCR. Mol. Cell. Probes 2007, 21, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.F.; Cao, W.W.; Cerniglia, C.E. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J Appl Microbiol. 1997, 83, 727–736. [Google Scholar] [CrossRef]
- Martineau, F.; Picard, F.J.; Grenier, L.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. J. Antimicrob. Chemother. 2000, 46, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyatov, V.; Vrtková, I.; Knoll, A. Detection of selected antibiotic resistance genes using multiplex PCR assay in mastitis pathogens in the Czech Republic. Acta Vet. Brno 2017, 86, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Serrano, R.M.; Domínguez-Pérez, R.A.; Ayala-Herrera, J.L.; Luna-Jaramillo, A.E.; De Larrea, G.Z.-L.; Solís-Sainz, J.C.; García-Solís, P.; Loyola-Rodríguez, J.P. Dental plaque microbiota of pet owners and their dogs as a shared source and reservoir of antimicrobial resistance genes. J. Glob. Antimicrob. Resist. 2020, 21, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Pauly, M.; Schubert, G.; Shittu, A.; Tong, S.; Leendertz, F.; Peters, G.; Becker, K. Characterization of a Novel Thermostable Nuclease Homolog (NucM) in a Highly Divergent Staphylococcus aureus Clade. J. Clin. Microbiol. 2014, 52, 4036–4038. [Google Scholar] [CrossRef] [Green Version]
- SnapGene® Software (from Insightful Science). Available online: https://www.snapgene.com/ (accessed on 1 December 2020).
- NCBI/PubMed, NCBI/PMC. Available online: https://www.ncbi.nlm.nih.gov (accessed on 1 December 2020).
Antibiotic Class | Disk Concentration (µg) | Disc Diffusion Interpretive Criteria (mm) | S. aureus | CoNS | |
---|---|---|---|---|---|
S 1 | R 2 | Rn (%) | Rn (%) | ||
β-lactams | |||||
Cefoxitin | 30 | ≥22 | ≤21 | 23 (25) | 10 (10.8) |
Ampicillin | 25 | ≥29 | ≤28 | 65 (71.4) | 53 (57.6) |
Aminoglycosides | |||||
Gentamicin | 10 | ≥15 | ≤12 | 6 (6) | 4 (4.3) |
Streptomycin | 10 | ≥15 | ≤12 | 23 (21) | 18 (20) |
Fluoroquinolones | |||||
Ciprofloxacin | 5 | ≥21 | ≤15 | 3 (3.2) | 3 (3) |
Norfloxacin | 10 | ≥17 | ≤12 | 4 (4.3) | 3 (3) |
Tetracycline | |||||
Tetracycline | 30 | ≥19 | ≤14 | 23 (21) | 21 (22.8) |
Folate pathway inhibitors | |||||
Trimethoprim–sulfamethoxazole | 23.75/1.25 | ≥1 | ≥10 | 17 (17.5) | 16 (17.3) |
Macrolides | |||||
Erythromycin | 15 | ≥18 | ≤13 | 23 (25.2) | 14 (15.2) |
Phenicols | |||||
Chloramphenicol | 10 | ≥18 | ≤12 | 8 (8.7) | 7 (7.6) |
Antimicrobial Agents | MRSA 1 (n = 23) | MSSA 2 (n = 68) | p-Value 3 |
---|---|---|---|
Rn 4 (%) | Rn (%) | ||
Cefoxitin | 23 (100) | 0 (0) | 0.001 |
Ampicillin | 23 (100) | 45 (66.2) | 0.001 |
Gentamicin | 5 (26) | 1 (1.4) | 0.04 |
Norfloxacin | 3 (13) | 1 (1.4) | 0.04 |
Streptomycin | 9 (39) | 12 (17.6) | 0.03 |
Ciprofloxacin | 1 (4) | 2 (2.9) | 0.58 |
Trimethoprim–Sulfamethoxazole | 7 (30) | 10 (14.7) | 0.06 |
Tetracycline | 11 (48) | 10 (14.7) | 0.006 |
Erythromycin | 12 (52) | 12 (17.6) | 0.001 |
Chloramphenicol | 6 (26) | 2 (2.9) | 0.001 |
Species | β-Lactams | Tetracycline | Streptomycin | Erythromycin | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 No. R | blaZ Rn (%) | No. R | tetM Rn (%) | tetK Rn (%) | No. R | strB Rn (%) | No. R | msrA Rn (%) | ermB Rn (%) | ermC Rn (%) | |
S. aureus | 79 | 35 (41.1) | 23 | 4 (17.3) | - | 23 | 6 (26) | 23 | 5 (21.7) | 4 (17.3) | - |
CoNS | 73 | 55 (65.4) | 21 | 3 (14.2) | 3 (14.2) | 18 | 9 (50) | 14 | 4 (28.5) | 4 (28.5) | 1 (4.3) |
Total | 152 | 90 (59.2) | 43 | 7 (16.2) | 3 (6.9) | 42 | 15 (35.7) | 37 | 9 (24.3) | 8 (21.6) | 1 (2.7) |
Target Gene | Primer Sequence (5′-3′) | Annealing Temperature (°C) | Amplicon Size (bp) | Reference |
---|---|---|---|---|
nuc | F-GCGATTGATGGTGATACGGTT | 50 | 276 | [71] |
R-CAAGCCTTGACGAACTAAAGC | ||||
blaZ | F-ACTTCAACA CCTGCTGCTTTC | 54 | 173 | [72] |
R-TGACCACTTTTATCAGCAACC | ||||
strB | F-CGGTCGTGAGAACAATCTGA | 60 | 313 | [73] |
R-ATGATGCAGGATCGCCATGTA | ||||
ermB | F-ACGACGAAACTGGCTAA | 55 | 409 | [64] |
R-TGGTATGGCGGGTAA | ||||
msrA | F-AAGGCTTGTCCGCAATACAC | 60 | 320 | [73] |
R-CCATTACCCCCAATAAGTGC | ||||
tetM | F-GTCCGTCTGAACTTTGCGGA | 59 | 662 | [26] |
R-GCGGCACTTCGATGTGAATG | ||||
tetK | F-TTAGGTGAAGGGTTAGGTCC | 59 | 718 | [26] |
R-GCAAACTCATTCCAGAAGCA | ||||
ermC | F-AATCGGCTCAGGAAAAGG | 55 | 562 | [74] |
R-ATCGTCAATTCCTGCATG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbindyo, C.M.; Gitao, G.C.; Plummer, P.J.; Kulohoma, B.W.; Mulei, C.M.; Bett, R. Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow’s Milk in Kenya. Antibiotics 2021, 10, 772. https://doi.org/10.3390/antibiotics10070772
Mbindyo CM, Gitao GC, Plummer PJ, Kulohoma BW, Mulei CM, Bett R. Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow’s Milk in Kenya. Antibiotics. 2021; 10(7):772. https://doi.org/10.3390/antibiotics10070772
Chicago/Turabian StyleMbindyo, Christine M., George C. Gitao, Paul Joseph Plummer, Benard W. Kulohoma, Charles M. Mulei, and Rawlynce Bett. 2021. "Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow’s Milk in Kenya" Antibiotics 10, no. 7: 772. https://doi.org/10.3390/antibiotics10070772
APA StyleMbindyo, C. M., Gitao, G. C., Plummer, P. J., Kulohoma, B. W., Mulei, C. M., & Bett, R. (2021). Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow’s Milk in Kenya. Antibiotics, 10(7), 772. https://doi.org/10.3390/antibiotics10070772