Sars-Cov-2 Infection in Patients on Long-Term Treatment with Macrolides in Spain: A National Cross-Sectional Study
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Characteristics of Patients with COVID-19
2.3. Factors Associated with Worse Outcomes in COVID-19 Patients
3. Discussion
4. Materials and Methods
4.1. Design
4.2. Data Sources and Outcomes
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.T.; Mellan, T.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J.W.; et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020, 584, 257–261. [Google Scholar] [CrossRef]
- Kim, M.S.; An, M.H.; Kim, W.J.; Hwang, T.-H. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med. 2020, 17, e1003501. [Google Scholar] [CrossRef]
- Recovery Collaborative Group. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 605–612. [Google Scholar] [CrossRef]
- Brusselle, G.G.; Stichele, C.V.; Jordens, P.; Deman, R.; Slabbynck, H.; Ringoet, V.; Verleden, G.; Demedts, I.K.; Verhamme, K.; Delporte, A.; et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): A multicentrerandomised double-blind placebo-controlled trial. Thorax 2013, 68, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Altenburg, J.; De Graaff, C.S.; Van der Werf, T.S.; Boersma, W.G. Immunomodulatory effects of macrolide antibiotics-part 2: Advantages and disadvantages of long-term, low-dose macrolide therapy. Respiration 2011, 81, 75–87. [Google Scholar] [CrossRef]
- Kanoh, S.; Rubin, B.K. Mechanisms of Action and Clinical Application of Macrolides as Immunomodulatory Medications. Clin. Microbiol. Rev. 2010, 23, 590–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, J.D.; Watson, J.; Roberts, L.R.; Gill, S.K.; Groves, H.; Dhariwal, J.; Almond, M.H.; Wong, E.; Walton, R.P.; Jones, L.; et al. Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. J. Antimicrob. Chemother. 2016, 71, 2767–2781. [Google Scholar] [CrossRef] [Green Version]
- López-Boado, Y.S.; Rubin, B.K. Macrolides as immunomodulatory medications for the therapy of chronic lung diseases. Curr. Opin. Pharmacol. 2008, 8, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Zarogoulidis, P.; Papanas, N.; Kioumis, I.; Chatzaki, E.; Maltezos, E. Macrolides: From in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur. J. Clin. Pharmacol. 2011, 68, 479–503. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.G.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; Marks, G.B.; Barake, M.; et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with per-sistent uncontrolled asthma (AMAZES): A randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Hiles, S.A.; McDonald, V.M.; Guilhermino, M.; Brusselle, G.; Gibson, P.G. Does maintenance azithromycin reduce asthma exacerbations? An individual participant data meta-analysis. Eur. Respir. J. 2019, 54, 1901381. [Google Scholar] [CrossRef]
- Wong, E.H.C.; Porter, J.D.; Edwards, M.R.; Johnston, S.L. The role of macrolides in asthma: Current evidence and future directions. Lancet Respir. Med. 2014, 2, 657–670. [Google Scholar] [CrossRef]
- Herath, S.C.; Normansell, R.; Maisey, S.; Poole, P. Prophylactic antibiotic therapy for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Uzun, S.; Djamin, R.S.; Kluytmans, J.A.J.W.; Mulder, P.G.H.; Veer, N.E.V.; Ermens, A.A.M.; Pelle, A.J.; Hoogsteden, H.C.; Aerts, J.G.J.V.; van der Eerden, M.M. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): A randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2014, 2, 361–368. [Google Scholar] [CrossRef]
- Wong, C.; Jayaram, L.; Karalus, N.; Eaton, T.; Tong, C.; Hockey, H.; Milne, D.; Fergusson, W.; Tuffery, C.; Sexton, P.; et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasias (EMBRACE): A randomised, double-blind, placebo-controlled trial. Lancet 2012, 380, 660–667. [Google Scholar] [CrossRef]
- Altenburg, J.; de Graaff, C.S.; Stienstra, Y.; Sloos, J.H.; van Haren, E.H.; Koppers, R.J.; van der Werf, T.S.; Boersma, W.G. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: The BAT randomized controlled trial. JAMA 2013, 209, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Southern, K.W.; Barker, P.M.; Solis-Moya, A.; Patel, L. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst. Rev. 2012, 11, CD002203. [Google Scholar] [CrossRef]
- Parnham, M.J.; Haber, V.E.; Giamarellos-Bourboulis, E.J.; Perletti, G.; Verleden, G.M.; Vos, R. Azithromycin: Mechanisms of action an their relevance for clinical applications. Pharmacol. Ther. 2014, 143, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Gautret, P.; Lagier, J.-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dufort, E.M.; Udo, T.; Wilberschied, L.A.; Kumar, J.; Tesoriero, J.; Weinberg, P.; Kirkwood, J.; Muse, A.; DeHovitz, J.; et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA 2020, 323, 2493–2502. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N. Engl. J. Med. 2020, 383, 2041–2052. [Google Scholar] [CrossRef]
- Furtado, R.H.M.; Berwanger, O.; Fonseca, H.A.; Corrêa, T.D.; Ferraz, L.R.; Lapa, M.G.; Zampieri, F.G.; Veiga, V.C.; Azevedo, L.C.P.; Rosa, R.G.; et al. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): A randomised clinical trial. Lancet 2020, 396, 959–967. [Google Scholar] [CrossRef]
- PRINCIPLE Trial Collaborative Group. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptative platform trial. Lancet 2021, 397, 1063–1074. [Google Scholar] [CrossRef]
- Hinks, T.S.; Cureton, L.; Knight, R.; Wang, A.; Cane, J.L.; Barber, V.S.; Black, J.; Dutton, S.J.; Melhorn, J.; Jabeen, M.F.; et al. A randomised clinical trial of azithromycin versus standard care in ambulatory COVID-19—The ATOMIC2 trial. Trials 2020, 21, 718. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Urrusuno, R.; Meseguer Barros, C.M.; Anaya-Ordóñez, S.; Izquierdo, Y.B.; Lallana-Álvarez, M.J.; Madridejos, R.; Tejón, E.M.; Sánchez, R.P.; Rodríguez, O.P.; Gil, M.G.; et al. Patients receiving a high burden of antibiotics in the community in Spain: A cross-sectional study. Pharm. Res. Perspect. 2021, 9, e00692. [Google Scholar] [CrossRef]
- Ministerio de Sanidad. Consejo Interterritorial del Sistema Nacional de Salud e Instituto de Salud Carlos III. Estudionacional de Seroepidemiologíade la Infecciónpor SARS-CoV-2 enEspaña (ENE-COVID19). Available online: https://www.mscbs.gob.es/ciudadanos/ene-covid/docs/ESTUDIO_ENE-COVID19_INFORME_FINAL.pdf (accessed on 4 June 2021). (In Spanish).
- Equipo COVID-19. RENAVE. Informe nº 33. Análisis de Loscasos de COVID-19 Notificados a la RENAVE Hasta el 10 de Mayo enEspaña a 29 de mayo de 2020. Available online: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Documents/INFORMES/Informes%20COVID-19/Informe%20n%C2%BA%2033.%20An%C3%A1lisis%20de%20los%20casos%20de%20COVID-19%20hasta%20el%2010%20de%20mayo%20en%20Espa%C3%B1a%20a%2029%20de%20mayo%20de%202020.pdf (accessed on 30 May 2020). (In Spanish).
- Working Group for the Surveillance and Control of COVID-19 in Spain. The First Wave of the COVID-19 Pandemic in Spain: Characterisation of Cases and Risk Factors for Severe Outcomes, as at 27 April 2020. Available online: https://www.eurosurveillance.org/content/ecdc2020;25:2001431 (accessed on 30 May 2021).
- Shallcross, L.; Beckley, N.; Rait, G.; Hayward, A.; Petersen, I. Antibiotic prescribing frequency amongst patients in primary care: A cohort study using electronic health records. J. Antimicrob. Chemother. 2017, 72, 1818–1824. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Mayer, M.A.; Vidal-Alaball, J.; Puigdellívol-Sánchez, A.; Gomez, F.X.M.; Leis, A.; Peña, J.M. Clinical Characterization of Patients With COVID-19 in Primary Care in Catalonia: Retrospective Observational Study. JMIR Public Health Surveill. 2021, 7, e25452. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Chen, W.; Liu, L.; Dong, M.; Ji, J.; Hu, D.; Zhang, N. Does Asthma Increase the Mortality of Patients with COVID-19?: A Systematic Review and Meta-Analysis. Int. Arch. Allergy Immunol. 2020, 182, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.A.; Tavares, J. Who are the Most At-Risk Older Adults in the COVID-19 Era? It’s Not Just Those in Nursing Homes. J. Aging Soc. Policy 2020, 32, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, F.; Castagna, A.; Rovere-Querini, P.; De Cobelli, F.; Ruggeri, A.; Galli, L.; Conte, C.; De Lorenzo, R.; Poli, A.; Ambrosio, A.; et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clin. Immunol. 2020, 217, 108509. [Google Scholar] [CrossRef]
- Lee, S.W.; Ha, E.K.; Yeniova, A.Ö.; Moon, S.Y.; Kim, S.Y.; Koh, H.Y.; Yang, J.M.; Jeong, S.J.; Moon, S.J.; Cho, J.Y.; et al. Severe clinical outcomes of COVID-19 associated with proton pump inhibitors: A nation-wide cohort study with propensity score matching. Gut 2021, 70, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.S.H.; Moeller, A.L.; Backer, V.; Andersen, M.P.; Kober, L.; Kragholm, K.; Torp-Pedersen, C. Severe outcomes of COVID-19 among patients with COPD and asthma. ERJ Open Res. 2020, 7. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Reilev, M.; Kristensen, K.B.; Pottegård, A.; Lund, L.C.; Hallas, J.; Ernst, M.T.; Christiansen, C.F.; Sørensen, H.T.; Johansen, N.B.; Brun, N.C.; et al. Characteristics and predictors of hospitalisation and death in the first 11,122 cases with positive RT-PCR test for SARS-CoV-2 in Denmark: A nationwide cohort. Int. J. Epidemiol. 2020, 49, 1468–1481. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Sieswerda, E.; de Boer, M.G.; Bonten, M.M.; Boersma, W.G.; Jonkers, R.E.; Aleva, R.M.; Kullberg, B.-J.; Schouten, J.A.; van de Garde, E.M.; Verheij, T.J.; et al. Recommendations for antibacterial therapy in adults with COVID-19—An evidence based guideline. Clin. Microbiol. Infect. 2020, 27, 61–66. [Google Scholar] [CrossRef]
- Oldenburg, C.E.; Pinsky, B.A.; Brogdon, J.; Chen, C.; Ruder, K.; Zhong, L.; Nyatigo, F.; Cook, C.A.; Hinterwirth, A.; Lebas, E.; et al. Effect of Oral Azithromycin vs. Placebo on COVID-19 Symptoms in Outpatients With SARS-CoV-2 Infection: A Randomized Clinical Trial. JAMA 2021, 326, 490–498. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2020, 383, 2030–2040. [Google Scholar] [CrossRef]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef]
- Urrusuno, R.F.; Dorado, M.F.; Arenas, A.V.; Martino, C.S.; Baena, S.C.; Balosa, M.C.M. Improving the appropriateness of antimicrobial use in pri-mary care after the implementation of a local antimicrobial guide in both levels of care. Eur. J. Clin. Pharmacol. 2014, 70, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDD Index 2010. Available online: http://www.whocc.no/atc_ddd_index (accessed on 5 January 2021).
- Instituto Nacional de Estadística. Available online: https://www.ine.es (accessed on 4 January 2021).
- Estrategia de Diagnóstico, Vigilancia y Control en la Fase de Transición de la Pandemia COVID-19. Indicadores de Seguimiento. Updated 12 May 2020. Available online: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/COVID19_Estrategia_vigilancia_y_control_e_indicadores.pdf (accessed on 4 June 2021). (In Spanish).
- Ministerio de Sanidad. Enfermedadpor Coronavirus, COVID-19. Updated 17 April 2020. Available online: https://www.mscbs.gob.es/en/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/20200417_ITCoronavirus.pdf (accessed on 4 June 2021). (In Spanish).
- Laporte, J.R.; Healey, D. Enmedio de la Pandemiapor SARS-CoV-2, Esnecesariaprudencia con fáRmacos de Consume Frecuente que Incrementan el Riesgo de Neumonía. Dirección General de Productos Sanitarios. Inf Farmacoterde la ComunitatValencian. 2020. Available online: http://www.san.gva.es/documents/152919/8717017/BOLETIN+SARS+1_INFORMAC+FARMACOTERAP1 (accessed on 4 June 2021). (In Spanish).
Patient’s Characteristics | Total Patients (n, %, Median, Interquartile Range) | Non-COVID-19 Patients (n, %, Median, Interquartile Range) | COVID-19 Patients (n, %, Median, Interquartile Range) | p-Value |
---|---|---|---|---|
Total | 3057 (100) | 2911 (100) | 146 (100) | |
Age (years, median) | 73 (64–81) | 73 (64–81) | 74 (64–74) | 0.164 |
Sex (n, %men) | 1687 (55.2) | 1596 (54.8) | 91 (62.3) | 0.049 |
Smokers or former smokers a | 1611 (62.1) | 1516 (61.5) | 95 (72.5) | 0.010 |
Obesity of high body-mass index (BMI ≥ 25 kg/m2) b | 1361(55.5) | 1297 (55.9) | 64 (49.2) | 0.158 |
Residence in nursing homes or long-term care facilities c | 98 (3.3) | 74 (2.6) | 24 (16.4) | 0.000 |
Number of comorbidities, median | 4 (3–5) | 4 (3–5) | 4 (3–5) | 0.904 |
Respiratory chronic diseases: | 2917 (95.4) | 2775 (95.3) | 142 (97.3) | 0.276 |
Chronic Obstructive Pulmonary Disease | 1683 (55.1) | 1596 (54.8) | 87 (59.6) | 0.259 |
Bronchiectasis | 1091 (35.7) | 1042 (35.8) | 49 (36.6) | 0.583 |
Asthma | 709 (23.2) | 673 (23.1) | 36 (24.7) | 0.667 |
Chronic respiratory failure | 308 (10.1) | 286 (9.8) | 22 (15.1) | 0.040 |
Chronic bronchitis | 253 (8.3) | 241 (8.3) | 12 (8.3) | 0.980 |
Emphysema | 227 (7.4) | 219 (7.5) | 8 (5.5) | 0.358 |
Lung transplant | 200 (6.5) | 197 (6.8) | 3 (2.1) | 0.025 |
Cystic fibrosis | 123 (4.0) | 118 (4.1) | 5 (3.4) | 0.706 |
Other | 527 (17.2) | 502 (17.2) | 25 (17.2) | 0.970 |
Arterial hypertension Cardiovascular, cerebrovascular diseases: Cardiovascular disease Heart failure Acute myocardial infarction Stable coronary heart disease Angina pectoris Stroke Peripheral arterial disease Transient ischemic attack Other | 2001 (65.5) 1231 (40.3) 618 (20.2) 408 (13.4) 150 (4.9) 87 (2.9) 59 (1.9) 125 (4.1) 108 (3.5) 81 (2.7) 659 (21.6) | 1896 (65.1) 1158 (39.8) 576 (19.8) 375 (13.9) 141 (4.8) 82 (2.8) 56 (1.9) 116 (4.0) 100 (3.4) 76 (2.6) 623 (21.4) | 105 (75.9) 73 (50.0) 42(28.8) 33 (22.6) 9 (6.2) 5 (3.4) 3 (2.1) 9 (6.2) 8 (5.5) 5 (3.4) 36 (24.7) | 0.092 0.014 0.008 0.001 0.471 0.192 0.911 0.194 0.192 0.550 0.351 |
Chronic neurological or mental diseases: | 964 (31.5) | 905 (31.1) | 59 (40.4) | 0.018 |
Depression | 566 (18.5) | 533 (18.3) | 33 (22.6) | 0.193 |
Dementia | 104 (3.4) | 100 (3.4) | 4 (2.7) | 0.651 |
Parkinson | 42 (1.4) | 40 (1.4) | 2 (1.4) | 0.997 |
Alzheimer | 31 (1.0) | 28 (1.0) | 3 (2.1) | 0.198 |
Schizophrenia | 16 (0.5) | 15 (0.5) | 1 (0.7) | 0.782 |
Other | 355 (11.6) | 332 (11.4) | 23 (15.8) | 0.110 |
Situation that leads to immunosuppression: | 753 (24.6) | 722 (24.8) | 31 (21.2) | 0.329 |
Malignancy | 528 (17.3) | 504 (17.3) | 24 (16.4) | 0.785 |
Transplant | 174 (5.7) | 168 (5.8) | 6 (4.1) | 0.398 |
Prolonged use of corticoids | 45 (1.5) | 42 (1.4) | 3 (2.1) | 0.549 |
Human immunodeficiency virus infection | 20 (0.7) | 20 (0.7) | 0 (0.0) | 0.315 |
Other | 52 (1.7) | 48(1.7) | 4(2.7) | 0.320 |
Autoimmune disease: | 295 (9.7) | 284 (9.8) | 11 (7.5) | 0.375 |
Rheumatoid arthritis | 98 (3.2) | 96 (3.3) | 2 (1.4) | 0.197 |
Psoriasis | 61 (2.0) | 56 (1.9) | 5 (3.4) | 0.206 |
Inflammatory bowel disease | 34 (1.1) | 32 (1.1) | 2 (1.2) | 0.761 |
Sjögren Syndrome | 23 (0.8) | 23 (0.8) | 0 (0.0) | 0.281 |
Lupus erythematosus | 19 (0.6) | 16 (0.6) | 3 (2.1) | 0.024 |
Celiac disease | 4 (0.1) | 4 (0.1) | 0 (0.0) | 0.110 |
Multiple sclerosis | 3 (0.1) | 3 (0.1) | 0 (0.0) | 0.698 |
Other | 82 (2.7) | 82 (2.8) | 0 (0.0) | 0.040 |
Other conditions | ||||
Diabetes mellitus | 766 (25.1) | 731(25.1) | 35(24.0) | 0.757 |
Chronic kidney failure | 372 (12.2) | 352 (12.1) | 20 (13.7) | 0.562 |
Liver disease or failure | 137 (4.5) | 122 (4.2) | 15 (10.3) | 0.001 |
Hospital admissions (for any cause) | 684 (22.6) | 605 (21.0) | 79 (54.5) | 0.000 |
Death | 120 (3.9) | 93 (3.2) | 27 (18.5) | 0.000 |
Patient’s Treatments | Total Patients (n, %, Median, Interquartile Range) | Non-COVID-19 Patients (n, %, Median, Interquartile Range) | COVID-19 Patients (n, %, Median, Interquartile Range) | p-Value |
---|---|---|---|---|
Total | 3057 (100) | 2911 (100) | 146 (100) | |
Treatment with long-term macrolides | ||||
Number of patients | ||||
Azithromycin | 2987 (97.7) | 2842 (97.6) | 145 (99.3) | 0.184 |
Clarithromycin | 55 (1.8) | 53 (1.8) | 2 (1.4) | 0.689 |
Erythromycin | 16 (0.5) | 16 (0.6) | - | - |
Days with macrolides a, median | ||||
Azithromycin | 580 (324–1123) | 584 (327–1124) | 468 (269–1070) | 0.031 |
Clarithromycin | 354 (234–578) | 354 (231–542) | - | - |
Erythromycin | 456 (260–702) | 456 (260–702) | - | - |
Weekly dose (mg), median | ||||
Azithromycin | 1500 (750–1500) | 1500 (750–1500) | 1500 (1000–1500) | 0.487 |
Clarithromycin | 7000 (3500–7000) | 7000 (3500–7000) | - | - |
Erythromycin | 2300 (1050–3500) | 2300 (1050–3500) | - | - |
Current medication | ||||
Number of concomitant treatments | 11 (±4) | 11 (±4) | 12 (±5) | 0.000 |
Bronchodilators: | 2600 (85.1) | 2467 (84.8) | 133 (91.1) | 0.036 |
Long-acting β2-agonist (LABA) | 2279 (74.6) | 2162 (74.3) | 117 (80.1) | 0.112 |
Long-acting muscarinic antagonist (LAMA) | 1824 (59.7) | 1728 (59.4) | 96 (65.8) | 0.124 |
Short-acting β2-agonist (SABA) | 1431 (46.8) | 1361 (46.8) | 70 (47.8) | 0.778 |
Short-acting muscarinic antagonist (SAMA) | 745 (24.4) | 705 (24.2) | 40 (27.4) | 0.383 |
Othersystemicantiasthmatics: | 533 (17.4) | 496 (17.1) | 37 (25.3) | 0.010 |
Montelukast | 390 (12.8) | 367 (12.6) | 23 (15.8) | 0.266 |
Roflumilast | 127 (4.2) | 113 (3.9) | 14 (4.2) | 0.001 |
Omalizumab | 10 (0.33) | 9 (0.31) | 1 (0.68) | 0.438 |
Other | 29 (1.0) | 27 (0.9) | 2 (1.4) | 0.591 |
Corticoids: | 2491 (81.5) | 2369 (81.4) | 122 (83.6) | 0.508 |
Inhaled | 2158 (70.6) | 2045 (70.3) | 113 (77.4) | 0.064 |
Systemic | 870 (28.5) | 829 (28.5) | 41 (28.1) | 0.918 |
Protonpumpinhibitors | 2247 (73.5) | 2134 (73.3) | 113 (77.4) | 0.275 |
Antihypertensives | 1919 (62.8) | 1822 (62.6) | 97 (66.4) | 0.348 |
Analgesics: | 1842 (60.3) | 1750 (60.1) | 92 (63.0) | 0.485 |
Non-opioids | 1644 (53.8) | 1560 (53.6) | 84 (57.5) | 0.351 |
Opioids | 660 (21.6) | 631 (21.7) | 29 (19.9) | 0.603 |
Gabapentinoids | 290 (9.5) | 275 (9.5) | 15 (10.3) | 0.739 |
Benzodiazepines | 1265 (41.4) | 1198 (41.2) | 67 (45.9) | 0.257 |
Lipid-loweringagents | 1225 (40.1) | 1162 (39.9) | 63 (43.2) | 0.437 |
Antibiotics (otherthanmacrolides) | 893 (29.2) | 837 (28.8) | 56 (38.4) | 0.013 |
Fluoroquinolones | 387 (12.7) | 350 (12.0) | 37 (25.3) | 0.000 |
Levofloxacin | 242 (7.9) | 210 (7.2) | 32 (21.9) | 0.000 |
Ciprofloxacin | 133 (4.4) | 125 (4.3) | 8 (5.5) | 0.493 |
Moxifloxacin | 58 (1.9) | 54 (1.9) | 4 (2.7) | 0.445 |
Penicillins | 197 (6.4) | 188 (6.5) | 9 (6.2) | 0.888 |
Amoxicillin-clavulanate | 167 (5.5) | 160 (5.5) | 7 (4.8) | 0.716 |
Amoxicillin | 35 (1.1) | 33 (1.1) | 2 (1.2) | 0.793 |
Cephalosporins | 94 (3.1) | 79 (2.7) | 15 (10.3) | 0.000 |
Cefditoren | 47 (1.5) | 41 (1.4) | 6 (4.1) | 0.010 |
Cefuroxime | 37 (1.2) | 35 (1.2) | 2 (1.4) | 0.857 |
Cefixime | 7 (0.2) | 5 (0.2) | 2 (1.4) | 0.003 |
Ceftriaxone | 7 (0.2) | 1 (0.03) | 6 (4.1) | 0.000 |
Otherantibiotics | 473 (15.5) | 452 (15.5) | 21 (14.4) | 0.709 |
Co-trimoxazole | 256 (8.4) | 247 (8.5) | 9 (6.2) | 0.323 |
Lincosamides-clindamycin | 11 (0.4) | 10 (0.3) | 1 (0.7) | 0.501 |
Other | 255 (8.3) | 242 (8.3) | 13 (8.9) | 0.801 |
Antidepressants | 855 (28.0) | 795 (27.3) | 60 (41.1) | 0.000 |
Antidiabetics | 656 (21.5) | 625 (21.5) | 31 (21.2) | 0.946 |
Antiplateletdrugs | 638 (20.9) | 606 (20.8) | 32 (21.9) | 0.750 |
Anticoagulants | 554 (18.1) | 519 (17.8) | 35 (24.0) | 0.060 |
NSAIDs | 512 (16.8) | 489 (16.8) | 23 (15.8) | 0.741 |
Antihistamines | 362 (11.8) | 337 (11.6) | 25 (17.1) | 0.043 |
Immunosuppressants | 321 (10.5) | 312 (10.7) | 9 (6.2) | 0.080 |
Mucolytics | 306 (10.0) | 289 (9.9) | 17 (11.6) | 0.500 |
Antipsychotics | 182 (6.0) | 167 (5.7) | 15 (10.4) | 0.024 |
Antifungals | 165 (5.4) | 155 (5.3) | 10 (6.9) | 0.426 |
Hydroxychloroquine | 37 (1.2) | 29 (1.0) | 8 (5.5) | 0.000 |
Coughsuppressants | 27 (0.9) | 24 (0.8) | 3 (2.1) | 0.136 |
Number of treatments that increase the risk of pneumonia b | 2 (1–4) | 2 (1–4) | 3 (2–4) | 0.020 |
Patient’s Characteristics | Number of Patients (n = 146, %) | 95% Confidence Interval |
---|---|---|
Diagnosis of COVID-19: Confirmed Suspected Probable | 70 (47.9) 59 (40.4) 17 (11.6) | (39.6–56.4) (32.4–48.8) (6.9–18.9) |
Date of COVID-19 diagnosis record: February March April May | 2 (1.4) 53 (36.3) 58 (39.7) 33 (22.6) | (0.2–4.9) (28.5–44.7) (31.7–48.1) (16.1–30.3) |
COVID-19 symptoms: Asymptomatic Unspecific * Respiratory: Shortness of breath Cough Pneumonia Anosmia, ageusia Other Gastrointestinal Dermatological Acute kidney failure Other | 13 (8.9) 5 (3.4) 121 (82.9) 86 (58.9) 63 (43.2) 41 (28.1) 5 (3.4) 8 (5.5) 17 (11.6) 3 (2.1) 2 (1.4) 7 (4.8) | (4.8–14.7) (1.1–7.8) (75.8–88.6) (50.5–67.0) (35.0–51.6) (21.0–36.1) (1.1–7.8) (2.4–10.1) (6.9–18.9) (0.4–5.9) (0.2–4.9) (1.9–9.6) |
Severity: Mild to moderate Hospitalization with COVID-19 Death | 78 (53.4) 41 (28.1) 27 (18.5) | (45.0–61.7) (21.0–36.1) (12.6–25.8) |
Patient’s characteristics | Total Patients (n, %, Median, Interquartile Range) | Mild/Moderate (n, %, Median, Interquartile Range) | Hospitalization/Death (n, %, Median, Interquartile Range) | p-Value |
---|---|---|---|---|
Total | 146 (100) | 78 (53.4) | 68 (46.6) | |
Age (years, median) | 74 (64–74) | 71 (63–78) | 81 (69–86) | 0.004 |
Sex (n, %men) | 91 (62.3) | 44 (56.4) | 47 (69.1) | 0.114 |
Smokers or ex-smokers a | 95 (72,5) | 50 (73.5) | 45 (71.4) | 0.788 |
Obesity of high body-mass index (BMI≥25 kg/m2) b | 64 (49.2) | 35 (51.5) | 29 (46.8) | 0.593 |
Residence in nursing homes or long-term care facilities | 24 (16.4) | 9 (11.5) | 15 (22.1) | 0.087 |
Number of comorbidities, median | 4 (3–5) | 4 (2–5) | 5 (4–6) | 0.014 |
Respiratory chronic diseases: | 142 (97.3) | 75 (96.1) | 67 (98.5) | 0.380 |
Chronic Obstructive Pulmonary Disease | 87 (59.6) | 42 (53.8) | 45 (66.2) | 0.130 |
Bronchiectasis | 49 (36.6) | 23 (29.5) | 26 (38.2) | 0.264 |
Asthma | 36 (24.7) | 21 (26.9) | 15 (22.1) | 0.496 |
Chronic respiratory failure | 22 (15.1) | 11 (14.1) | 11 (16.1) | 0.727 |
Chronic bronchitis | 12 (8.3) | 8 (10.3) | 4 (5.9) | 0.337 |
Emphysema | 8 (5.5) | 4 (5.1) | 4 (5.9) | 0.842 |
Other | 30 (20.6) | 19 (24.4) | 11 (16.2) | 0.222 |
Arterial hypertension Cardiovascular, cerebrovascular diseases: Cardiovascular disease Heart failure Acute myocardial infarction Stable coronary heart disease Angina pectoris Stroke Peripheral arterial disease Transient ischemic attack Other | 105 (75.9) 73 (50.0) 42(28.8) 33 (22.6) 9 (6.2) 5 (3.4) 3 (2.1) 9 (6.2) 8 (5.5) 5 (3.4) 36 (24.7) | 56 (71.8) 33 (42.3) 22 (32.4) 15 (19.2) 4 (5.1) 4 (5.1) 1 (1.3) 6 (7.7) 5 (6.4) 1 (1.3) 14 (18.0) | 49 (72.1) 40 (58.8) 20 (25.6) 18 (26.5) 5 (7.4) 1 (1.5) 2 (2.9) 3 (4.4) 3 (4.4) 4 (5.9) 22 (32.3) | 0.972 0.046 0.371 0.297 0.577 0.225 0.481 0.127 0.597 0.411 0.044 |
Chronic neurological or mental diseases | 59 (40.4) | 31 (39.7) | 28 (41.2) | 0.860 |
Situation that leads to immunosuppression: | 31 (21.2) | 13 (16.7) | 18 (26.5) | 0.148 |
Malignancy | 24 (16.4) | 11 (14.1) | 13 (19.1) | 0.415 |
Transplant | 6 (4.1) | 2 (2.6) | 4 (5.9) | 0.314 |
Other | 6 (4.1) | 1 (1.3) | 5 (7.4) | 0.065 |
Autoimmune disease | 11 (7.5) | 9 (11.5) | 2 (2.9) | 0.050 |
Other conditions | ||||
Diabetes mellitus | 35 (24.0) | 15 (19.2) | 20 (29.4) | 0.151 |
Chronic kidney failure | 20 (13.7) | 7 (9.0) | 13 (19.1) | 0.075 |
Liver disease or failure | 15 (10.3) | 6 (7.7) | 9 (13.2) | 0.271 |
Number of severe COVID-19 risk factors c, mean (±SD) | 6 (±2) | 5 (±2) | 6 (±2) | 0.082 |
Patient’s Treatment | Total Patients (n, %, Median, Interquartile Range) | Mild/Moderate (n, %, Median, Interquartile Range) | Hospitalization/Death (n, %, Median, Interquartile Range) | p-Value |
---|---|---|---|---|
Total | 146 (100) | 78 (53.4) | 68 (46.6) | |
Treatment with long-term macrolides (azythromycin) | ||||
Number of patients | 145 (99.3) | 77 (98.7) | 68 (100) | 0.349 |
Days with macrolides a, median | 468 (269–1070) | 468 (273–936) | 499 (257–1127) | 0.934 |
Weekly dose (mg), median | 1500 (1000–1500) | 1500 (1000–1500) | 1500 (1000–1500) | 0.584 |
Current medication | ||||
Number of concomitant treatments | 12 (±5) | 11 (±5) | 13 (±4) | 0.059 |
Bronchodilators | 133 (91.1) | 69 (88.5) | 64 (94.1) | 0.231 |
Long-acting β2-agonist (LABA) | 117 (80.1) | 62 (79.5) | 55 (80.9) | 0.833 |
Long-acting muscarinic antagonist (LAMA) | 96 (65.8) | 51 (65.4) | 45 (66.2) | 0.920 |
Short-acting β2-agonist (SABA) | 70 (47.8) | 34 (43.6) | 36 (52.9) | 0.259 |
Short-acting muscarinic antagonist (SAMA) | 40 (27.4) | 18 (23.1) | 22 (32.4) | 0.210 |
Other systemic antiasthmatics | 37 (25.3) | 20 (25.6) | 17 (25.0) | 0.929 |
Montelukast | 23 (15.8) | 13 (16.7) | 10 (14.7) | 0.746 |
Roflumilast | 14 (4.2) | 7 (9.0) | 7 (10.3) | 0.787 |
Corticoids: | 122 (83.6) | 63 (80.8) | 59 (86.8) | 0.330 |
Inhaled | 113 (77.4) | 59 (75.6) | 54 (79.4) | 0.587 |
Systemic | 41 (28.1) | 18 (23.1) | 23 (33.8) | 0.149 |
Proton pump inhibitors | 113 (77.4) | 57 (73.1) | 56 (82.4) | 0.181 |
Antihypertensives | 97 (66.4) | 51 (65.4) | 46 (67.7) | 0.773 |
Analgesics: | 92 (63.0) | 45 (57.7) | 47 (69.1) | 0.154 |
Non-opioids | 84 (57.5) | 41 (52.6) | 43 (63.2) | 0.193 |
Opioids | 29 (19.9) | 17 (21.8) | 12 (17.7) | 0.531 |
Gabapentinoids | 15 (10.3) | 9 (11.5) | 6 (8.8) | 0.590 |
Benzodiazepines | 67 (45.9) | 39 (50.0) | 28 (41.2) | 0.286 |
Lipid-loweringagents | 63 (43.2) | 33 (42.3) | 30 (44.1) | 0.826 |
Antibiotics (other than macrolides) | 56 (38.4) | 30 (38.5) | 26 (38.2) | 0.978 |
Fluoroquinolones | 37 (25.3) | 20 (25.6) | 17 (25.0) | 0.929 |
Cephalosporins | 15 (10.3) | 6 (7.7) | 9 (13.2) | 0.271 |
Penicillins | 9 (6.2) | 5 (6.4) | 4 (5.9) | 0.895 |
Other antibiotics | 21 (14.4) | 11 (14.1) | 10 (14.7) | 0.917 |
Antidepressants | 60 (41.1) | 32 (41.0) | 28 (41.2) | 0.985 |
Antidiabetics | 31 (21.2) | 12 (15.4) | 19 (27.9) | 0.064 |
Antiplatelet drugs | 32 (21.9) | 17 (21.8) | 15 (22.1) | 0.969 |
Anticoagulants | 35 (24.0) | 15 (19.2) | 20 (29.4) | 0.151 |
NSAIDs | 23 (15.8) | 14 (18.0) | 9 (13.2) | 0.435 |
Antihistamines | 25 (17.1) | 13 (16.7) | 12 (17.7) | 0.875 |
Immunosuppressants | 9 (6.2) | 2 (2.6) | 7 (10.3) | 0.053 |
Mucolytics | 17 (11.6) | 6 (7.7) | 11 (16.2) | 0.111 |
Antipsychotics | 15 (10.4) | 7 (8.8) | 8 (11.8) | 0.580 |
Antifungals | 10 (6.9) | 5 (6.4) | 5 (7.4) | 0.822 |
Hydroxychloroquine | 8 (5.5) | 3 (3.9) | 5 (7.4) | 0.353 |
Number of treatments that increase the risk of pneumonia b | 3 (2–4) | 3 (2–4) | 3 (1–4) | 0.506 |
Confirmed case | Any person with laboratory confirmation of SARS-CoV-2 infection by reverse-transcription PCR (PCR) test (or other molecular diagnostic technique considered appropriate), or patients that meet clinical criteria, with negative PCR or other molecular diagnostic technique considered adequate, and positive result for IgM by serology (not by rapid test). |
Case under investigation (suspected case) | Person meeting clinical criteria until the PCR result is obtained. A suspected case of SARS-CoV-2 infection is any person with these clinical criteria: sudden-onset acute respiratory infection of any severity that includes symptoms compatible with COVID-19, among others: fever, cough or sensation of shortness of breath. Other symptoms such as odynophagia, anosmia, ageusia, muscle pain, diarrhea, chest pain or headaches, can also be considered symptoms of suspected SARS-CoV-2 infection. |
Probable case | Person with severe acute respiratory infection with clinical and radiological criteria compatible with COVID-19, with negative PCR results or suspicious cases with inconclusive PCR. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meseguer Barros, C.M.; Alzueta Isturiz, N.; Sainz de Rozas Aparicio, R.; Vizcaíno, R.A.; López Esteban, L.; Anaya Ordóñez, S.; Lekue Alkorta, I.; Martín Suances, S.; Jiménez Arce, J.I.; Fernández Vicente, M.; et al. Sars-Cov-2 Infection in Patients on Long-Term Treatment with Macrolides in Spain: A National Cross-Sectional Study. Antibiotics 2021, 10, 1039. https://doi.org/10.3390/antibiotics10091039
Meseguer Barros CM, Alzueta Isturiz N, Sainz de Rozas Aparicio R, Vizcaíno RA, López Esteban L, Anaya Ordóñez S, Lekue Alkorta I, Martín Suances S, Jiménez Arce JI, Fernández Vicente M, et al. Sars-Cov-2 Infection in Patients on Long-Term Treatment with Macrolides in Spain: A National Cross-Sectional Study. Antibiotics. 2021; 10(9):1039. https://doi.org/10.3390/antibiotics10091039
Chicago/Turabian StyleMeseguer Barros, Carmen Marina, Natalia Alzueta Isturiz, Rita Sainz de Rozas Aparicio, Rafael Aguilella Vizcaíno, Laura López Esteban, Sonia Anaya Ordóñez, Itxasne Lekue Alkorta, Salvadora Martín Suances, Jorge Ignacio Jiménez Arce, Maite Fernández Vicente, and et al. 2021. "Sars-Cov-2 Infection in Patients on Long-Term Treatment with Macrolides in Spain: A National Cross-Sectional Study" Antibiotics 10, no. 9: 1039. https://doi.org/10.3390/antibiotics10091039
APA StyleMeseguer Barros, C. M., Alzueta Isturiz, N., Sainz de Rozas Aparicio, R., Vizcaíno, R. A., López Esteban, L., Anaya Ordóñez, S., Lekue Alkorta, I., Martín Suances, S., Jiménez Arce, J. I., Fernández Vicente, M., Borrego Izquierdo, Y., Prieto Sánchez, R., Casado Casuso, S., Madridejos, R., Verde, C. M., Tomás Sanz, R., Oro Fernández, M., Gallardo Borge, S., Lázaro López, E., ... Fernández-Urrusuno, R., on behalf of the Infectious Diseases SEFAP Team. (2021). Sars-Cov-2 Infection in Patients on Long-Term Treatment with Macrolides in Spain: A National Cross-Sectional Study. Antibiotics, 10(9), 1039. https://doi.org/10.3390/antibiotics10091039