Comparison of Antimicrobial Treatment Incidence Quantification Based on Detailed Field Data on Animal Level with the Standardized Methodology of the European Medicines Agency in Veal Calves, Switzerland, 2016–2018
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Collection and Treatment Recording
2.2. Treatment Incidence Quantification
2.3. TI Quantification Based on Data from the Swiss Veterinary Medicines Compendium (TIswiss)
2.4. Treatment Incidence Quantification with the EMA Method (TIDDD)
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. Lancet Infect. Dis. 2019, 19, 56–66. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1473309918306054 (accessed on 27 September 2020). [CrossRef] [Green Version]
- WHO. WHO Report on Surveillance of Antibiotic Consumption; WHO: Geneva, Switzerland, 2018; p. 128. Available online: https://apps.who.int/iris/bitstream/handle/10665/277359/9789241514880-eng.pdf (accessed on 2 May 2020).
- Bundesamt für Lebensmittelsicherheit und Veterinärwesen ARCH-Vet. ARCH-Vet; 2020; pp. 1–19. Available online: https://www.blv.admin.ch/blv/de/home/tiere/tierarzneimittel/antibiotika/vertrieb.html (accessed on 1 September 2020).
- MARAN Monitoring of Antimicrobial Resistance and Antibiotic Asage in Animals in The Netherlands in 2017. 2018; p. 79. Available online: https://www.wur.nl/upload_mm/7/b/0/5e568649-c674-420e-a2ca-acc8ca56f016_Maran%202018.pdf (accessed on 27 September 2020).
- Henius, A.E.; Pedersen, K.; Jensen, L.B. Danmap 2017. 2017. Available online: https://backend.orbit.dtu.dk/ws/files/161713656/Rapport_DANMAP_2017.pdf (accessed on 14 April 2021).
- European Medicines Agency Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2017: Trends from 2010–2017; Ninth ESVAC Rep. EMA/294674/2019; 2019; p. 106. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2017_en.pdf (accessed on 27 September 2020).
- Stebler, R.; Carmo, L.P.; Heim, D.; Naegeli, H.; Eichler, K.; Muentener, C.R. Extrapolating Antibiotic Sales to Number of Treated Animals: Treatments in Pigs and Calves in Switzerland, 2011–2015. Front. Vet. Sci. 2019, 6, 318. Available online: https://www.frontiersin.org/article/10.3389/fvets.2019.00318/full (accessed on 2 May 2020). [CrossRef]
- EMA Summary of Product Characteristics. 2020. Available online: https://www.ema.europa.eu/en/glossary/summary-product-characteristics (accessed on 30 December 2020).
- ANSES Suivi des Ventes de Médicaments Vétérinaires Contenant des Antibiotiques en France en 2015. [Tracking Sales of Veterinary Medicines Containing Antibiotics in France in 2015]. 2016. Available online: https://www.anses.fr/fr/content/suivi-des-ventes-dantibiotiques-veterinaires (accessed on 2 May 2020).
- Jarrige, N.; Cazeau, G.; Morignat, E.; Chanteperdrix, M.; Gay, E. Quantitative and qualitative analysis of antimicrobial usage in white veal calves in France. Prev. Vet. Med. 2017, 144, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Lava, M.; Schüpbach-Regula, G.; Steiner, A.; Meylan, M. Antimicrobial drug use and risk factors associated with treatment incidence and mortality in Swiss veal calves reared under improved welfare conditions. Prev. Vet. Med. 2016, 126, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Pardon, B.; Catry, B.; Dewulf, J.; Persoons, D.; Hostens, M.; De Bleecker, K.; Deprez, P. Prospective study on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves. J. Antimicrob. Chemother. 2012, 67, 1027–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EMA Defined Daily Doses for Animals (DDDvet) and Defined Course Doses for Animals (DCDvet): European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). 2016; Volume 44, pp. 13–18. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2016/04/WC500205410.pdf (accessed on 2 May 2020).
- EMA Revised ESVAC Reflection Paper on Collecting Data on Consumption of Antimicrobial Agents per Animal Species, on Technical Units of Measurement and Indicators for Reporting Consumption of Antimicrobial Agents in Animals. EMA/286416/2012-Rev.1; 2013; Volume 44, pp. 1–29. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/revised-european-surveillance-veterinary-antimicrobial-consumption-esvac-reflection-paper-collecting_en.pdf (accessed on 28 June 2019).
- EMA Principles on Assignment of Defined Daily Dose for Animals (DDDvet) and Defined Course Dose for Animals (DCDvet). Ema/710019/2014; 2015; Volume 44, p. 68. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/06/WC500188890.pdf (accessed on 11 May 2020).
- NORM/NORM-VET Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Tromsø/Oslo. 2017. Available online: https://www.vetinst.no/en/surveillance-programmes/norm-norm-vet-report (accessed on 10 April 2021).
- Institute of Pharmacology and Toxicology Vetsuisse Faculty Switzerland Tierarzneimittelkompendium der Schweiz. 2020. Available online: www.tierarzneimittel.ch (accessed on 28 August 2020).
- Becker, J.; Schüpbach-Regula, G.; Steiner, A.; Perreten, V.; Wüthrich, D.; Hausherr, A.; Meylan, M. Effects of the novel concept ‘outdoor veal calf’ on antimicrobial use, mortality and weight gain in Switzerland. Prev. Vet. Med. 2020, 176, 104907. [Google Scholar] [CrossRef]
- IP-SUISSE Richtlinien. IP-SUISSE Richtlinien Tierhaltung Rindvieh; Schweine; Schafe; Geflügel; 2019; pp. 13–15. Available online: https://www.ipsuisse.ch/richtlinien-tierhaltung/ (accessed on 20 June 2019).
- Lava, M.; Pardon, B.; Schüpbach-Regula, G.; Keckeis, K.; Deprez, P.; Steiner, A.; Meylan, M. Effect of calf purchase and other herd-level risk factors on mortality, unwanted early slaughter, and use of antimicrobial group treatments in Swiss veal calf operations. Prev. Vet. Med. 2016, 126, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Schnyder, P.; Schönecker, L.; Schüpbach-Regula, G.; Meylan, M. Effects of management practices, animal transport and barn climate on animal health and antimicrobial use in Swiss veal calf operations. Prev. Vet. Med. 2019, 167, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Catry, B.; Dewulf, J.; Maes, D.; Pardon, B.; Callens, B.; Vanrobaeys, M.; Opsomer, G.; De Kruif, A.; Haesebrouck, F. Effect of antimicrobial consumption and production type on antibacterial resistance in the bovine respiratory and digestive tract. PLoS ONE 2016, 11, e0146488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swissmedic Swiss Agency for Therpeutic Products. 2020. Available online: https://www.swissmedic.ch/swissmedic/en/home/about-us/swissmedic--swiss-agency-for-therapeutic-products.html (accessed on 28 August 2020).
- Mzyk, D.A.; Bublitz, C.M.; Martinez, M.N.; Davis, J.L.; Baynes, R.E.; Smith, G.W. Impact of bovine respiratory disease on the pharmacokinetics of danofloxacin and tulathromycin in different ages of calves. PLoS ONE 2019, 14, e0218864. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Cuneo, M.; Rowe, J.D.; Li, M.; Tell, L.A.; Allison, S.; Carlson, J.; Riviere, J.E.; Gehring, R. Estimation of tulathromycin depletion in plasma and milk after subcutaneous injection in lactating goats using a nonlinear mixed-effects pharmacokinetic modeling approach. BMC Vet. Res. 2016, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mclaughlin, C.; Fielder, A.E.; Yancey, M.F.; Bowersock, T.L.; Robinson, J.A. Rapid and prolonged distribution of tulathromycin into lung homogenate and pulmonary epithelial lining fluid of Holstein calves following a single subcutaneous administration of 2.5 mg/kg body weight. Int. J. Appl. Res. Vet. Med. 2010, 8, 129–137. [Google Scholar]
- Clothier, K.A.; Kinyon, J.M.; Griffith, R.W. Antimicrobial susceptibility patterns and sensitivity to tulathromycin in goat respiratory bacterial isolates. Vet. Microbiol. 2012, 156, 178–182. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. Available online: http://www.jstor.org/stable/2529310 (accessed on 2 May 2020). [CrossRef] [PubMed] [Green Version]
- Greve, W.; Wentura, D. Wissenschaftliche Beobachtung: Eine Einführung; Psychologie Verlags Union: Weinheim, Germany, 1997; ISBN 3-621-27360-3. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Echtermann, T.; Müntener, C.; Torgerson, P.; Sidler, X.; Kümmerlen, D. Etablierung von definierten Tagesdosierungen und definierten Gesamtbehandlungsdosierungen zur Messung des Antibiotikaverbrauchs in der Schweizer Schweineproduktion. Schweiz. Arch Tierheilkd 2018, 160, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Echtermann, T.; Muentener, C.; Sidler, X.; Kümmerlen, D. Antimicrobial Drug Consumption on Swiss Pig Farms: A Comparison of Swiss and European Defined Daily and Course Doses in the Field. Front. Vet. Sci. 2019, 6. Available online: https://www.frontiersin.org/article/10.3389/fvets.2019.00240/full (accessed on 2 May 2020). [CrossRef] [PubMed] [Green Version]
- Timmerman, T.; Dewulf, J.; Catry, B.; Feyen, B.; Opsomer, G.; de Kruif, A.; Maes, D. Quantification and evaluation of antimicrobial drug use in group treatments for fattening pigs in Belgium. Prev. Vet. Med. 2006, 74, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Schönecker, L.; Schnyder, P.; Overesch, G.; Schüpbach-Regula, G.; Meylan, M. Associations between antimicrobial treatment modalities and antimicrobial susceptibility in Pasteurellaceae and E. coli isolated from veal calves under field conditions. Vet. Microbiol. 2019, 236, 108363. [Google Scholar] [CrossRef] [PubMed]
Agreement between TIswiss and TIDDD Methods | Antimicrobial Class | n 3 | Sum of TIswiss (Days) | % of Total TIswiss 4 | Sum of TIDDD (Days) | % of Total TIDDD 5 | Median of Q | IQR of Q |
---|---|---|---|---|---|---|---|---|
Discrepancy > 25% (TIDDD < TIswiss) | Macrolides | 372 | 3157 | 25.5 | 1548.91 | 12.4 | 1.94 | 1.56–7.42 |
Sulfonamides | 343 | 2499 | 20.2 | 1351.75 | 10.8 | 1.87 | 1.42–2.33 | |
TIswiss in good agreement with TIDDD (maximal discrepancy ≤ 25%) | Phenicols | 10 | 43.26 | 0.4 | 36.71 | 0.3 | 1.16 | 1.16–1.16 |
Amino- glycosides | 32 | 150 | 1.2 | 140.87 | 1.1 | 1.14 | 0.80–2.07 | |
Florfenicols | 101 | 330.93 | 2.7 | 439.64 | 3.5 | 1.07 | 0.57–1.16 | |
Tetracyclines | 593 | 4017 | 32.5 | 5682.93 | 45.6 | 0.80 | 0.63–0.92 | |
Penicillins | 292 | 1638 | 13.3 | 2383.37 | 19.1 | 0.76 | 0.49–0.95 | |
Discrepancy > 25% (TIDDD > TIswiss) | Fluoro- quinolones | 51 | 143 | 1.2 | 238.53 | 1.9 | 0.72 | 0.48–1.74 |
Diamino- pyrimidins | 60 | 379 | 3.1 | 636.43 | 5.1 | 0.60 | 0.58–0.60 | |
Sum 6 | 1854 | 12,357.19 | 100.1 | 12,459.14 | 99.8 | |||
Sum | 1079 | 6322.19 | 51.3 | 8922.05 | 71.5 |
Agreement between TIswiss and TIDDD Methods | Drug | Antimicrobial Class | n 3 | Sum of TIswiss (Days) | % of Total TIswiss 4 | Sum of TIDDD (Days) | % of Total TIDDD 5 | Median of Q | IQR of Q |
---|---|---|---|---|---|---|---|---|---|
Discrepancy > 25% (TIDDD < TIswiss) | Tylosin | Macrolides | 222 | 1735 | 14.1 | 368.64 | 3.0 | 7.39 | 5.47–8.04 |
Spiramycine | Macrolides | 91 | 917 | 7.4 | 516.16 | 4.2 | 1.94 | 1.94–1.94 | |
Sulfadimidine | Sulfonamides | 278 | 2109 | 17.1 | 1037.98 | 8.4 | 1.89 | 1.50–2.69 | |
TIswiss in good agreement with TIDDD (maximal discrepancy ≤ 25%) | Phthalylsulfathiazole | Sulfonamides | 56 | 370 | 3.0 | 301.49 | 2.4 | 1.25 | 1.20–1.25 |
Tilmicosin | Macrolides | 13 | 39 | 0.3 | 37.14 | 0.3 | 1.20 | 0.96–1.20 | |
Tulathromycin | Macrolides | 46 | 466 | 3.8 | 626.97 | 5.0 | 1.20 | 0.78–1.20 | |
Florfenicol | Phenicols | 10 | 43.26 | 0.4 | 36.71 | 0.3 | 1.16 | 1.16–1.16 | |
Dehydro- streptomycin | Aminoglycosides | 30 | 145 | 1.2 | 138.82 | 1.1 | 1.07 | 0.80–1.90 | |
Florfenicol | Florfenicols | 101 | 330.93 | 2.7 | 439.64 | 3.5 | 1.07 | 0.57–1.16 | |
Marbofloxacin | Fluoroquinolones | 31 | 80 | 0.6 | 97.33 | 0.8 | 0.90 | 0.72–1.80 | |
Oxy- tetracycline | Tetracyclines | 207 | 813 | 6.6 | 1086.86 | 8.7 | 0.87 | 0.52–1.14 | |
Amoxicillin | Penicillins | 223 | 1389.5 | 11.3 | 1910.6 | 15.4 | 0.82 | 0.64–0.95 | |
Doxycycline | Tetracyclines | 77 | 558 | 4.5 | 1069.52 | 8.6 | 0.80 | 0.80–0.80 | |
Chlor- tetracycline | Tetracyclines | 309 | 2646 | 21.5 | 3526.55 | 28.4 | 0.78 | 0.63–0.92 | |
Discrepancy > 25% (TIDDD > TIswiss) | Trimethoprim | Diamino-pyrimidins | 60 | 379 | 3.1 | 636.43 | 5.1 | 0.60 | 0.58–0.60 |
Procaine benzylpenicillin | Penicillins | 64 | 232 | 1.9 | 456.08 | 3.7 | 0.49 | 0.35–0.75 | |
Danofloxacin | Fluoroquinolones | 19 | 61 | 0.5 | 138.22 | 1.1 | 0.47 | 0.34–0.63 | |
Sum 6 | 1837 | 12313.69 | 100 | 12425.14 | 100 | ||||
Sum | 1103 | 6880.69 | 55.9 | 9271.63 | 74.5 |
Agreement between TIswiss and TIDDD Methods | Drug | Antimircrobial Class | n 3 | Sum of TIswiss (Days) | % of Total TIswiss 4 | Sum of TIDDD (Days) | % of Total TIDDD 5 | Median of Q | IQR of Q |
---|---|---|---|---|---|---|---|---|---|
Discrepancy > 25% (TIDDD < TIswiss) | Tylosin | Macrolides | 218 | 1729 | 17.4 | 361.72 | 3.9 | 7.39 | 5.47–8.04 |
Spiramycine | Macrolides | 91 | 917 | 9.2 | 516.16 | 5.6 | 1.94 | 1.94–1.94 | |
Sulfadimidine | Sulfonamides | 276 | 2105 | 21.1 | 1035.8 | 11.3 | 1.89 | 1.50–2.69 | |
TIswiss in good agreement with TIDDD (maximal discrepancy ≤ 25%) | Phthalyl- sulfathiazole | Sulfonamides | 56 | 370 | 3.7 | 301.49 | 3.3 | 1.25 | 1.20–1.25 |
Amoxicillin | Penicillins | 197 | 1267.5 | 12.7 | 1749.05 | 19 | 0.82 | 0.64–0.95 | |
Doxycycline | Tetracyclines | 77 | 558 | 5.6 | 1069.52 | 11.6 | 0.80 | 0.80–0.80 | |
Chlor- tetracycline | Tetracyclines | 309 | 2646 | 26.6 | 3526.55 | 38.4 | 0.78 | 0.63–0.92 | |
Discrepancy > 25% (TIDDD > TIswiss) | Trimethoprim | Diaminopyrimidins | 55 | 368 | 3.7 | 622.67 | 6.8 | 0.60 | 0.58–0.60 |
Sum 6 | 1279 | 9960.5 | 100 | 9182.96 | 99.9 | ||||
Sum | 639 | 4841.5 | 48.6 | 6646.61 | 72.3 |
Agreement between TIswiss and TIDDD Methods | Drug | Antimircrobial Class | n 3 | Sum of TIswiss (Days) | % of Total TIswiss 4 | Sum of TIDDD (Days) | % of Total TIDDD 5 | Median of Q | IQR of Q |
---|---|---|---|---|---|---|---|---|---|
TIswiss in good agreement with TIDDD (maximal discrepancy ≤ 25%) | Tilmicosin | Macrolides | 13 | 39 | 1.7 | 37.14 | 1.2 | 1.20 | 0.96–1.20 |
Tulathro- mycin | Macrolides | 46 | 466 | 20 | 626.97 | 19.5 | 1.20 | 0.78–1.20 | |
Florfenicol | Phenicols | 10 | 43.26 | 1.9 | 36.71 | 1.1 | 1.16 | 1.16–1.16 | |
Dehydro- streptomcin | Aminoglycosides | 30 | 145 | 6.2 | 138.82 | 4.3 | 1.07 | 0.80–1.90 | |
Florfenicol | Florfenicols | 101 | 330.93 | 14.2 | 439.64 | 13.7 | 1.07 | 0.57–1.16 | |
Marbo- floxacin | Fluoroquinolones | 31 | 80 | 3.4 | 97.33 | 3 | 0.90 | 0.72–1.80 | |
Discrepancy > 25% (TIDDD > TIswiss) | Amoxicillin | Penicillins | 26 | 122 | 5.2 | 161.55 | 5 | 0.89 | 0.68–0.89 |
Oxy- tetracycline | Tetracyclines | 207 | 813 | 34.9 | 1086.86 | 33.8 | 0.87 | 0.52–1.14 | |
Procaine benzylpenicillin | Penicillins | 64 | 232 | 9.9 | 456.08 | 14.2 | 0.49 | 0.35–0.76 | |
Danofloxacin | Fluoroquinolones | 19 | 61 | 2.6 | 138.22 | 4.3 | 0.47 | 0.34–0.63 | |
Sum 6 | 547 | 2332.19 | 100 | 3219.32 | 100.1 | ||||
Sum | 464 | 2039.19 | 87.5 | 2625.02 | 81.6 |
Agreement between TIswiss and TIDDD Methods | Farm ID | n 3 | Sum of TIswiss (Days) | % of Total TIswiss 4 | Sum of TIDDD (Days) | % of Total TIDDD 5 | Median of Q | IQR of Q |
---|---|---|---|---|---|---|---|---|
Discrepancy > 25% (TIDDD < TIswiss) | 23 | 44 | 292.75 | 2.4 | 103.09 | 0.8 | 7.00 | 2.35–27.33 |
24 | 19 | 93 | 0.8 | 49.55 | 0.4 | 2.00 | 1.73–2.67 | |
34 | 22 | 102.15 | 0.8 | 77.9 | 0.6 | 1.78 | 0.80–2.17 | |
3 | 46 | 256.41 | 2.1 | 272.98 | 2.2 | 1.30 | 0.92–1.80 | |
35 | 101 | 756 | 6.2 | 716.56 | 5.8 | 1.30 | 0.63–4.98 | |
TIswiss in good agreement with TIDDD (maximal discrepancy ≤ 25%) | 21 | 221 | 1575 | 12.9 | 1630.22 | 13.3 | 1.20 | 0.80–1.25 |
18 | 17 | 41 | 0.3 | 33.28 | 0.3 | 1.17 | 0.65–3.50 | |
27 | 152 | 1400 | 11.4 | 1180.39 | 9.6 | 1.16 | 0.92–1.94 | |
25 | 230 | 1835.21 | 15.0 | 1397.21 | 11.4 | 1.14 | 0.89–2.69 | |
32 | 41 | 259 | 2.1 | 253.25 | 2.1 | 1.14 | 0.95–1.14 | |
33 | 19 | 44.5 | 0.4 | 46.62 | 0.4 | 1.08 | 0.87–1.08 | |
36 | 130 | 858 | 7.0 | 709.91 | 5.8 | 1.05 | 0.80–2.06 | |
37 | 64 | 431 | 3.5 | 352.17 | 2.9 | 0.96 | 0.85–2.06 | |
9 | 19 | 113.5 | 0.9 | 93.76 | 0.8 | 0.93 | 0.78–2.33 | |
38 | 165 | 711.56 | 5.8 | 825.21 | 6.7 | 0.90 | 0.63–1.89 | |
6 | 22 | 73.76 | 0.6 | 91.95 | 0.8 | 0.87 | 0.57–1.11 | |
17 | 11 | 34 | 0.3 | 33.31 | 0.3 | 0.87 | 0.56–16.21 | |
28 | 19 | 108.5 | 0.9 | 145.31 | 1.2 | 0.87 | 0.64–0.87 | |
31 | 70 | 494 | 4.0 | 558.5 | 4.6 | 0.87 | 0.61–1.30 | |
22 | 23 | 220 | 1.8 | 293.51 | 2.4 | 0.82 | 0.71–0.82 | |
26 | 44 | 161.5 | 1.3 | 226.45 | 1.8 | 0.81 | 0.54–1.30 | |
29 | 176 | 1380.63 | 11.3 | 1508.42 | 12.3 | 0.80 | 0.64–1.90 | |
16 | 16 | 68 | 0.6 | 94.89 | 0.8 | 0.77 | 0.63–0.98 | |
Overestimation of TI by >25% | 20 | 14 | 59.89 | 0.5 | 99.02 | 0.8 | 0.66 | 0.46–0.94 |
39 | 67 | 521.82 | 4.3 | 602.72 | 4.9 | 0.63 | 0.47–1.40 | |
5 | 24 | 143.63 | 1.2 | 378.22 | 3.1 | 0.52 | 0.32–0.80 | |
14 | 15 | 42.5 | 0.3 | 92.68 | 0.8 | 0.42 | 0.35–0.52 | |
15 | 13 | 53.5 | 0.4 | 137.16 | 1.1 | 0.38 | 0.38–0.38 | |
40 | 23 | 66.25 | 0.5 | 124.22 | 1.0 | 0.35 | 0.35–0.89 | |
19 | 11 | 46.63 | 0.4 | 128.38 | 1.0 | 0.34 | 0.34–0.37 | |
Sum 6 | 1838 | 12,243.69 | 100 | 12,256.84 | 100 | |||
Sum | 1439 | 9809.16 | 80.1 | 9474.36 | 77.5 |
Administration Route | Drug | Antimicrobial Class | n 3 | Mean Daily Dose | DDD |
---|---|---|---|---|---|
Oral Use | Tylosin | Macrolides | 218 | 6.09 | 41 |
Sulfadimidin | Sulfonamides | 221 | 34.17 | 105 | |
Spiramycine | Macrolides | 91 | 14.21 | 35 | |
Sulfadimidin * | Sulfonamides | 55 | 14.6 | 30 | |
Phthalylsulfathiazole * | Sulfonamides | 56 | 14.74 | 25 | |
Chlortetracycline | Tetracyclines | 309 | 21.35 | 22 | |
Amoxicillin | Penicillins | 197 | 20.72 | 20 | |
Trimethoprim * | Diaminopyrimidins | 55 | 5.84 | 4.8 | |
Doxycycline | Tetracyclines | 77 | 12.92 | 10 | |
Parenteral Use | Tilmicosin | Macrolides | 13 | 2.45 | 4 |
Dehydrostreptomycin | Aminoglycosides | 30 | 15.5 | 25 | |
Marbofloxacin | Fluoroquinolones | 31 | 2.66 | 3.6 | |
Tulathromycin | Macrolides | 46 | 0.25 | 0.3 | |
Amoxicillin | Penicillins | 26 | 7.17 | 8.3 | |
Oxytetracycline | Tetracyclines | 207 | 5.72 | 6.5 | |
Florfenicol | Florfenicols | 101 | 11.68 | 13 | |
Danofloxacin | Fluoroquinolones | 19 | 2.59 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, J.; Meylan, M. Comparison of Antimicrobial Treatment Incidence Quantification Based on Detailed Field Data on Animal Level with the Standardized Methodology of the European Medicines Agency in Veal Calves, Switzerland, 2016–2018. Antibiotics 2021, 10, 832. https://doi.org/10.3390/antibiotics10070832
Becker J, Meylan M. Comparison of Antimicrobial Treatment Incidence Quantification Based on Detailed Field Data on Animal Level with the Standardized Methodology of the European Medicines Agency in Veal Calves, Switzerland, 2016–2018. Antibiotics. 2021; 10(7):832. https://doi.org/10.3390/antibiotics10070832
Chicago/Turabian StyleBecker, Jens, and Mireille Meylan. 2021. "Comparison of Antimicrobial Treatment Incidence Quantification Based on Detailed Field Data on Animal Level with the Standardized Methodology of the European Medicines Agency in Veal Calves, Switzerland, 2016–2018" Antibiotics 10, no. 7: 832. https://doi.org/10.3390/antibiotics10070832