Retrospective Cohort Analysis of the Effect of Antimicrobial Stewardship on Postoperative Antibiotic Therapy in Complicated Intra-Abdominal Infections: Short-Course Therapy Does Not Compromise Patients’ Safety
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Patients
2.3. Outcome Assessment
2.4. Statistical Analysis
3. Results
Patients’ Baseline Characteristics and Indications for Emergency Surgery
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sartelli, M.; Labricciosa, F.M.; Barbadoro, P.; Pagani, L.; Ansaloni, L.; Brink, A.J.; Carlet, J.; Khanna, A.; Chichom-Mefire, A.; Coccolini, F.; et al. The Global Alliance for Infections in Surgery: Defining a model for antimicrobial stewardship-results from an international cross-sectional survey. World J. Emerg. Surg. 2017, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Owens, R.C., Jr. Antimicrobial stewardship: Concepts and strategies in the 21st century. Diagn. Microbiol. Infect. Dis. 2008, 61, 110–128. [Google Scholar] [CrossRef]
- Davey, P.; Marwick, C.A.; Scott, C.L.; Charani, E.; McNeil, K.; Brown, E.; Gould, I.M.; Ramsay, C.R.; Michie, S. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst. Rev. 2017, 2, CD003543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charani, E.; Castro-Sanchez, E.; Sevdalis, N.; Kyratsis, Y.; Drumright, L.; Shah, N.; Holmes, A. Understanding the determinants of antimicrobial prescribing within hospitals: The role of “prescribing etiquette”. Clin. Infect. Dis. 2013, 57, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Vikesland, P.; Garner, E.; Gupta, S.; Kang, S.; Maile-Moskowitz, A.; Zhu, N. Differential Drivers of Antimicrobial Resistance across the World. Acc. Chem. Res. 2019, 52, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- de With, K.; Wilke, K.; Kern, W.V.; Strauß4, R.; Kramme, E.; Friedrichs, A.; Holzmann, T.; Geiss, H.K.; Isner, C.; Fellhauer, M.; et al. AWMF-S3-Leitlinie Strategien zur Sicherung Rationaler Antibiotika-Anwendung im Krankenhaus. Available online: https://www.awmf.org/leitlinien/detail/ll/092-001.html (accessed on 5 March 2019).
- Tarchini, G.; Liau, K.H.; Solomkin, J.S. Antimicrobial Stewardship in Surgery: Challenges and Opportunities. Clin. Infect. Dis. 2017, 64, S112–S114. [Google Scholar] [CrossRef]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.A.A.; Singh, K.; Hilaire, M.G.; Rahman, S.; Sa, B.; Haque, M. Tackling Antimicrobial Resistance by promoting Antimicrobial stewardship in Medical and Allied Health Professional Curricula. Expert Rev. Anti-Infect. Ther. 2020, 18, 1245–1258. [Google Scholar] [CrossRef]
- Surat, G.; Vogel, U.; Wiegering, A.; Germer, C.T.; Lock, J.F. Defining the Scope of Antimicrobial Stewardship Interventions on the Prescription Quality of Antibiotics for Surgical Intra-Abdominal Infections. Antibiotics 2021, 10, 73. [Google Scholar] [CrossRef]
- Wang, R.; Degnan, K.O.; Luther, V.P.; Szymczak, J.E.; Goren, E.N.; Logan, A.; Shnekendorf, R.; Hamilton, K.W. Development of a Multifaceted Antimicrobial Stewardship Curriculum for Undergraduate Medical Education: The Antibiotic Stewardship, Safety, Utilization, Resistance, and Evaluation (ASSURE) Elective. Elective. Open Forum Infect. Dis. 2021, 8, ofab231. [Google Scholar] [CrossRef]
- Sawyer, R.G.; Claridge, J.A.; Nathens, A.B.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’Neill, P.J.; Mazuski, J.E.; Askari, R.; et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N. Engl. J. Med. 2015, 372, 1996–2005. [Google Scholar] [CrossRef] [Green Version]
- Schein, M.; Assalia, A.; Bachus, H. Minimal antibiotic therapy after emergency abdominal surgery: A prospective study. Br. J. Surg. 1994, 81, 989–991. [Google Scholar] [CrossRef]
- Montravers, P.; Tubach, F.; Lescot, T.; Veber, B.; Esposito-Farese, M.; Seguin, P.; Paugam, C.; Lepape, A.; Meistelman, C.; Cousson, J.; et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: The DURAPOP randomised clinical trial. Intensive Care Med. 2018, 44, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Chichom-Mefire, A.; Labricciosa, F.M.; Hardcastle, T.; Abu-Zidan, F.M.; Adesunkanmi, A.K.; Ansaloni, L.; Bala, M.; Balogh, Z.J.; Beltran, M.A.; et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 2017, 12, 29. [Google Scholar] [CrossRef]
- Sartelli, M.; Catena, F.; Di Saverio, S.; Ansaloni, L.; Malangoni, M.; Moore, E.E.; Moore, F.A.; Ivatury, R.; Coimbra, R.; Leppaniemi, A.; et al. Current concept of abdominal sepsis: WSES position paper. World J. Emerg. Surg. 2014, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Sakr, Y.; Jaschinski, U.; Wittebole, X.; Szakmany, T.; Lipman, J.; Namendys-Silva, S.A.; Martin-Loeches, I.; Leone, M.; Lupu, M.N.; Vincent, J.L.; et al. Sepsis in Intensive Care Unit Patients: Worldwide Data From the Intensive Care over Nations Audit. Open Forum Infect. Dis. 2018, 5, ofy313. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M. A focus on intra-abdominal infections. World J. Emerg. Surg. 2010, 5, 9. [Google Scholar] [CrossRef]
- Sartelli, M.; Weber, D.G.; Kluger, Y.; Ansaloni, L.; Coccolini, F.; Abu-Zidan, F.; Augustin, G.; Ben-Ishay, O.; Biffl, W.L.; Bouliaris, K.; et al. 2020 update of the WSES guidelines for the management of acute colonic diverticulitis in the emergency setting. World J. Emerg. Surg. 2020, 15, 32. [Google Scholar] [CrossRef]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am. J. Infect. Control 1999, 27, 97–132. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- van den Boom, A.L.; de Wijkerslooth, E.M.L.; van Rosmalen, J.; Beverdam, F.H.; Boerma, E.G.; Boermeester, M.A.; Bosmans, J.; Burghgraef, T.A.; Consten, E.C.J.; Dawson, I.; et al. Two versus five days of antibiotics after appendectomy for complex acute appendicitis (APPIC): Study protocol for a randomized controlled trial. Trials 2018, 19, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rossem, C.C.; Schreinemacher, M.H.; van Geloven, A.A.; Bemelman, W.A. Antibiotic Duration After Laparoscopic Appendectomy for Acute Complicated Appendicitis. JAMA Surg. 2016, 151, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Coccolini, F.; Kluger, Y.; Agastra, E.; Abu-Zidan, F.M.; Abbas, A.E.S.; Ansaloni, L.; Adesunkanmi, A.K.; Atanasov, B.; Augustin, G.; et al. WSES/GAIS/SIS-E/WSIS/AAST global clinical pathways for patients with intra-abdominal infections. World J. Emerg Surg. 2021, 16, 49. [Google Scholar] [CrossRef]
- Duane, T.M.; Zuo, J.X.; Wolfe, L.G.; Bearman, G.; Edmond, M.B.; Lee, K.; Cooksey, L.; Stevens, M.P. Surgeons do not listen: Evaluation of compliance with antimicrobial stewardship program recommendations. Am. Surg. 2013, 79, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Duane, T.M.; Catena, F.; Tessier, J.M.; Coccolini, F.; Kao, L.S.; De Simone, B.; Labricciosa, F.M.; May, A.K.; Ansaloni, L.; et al. Antimicrobial Stewardship: A Call to Action for Surgeons. Surg Infect. 2016, 17, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Tellado, J.M.; Sen, S.S.; Caloto, M.T.; Kumar, R.N.; Nocea, G. Consequences of inappropriate initial empiric parenteral antibiotic therapy among patients with community-acquired intra-abdominal infections in Spain. Scand J. Infect. Dis. 2007, 39, 947–955. [Google Scholar] [CrossRef]
- Soni, N.J.; Samson, D.J.; Galaydick, J.L.; Vats, V.; Huang, E.S.; Aronson, N.; Pitrak, D.L. Procalcitonin-guided antibiotic therapy: A systematic review and meta-analysis. J. Hosp. Med. 2013, 8, 530–540. [Google Scholar] [CrossRef]
- Harbarth, S.; Holeckova, K.; Froidevaux, C.; Pittet, D.; Ricou, B.; Grau, G.E.; Vadas, L.; Pugin, J. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am. J. Respir. Crit. Care Med. 2001, 164, 396–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, L.; Gauvin, F.; Amre, D.K.; Saint-Louis, P.; Lacroix, J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: A systematic review and meta-analysis. Clin. Infect. Dis. 2004, 39, 206–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef]
- Spoto, S.; Valeriani, E.; Caputo, D.; Cella, E.; Fogolari, M.; Pesce, E.; Mulè, M.T.; Cartillone, M.; Costantino, S.; Dicuonzo, G.; et al. The role of procalcitonin in the diagnosis of bacterial infection after major abdominal surgery: Advantage from daily measurement. Medicine 2018, 97, e9496. [Google Scholar] [CrossRef]
- Hochreiter, M.; Köhler, T.; Schweiger, A.M.; Keck, F.S.; Bein, B.; von Spiegel, T.; Schroeder, S. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: A randomized prospective controlled trial. Crit. Care 2009, 13, R83. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, S.; Hochreiter, M.; Koehler, T.; Schweiger, A.M.; Bein, B.; Keck, F.S.; von Spiegel, T. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: Results of a prospective randomized study. Langenbecks Arch. Surg. 2009, 394, 221–226. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Patients, No. (%) | p Value b | |
---|---|---|---|
Postoperative Antibiotic Therapy | |||
Short (n = 160) | Long (n = 100) | ||
2016 | 42 (51.9) | 39 (48.1) | 0.015 |
2017 | 59 (59.6) | 40 (40.4) | |
2018 | 59 (73.8) | 21 (26.3) | |
age, mean (median) | 58.00 (61.50) | 58.40 (62.00) | 0.910 |
ASA classification | |||
1 | 15 (9.4) | 8 (8.0) | 0.281 |
2 | 77 (48.1) | 43 (43.0) | |
3 | 58 (36.3) | 36 (36.0) | |
4 | 9 (5.6) | 13 (13.0) | |
BMI, mean (median) | 27.30 (27.00) | 27.00 (27.0) | 0.832 |
CCI | |||
none (0) | 41 (25.6) | 27 (27.0) | 0.264 |
low (1–2) | 33 (20.6) | 17 (17.0) | |
moderate (3–4) | 52 (32.5) | 25 (25.0) | |
severe (>4) | 34 (21.3) | 31 (31.0) | |
liver cirrhosis | 1 (0.6) | 1 (1.0) | 0.736 |
chronic kidney disease | 15 (9.4) | 17 (17.0) | 0.069 |
current immunosuppressive drugs | 9 (5.6) | 8 (8.0) | 0.451 |
community-acquired IAI | 133 (83.1) | 83 (83.0) | 0.979 |
hospital-aquired IAI | 27 (16.9) | 17 (17.0) | |
high-risk of MDR | 28 (17.5) | 17 (17.0) | 0.917 |
preoperative a LOS, mean (median), d | 14.00 (0.00) | 13.00 (0.00) | 0.724 |
surgery | 15 (9.4) | 8 (8.0) | 0.704 |
MDR | 5 (3.1) | 5 (5.0) | 0.444 |
MRSA | 1 (0.6) | 0 (0.0) | 0.737 |
VRE | 2 (1.3) | 2 (2.0) | |
3MRGN | 1 (0.6) | 2 (2.0) | |
intraoperative peritonitis | 90 (56.3) | 49 (49.0) | 0.254 |
gastric perforation | 10 (6.3) | 4 (4.0) | 0.612 |
small intestine perforation | 10 (6.3) | 9 (9.0) | |
colonic perforation | 20 (12.5) | 17 (17.0) | |
appendicitis | 55 (34.4) | 39 (39.0) | |
cholecystitis | 57 (35.6) | 28 (28.0) | |
intestinal obstruction | 7 (4.4) | 3 (3.0) |
Characteristic a | Patients, No. (%) | p Value d | |
---|---|---|---|
Postoperative Antibiotic Therapy | |||
Short (n = 160) | Long (n = 100) | ||
postoperative transfer to | |||
general ward | 80 (50.0) | 38 (38.0) | 0.069 |
IMC | 26 (16.3) | 14 (14.0) | |
ICU | 54 (33.8) | 48 (48.0) | |
postoperative organ support | |||
ventilation | 34 (21.3) | 31 (31.0) | 0.077 |
vasopressors | 28 (17.5) | 26 (26.0) | 0.100 |
SSI | 11 (6.9) | 12 (12.0) | 0.157 |
other postoperative infections b | 19 (11.9) | 10 (10.0) | 0.640 |
re-intervention necessary | 24 (15.0) | 27 (27.0) | 0.018 |
re-operation necessary | 14 (8.8) | 23 (23.0) | 0.001 |
postoperative findings | |||
MDR | 4 (2.5) | 3 (3.0) | 0.809 |
postoperative complications c | |||
none | 58 (36.3) | 16 (16.0) | 0.001 |
no severe complications | 83 (51.9) | 61 (61.0) | |
severe complications | 19 (11.9) | 23 (23.0) | |
postoperative mortality | 2 (1.3) | 0 (0) | 0.262 |
LOS mean (median) | 10.00 (7.00) | 14.00 (11.00) | <0.001 |
LOIS mean (median) | 2.00 (1.00) | 3.00 (1.00) | 0.138 |
duration of PAT mean (median) in days | 4 (4) | 9 (8.5) | <0.001 |
Characteristic | Patients, No. (%) | p Value a | |
---|---|---|---|
Postoperative Antibiotic Therapy | |||
Short (n = 160) | Long (n = 100) | ||
Initial Regimen: | |||
cephalosporins | 76 (72.4) | 52 (67.5) | 0.641 |
broad-spectrum penicillin | 26 (24.8) | 21 (27.3) | |
carbapenems | 3 (2.9) | 4 (5.2) | |
switch of antibiotic agent | 31 (19.4) | 56 (56.0) | <0.001 |
postoperative day of switch, mean (median), d | 3.00 (2.00) | 4.00 (3.00) | 0.004 |
Reason for Switch of Antibiotic Agent | |||
not documented | 24 (77.4) | 40 (72.7) | 0.123 |
resistogram | 4 (12.9) | 14 (25.5) | |
AMS council | 3 (9.7) | 1 (1.8) | |
switch in ICU or IMC | 7 (22.6) | 9 (16.4) | 0.567 |
switch on general ward | 24 (77.4) | 46 (83.6) | |
Assessment Based on AMS-Guidelines | |||
PAT necessary | 121 (75.6) | 77 (77.0) | 0.800 |
de-escalation or discontinuation correct | 154 (96.3) | 79 (79.0) | <0.001 |
missing de-escalation | 4 (2.5) | 20 (20.0) | |
missing escalation | 2 (1.3) | 1 (1.0) | |
Switch of Empirical Antibiotic Therapy | |||
not required or correctly performed | 143 (89.4) | 65 (65.0) | <0.001 |
wrong de-escalation | 2 (1.3) | 3 (3.0) | |
wrong escalation | 15 (9.4) | 32 (32.0) | |
efficacy | |||
not effective against strains | 96 (60.0) | 57 (57.0) | 0.632 |
effective against detected strains | 64 (40.0) | 43 (43.0) | |
Biochemical Values After PAT | |||
leukocytes. mean (median) | 9.60 (8.60) | 10.20 (9.90) | 0.076 |
CRP mean (median) | 10.30 (8.00) | 6.10 (4.00) | <0.001 |
PCT mean (median) | 6.90 (0.80) | 0.50 (0.50) | 0.643 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surat, G.; Meyer-Sautter, P.; Rüsch, J.; Braun-Feldweg, J.; Germer, C.-T.; Lock, J.F. Retrospective Cohort Analysis of the Effect of Antimicrobial Stewardship on Postoperative Antibiotic Therapy in Complicated Intra-Abdominal Infections: Short-Course Therapy Does Not Compromise Patients’ Safety. Antibiotics 2022, 11, 120. https://doi.org/10.3390/antibiotics11010120
Surat G, Meyer-Sautter P, Rüsch J, Braun-Feldweg J, Germer C-T, Lock JF. Retrospective Cohort Analysis of the Effect of Antimicrobial Stewardship on Postoperative Antibiotic Therapy in Complicated Intra-Abdominal Infections: Short-Course Therapy Does Not Compromise Patients’ Safety. Antibiotics. 2022; 11(1):120. https://doi.org/10.3390/antibiotics11010120
Chicago/Turabian StyleSurat, Güzin, Pascal Meyer-Sautter, Jan Rüsch, Johannes Braun-Feldweg, Christoph-Thomas Germer, and Johan Friso Lock. 2022. "Retrospective Cohort Analysis of the Effect of Antimicrobial Stewardship on Postoperative Antibiotic Therapy in Complicated Intra-Abdominal Infections: Short-Course Therapy Does Not Compromise Patients’ Safety" Antibiotics 11, no. 1: 120. https://doi.org/10.3390/antibiotics11010120
APA StyleSurat, G., Meyer-Sautter, P., Rüsch, J., Braun-Feldweg, J., Germer, C.-T., & Lock, J. F. (2022). Retrospective Cohort Analysis of the Effect of Antimicrobial Stewardship on Postoperative Antibiotic Therapy in Complicated Intra-Abdominal Infections: Short-Course Therapy Does Not Compromise Patients’ Safety. Antibiotics, 11(1), 120. https://doi.org/10.3390/antibiotics11010120